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A B S T R A C T

Illegal practices like open electronic waste incineration release hazardous pollutants, endangering the environ-
ment and human health. The Internet of Things (IoT) enables online real-time gas concentrations, but its
capability to predict leak sources accurately remains a challenge. A large amount of historical data is required to
train the source localization model, as gas dispersion is affected by wind speed and wind direction. Furthermore,
sensor placement critically affects precise detection and prediction. This study introduces an innovative approach
integrating Computational Fluid Dynamics (CFD), Mixed-Integer Linear Programming (MILP), and Artificial
Neural Network modeling (ANN). CFD was utilized for machine learning model training. The MILP was used to
optimize sensor placement, while the ANN model was used to optimize sensor number. The source localization
model was again realized by the ANN model with optimized sensors data. The trained model was able to identify
the unknown illegal electronic waste treatment locations with 97.22 % accuracy in this study. This method al-
lows for the rapid detection of gas sources, as well as the execution of an emergency response, in line with
Sustainable Development Goal Target 3.9.

1. Introduction

The advent of the digital age has led to a massive increase in the
production and usage of electronic devices in all aspects of human lives
and businesses worldwide. However, due to shorter product lifespans,
rapid technological advances and increased consumer demand for the
latest devices, there has also been a significant increase in electronic
waste (e-waste) with approximately 53.6 million tons of e-waste
generated globally in 2019 (Forti et al., 2020). Recycling activities have
not been able to keep pace with the growth in global e-waste with total
amount of e-waste generated exceeding those recycled by 5 times over
the same period. In Malaysia, the reported amount of electronic waste
produced in 2019 has increased by three times since 2009, reaching
around 364 kt (Forti et al., 2020). For industrial e-waste, Malaysia uses
the Electronic Scheduled Waste Information System (eSWIS) is used to
track e-waste from generation to recycling, with 138 recycling facilities

nationwide (Yong et al., 2019). However, household e-waste lacks a
similar regulatory framework and is often collected by
non-governmental organizations, charities, or individual collectors
(Hassan and Shirazi, 2021). Additionally, a lot of electronic waste from
overseas is shipped to Malaysia by concealing it as other permitted
imports (Bernama, 2022).

E-waste is known to contain heavy metal elements and many organic
compounds that can pose environmental and human health risks if not
properly disposed of. Consequently, proper treatment and disposal of
these large quantities of e-waste have become a concern for many
countries globally. Hydrometallurgy is one of the conventional methods
used to recover metals from e-waste. It is simpler and requires less
capital than electrometallurgy and pyrometallurgy (Neto et al., 2016).
Chemicals such as cyanide, nitric acid, and aqua regia (a mixture of
nitric and hydrochloric acids) are commonly used to extract some spe-
cific metals from e-waste (Gökelma et al., 2016). However, the recovery
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process is usually accompanied by the release of some toxic gases (NO,
NOCl, Cl2, etc.), which requires measures such as well-established
exhaust gas treatment devices to ensure the safety and environmental
friendliness of formal metal recycling. Improper recycling methods for
e-waste are more primitive in some developing countries. Since e-waste
contains a significant number of valuable metals, including gold, silver,
copper, platinum, etc., many people seek to maximize the profit from
illegally recycling these metals (Shumon et al., 2014). One of the main
informal recycling methods to separate metals and non-metals is
through the open burning of the e-waste without proper gas and liquid
treatment (Lu and Xu, 2016; Shahabuddin et al., 2023).

Open-air burning of e-waste can severely impact the environment
and human health due to the release of various toxic organic compounds
like chlorinated and brominated dioxins and furans, as well as the
generation of metallic dusts, such as copper, lead, zinc, and aluminum
(Cesaro et al., 2019; Gangwar et al., 2019; Li et al., 2018; Sahle-De-
messie et al., 2017). These toxic substances can cause extensive envi-
ronmental pollution through atmospheric dispersion and deposition into
soils and waters. They could accumulate in living organisms and enter
the food chain, which can cause long-term hazards to biological and
human health. Several studies have shown an increased risk of cardio-
vascular disease and cancer for the residents living near e-waste recy-
cling sites that were caused by long-term exposure to heavy metals
(Davis and Garb, 2019; Gangwar et al., 2019; Huang et al., 2016; Zheng
et al., 2013). Therefore, reducing the illegal behavior of e-waste open
burning is vital for both the health of the residents and the ecosystem.

The fast detection and subsequent deployment of quick and effective
response against illegal e-waste open burning can minimize the risks
towards human health. A smart detection or monitoring system is a
solution that may help detect hazardous gas and stop or prevent acci-
dents by working with little or no human supervision. Devices with
Internet-of-Things (IoT) capabilities are commonly employed by such
systems to ensure real-time monitoring and alert operators in case of
abnormalities. One major issue in the development of smart systems is
the proper amount and placement of IoT-based sensors. Sensor layout
optimization can shorten detection time, reduce energy and mainte-
nance costs, as well as maximize risk mitigation. The performance of a
sensor network relies on the placement and number of sensors, which
are determined based on various parameters including release location,
type of fluid released, operating conditions, geometry of the plant, and
meteorological conditions. An increase in the number of sensors can
improve the detection performance, but an overabundance of sensors
can lead to higher costs as well as an increase in the number of false
alarms. The placement of sensors is also vital in avoiding false alarms
and blind spots. The standard approach to sensor layout placement is via
qualitative methods, typically arising from rule of thumbs and engi-
neering experience, which can subjective and biased (Cen et al., 2018;
Rad et al., 2016). One common method is to place sensors uniformly
within the monitoring space, resulting in a large number of sensors and
an expensive monitoring system (Fontanini et al., 2016). Sensor
deployment through these methods often fails to maximize performance
to identify the gas dispersion sources accurately.

Quantitative methods, which are objective and measurable, may
serve as substitutes or supplements to current qualitative methods. For
hazardous contaminant detection, quantitative values include concen-
tration and volume of fluid. Quantitative models organize and interpret
the measured datasets using mathematical equations to recognize spe-
cific patterns and trends for a particular problem. To optimize sensor
placement, the mixed-integer linear programming (MILP) heuristics-
based technique is commonly used and has been verified for a variety
of applications by utilizing the quantitative data to solve for mathe-
matical optimization problems. This technique integrates both contin-
uous and discrete variables and accurately models the constraints
present in the real world, making it able to handle discrete variables as
well as incorporate multiple constraints and objectives needed for sensor
optimization. Legg et al. (2012) utilized the MILP technique to identify

the best locations for gas detectors in petrochemical facilities, and they
were able to achieve computational efficiency within seconds. Similarly,
Klise et al. (2020) showed how the MILP technique can be used to
identify the best sensor locations and detection thresholds for optimal
detection of emission scenarios in methane emission settings. An
improved MILP based on the work by Legg et al. (2012) was presented
by Benavides-Serrano et al. (2015) with the inclusion of unavailability
and voting effects (SP-UV) to account for potential false negatives and
false positive alarms. Results indicated that the SP-UV technique was
able to achieve an expected time to detection that was 30 s or less than
industry common methodologies such as Random Approach (RA),
Volumetric Approach (VA), Minimum Source Distance Problem (MSDP),
Greedy Coverage (GC) and the Maximum Coverage Location Problem
(MCLP) formulation. Compared to installing sensors around the facility
or in individual locations, an optimized sensor network yields consistent
improvement in detecting leaks. The use of MILP in optimizing sensor
placement enhances efficiency and cost-effectiveness in various sce-
narios. However, an optimized sensor layout can only detect possible
leakages and offer information on the concentration of hazardous fluid
in the surrounding location of the sensors of interest. An optimized
sensor layout alone cannot analyse the obtained information nor help in
source tracking or localization to find the leakage points in a smart
system. Further quantitative analysis through numerical or computa-
tional methods is common to understand the dispersion behaviour of
hazardous fluid away from the source in the event of open burning or
accidental release.

Due to the complexities in urban dispersion modelling including
environmental conditions, obstacle presence, and terrain effects,
computational models are being utilized to predict and offer insights
into pollution transport (Boikos et al., 2024; Ioannidis et al., 2024; Lyu
et al., 2023). These models can be utilized to assist authorities in analysis
of open burning operations and pollution control to help decrease
environmental damage and protect human health. Among the various
models, Computational Fluid Dynamics (CFD) is a powerful tool for
studying air dispersion with varying time in a complex geographic sys-
tem. It can be used to obtain data for real-world scenarios that are
difficult or costly to obtain, such as smoke dispersion in fires and toxic
gas leaks in chemical plants (Baalisampang et al., 2021; Chen et al.,
2022). However, when the source of the gas release is unknown, the use
of CFD models alone is limited. In addition, CFD modelling and calcu-
lations along with data analysis are time-consuming, which limits the
application of CFD in emergency and contingency situations. Powerful
data analysis tools are required to analyse the diverse and large amounts
of numerical data (big data) and assist in the determination of source
location through by recognizing specific patterns and trends. Therefore,
in complex source localization problems, the combination of CFD with
other data analysis techniques can be useful in predicting the location of
the release point in a shorter period of time.

Probability-based source estimation algorithms such as the inverse
Markov chain Monte Carlo (MCMC) sampling method based on Bayesian
inference have been combined with a high-resolution CFD model for
source localization was used to predict the source of the steady-state
pollutant plume in complex urban geometry results in a study by
Chow et al. (2005) through forward advection-diffusion equation cal-
culations. The prediction of the concentration plume by the CFD code in
this study was inadequate and there was some difficulty in source
location prediction when it was between two buildings perpendicular to
the flow direction. Moreover, the computational resources for the for-
ward advection-diffusion equation are intensive as the equation is
solved for every combination of the source parameter or source loca-
tions, which can reach a considerably large number. To optimize the
computational efforts required for steady-state source estimation, Keats
et al. (2006) and Keats et al. (2007) utilized same inverse MCMC sam-
pling method to solve the advection-diffusion equation with the adjoint
approach. This led to the linear scaling of computational resources with
the number of detectors and source parameters, instead of scaling
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linearly with number of potential source locations and exponentially
with the number of source parameters, which would typically be much
larger in number compared to the limited number of detectors. As the
computational time for solving the adjoint advection-diffusion equation
once is similar to the forward advection-diffusion equation, the total
computational resources required can be cut short. In a study by Zeng
et al. (2020), an inverse Markov chain-based method that is able to
identify pollutant source locations in buildings with ventilation systems
with complete and incomplete prior concentration distribution was
developed to provide fast source inversion modelling with low compu-
tational load. Through the validation by CFD simulation and concen-
tration measurement experiments based on instantaneous release, this
Markov chain approach was able to achieve the correct prediction of the
source, though additional research may be needed for the localization of
continuous release sources. Furthermore, the placement of detectors in
this study was found to have impacted the results of the source locali-
zation, wherein placing detectors in well-mixed zones. This was similar
to the findings by Wu et al. (2020) involving a study utilizing combined
CFD-Bayesian inference method for source term estimation, which
tested layouts of sensors were set to intervals of 10 m, 20 m, and 30 m
and found the increasing number of sensors were shown to improve
unknown source localization accuracy. This aligns with the purpose of
sensor placement optimization via quantitative analysis as sensors are
major components for supplying models the relevant and accurate data
for source localization purposes.

There is also the issue of computational resources for probability-
based algorithms source localization, which can be minimized by in-
clusion of optimization techniques. As a metaheuristic method, GA has
already been applied as an optimization algorithm to optimize sensor
placement and has been extensively studied for source localization. The
location of the source is confirmed by applying specific functions and
iterations to find the minimum gap between the calculated and detected
concentrations. Haupt et al. (2006) presented the usage of a GA-coupled
Monte Carlo method with a basic Gaussian plume dispersion model for
source characterization including the strength, location, and time of the
release. The Monte Carlo method was used to analyse the error bounds
associated with the ability of the GA model to match a known solution
based on the previously mentioned three characteristics. In a separate
paper with the same coupled method, Haupt et al. (2007) studied the
prediction of the release of toxic pollutants, and applied GA to charac-
terize the two-dimensional source location, release amount, and wind
direction. Compared with the random search method, the GA achieved
convergence faster and was able to deal with more complex situations.
In research by Allen et al. (2007), a similar GA-coupled approach with a
Gaussian plume dispersion model was used to find the 2D source in-
formation by obtaining the output data of the dispersion model with the
best match for the receptor data. After 100 iterations, the algorithm can
effectively reproduce the source information including source location,
source intensity, and wind direction. Annunzio et al. (2012) combined
GA with a hybrid Langrangian-Eulerian framework for the backtracking
of discrete particles to determine the average state of the dispersion of
contaminants and utilize this information for the prediction of the 2D
source location. Cantelli et al. (2015) managed to achieve 3D source
location identification by applying GA on the obtained pollutant con-
centrations measured by fixed sensor positions as simulated using a
Gaussian model. However, the source characterization conducted in the
above studies were commonly based on simple geometries or releases at
ground level with flat terrain. For complex terrain, additional parame-
ters must be considered including meteorological conditions and the
dispersion of wind and contaminant fluid flow when encountering the
associated obstacles as the dispersion model is critical in determining
accurate sensor readings for source localization purposes. Furthermore,
the Gaussian dispersion model is used in many of the aforementioned
studies mostly due to its computational efficiency. The Gaussian
dispersion model assumes the dispersion of the plume is normally
distributed in the downwind direction and there is some difficulty for

the model to predict accurate concentrations in complex environments
as well as maintain performance with increasing number of random
inputs (Holmes and Morawska, 2006). For more complex scenarios,
alternative methods have been employed for source localization such as
CFD, as aforementioned, for forward dispersion modelling and
data-driven models for dispersion data analysis and prediction of ac-
curate concentration in complex systems.

With Artificial Intelligence (AI) to play a pivotal role in the devel-
opment of smart systems and solutions in the future, data-driven and
learning-based AI, called machine learning (ML) has enormous potential
in streamlining the CFD data analysis process. Introduction of ML has
the potential to obtain more accurate source location predictions. Ma
et al. (2021) utilized a combined Gaussian-support vector machine
(SVM) leaning dispersion algorithm with the Markov chain Monte Carlo
method and found that the inclusion of the ML algorithm into the MCMC
method resulted in closer convergence to the actual pollutant source
compared to the non-ML MCMC-Gaussian method. The Artificial Neural
Network (ANN) is an example of an artificial intelligence-based quan-
titative model that is able to learn from experience or data, identify
patterns, and make decisions without human intervention (Xu et al.,
2021b). To date, several studies have been conducted to utilize machine
learning techniques in source localization due to its ability to find pat-
terns quickly in large amounts of data. ANNs have shown potential in
source localization, as evidenced by several studies. Zhou and Tarta-
kovsky (2021) integrated a deep convolutional neural network (CNN) to
mitigate the high computational costs commonly associated with the
MCMC method when using the forward transport model. The
MCMC-CNN method reached the predicted solution 20 times faster due
to the usage of the GPU, rather than the CPU as typically utilized by
partial differential equation (PDE) solvers in the previous literature. This
improvement in computational time is important, especially for simu-
lations involving more complex dispersion in complicated geometries.
Moreover, the integration of the CNN provided comparable results in
terms of the source location, spread, and strength to the non-CNN model
as well as allowed for the quantification of predictive uncertainty and
was able to account for measurement errors. ML-coupled methods are
fast and also sufficiently accurate in terms of source characterization. In
a study of groundwater contamination sources, researchers trained a
feed-forward three-level ANN model to estimate the concentrations and
locations of source contaminants (Chaubey and Srivastava, 2020). The
researchers trained the ANN model using 1500 data sets, and the
resulting neural network, with a 22-16-2 architecture, achieved the best
identification with an NRMSE of just 0.014. In a previous report, the
release of toxic gases (methane and benzene) resulting from the open
burning of plastics was investigated using CFD-ANN models (Yu et al.,
2022). To perform source localization, the ANNmodel was trained using
65 sets of concentration profiles obtained from CFD simulations. The
ANNmodel identified 12 possible release points using 8 sensors, with an
85.71 % validation rate and an average error of 3.86 %. Furthermore,
ANN-based models have been utilized for source localization in more
complex environments containing obstacles or complex terrain. Xu et al.
(2021a) compared ANN and Convolutional Neural Networks (CNN) for
toxic gas source localization with obstacles, finding ANN better for
source location prediction and CNN superior in source term precision.
Chen et al. (2022) used CNN to locate leaks and wind direction in a
chemical park with various buildings, achieving over 99 % accuracy due
to CNN’s high spatial feature extraction capability. Cho et al. (2018)
implemented Deep Neural Networks (DNN) for chemical plant leak
localization, achieving about 75.43 % accuracy with 25 hidden layers.
Kim et al. (2019) used Recurrent Neural Networks (RNN) with Long
Short-TermMemory cells for leak source localization, achieving 97.08%
accuracy using CFD simulation data obtained from fixed type sensors for
training. Thus, the utilization of neural networks has the potential to
provide fast and accurate source localization for complex systems unlike
GA-based models in previous studies which focused more on flat terrain
without obstacles.
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To date, effective methods for detection and source localization
remain limited. Thus, it is challenging to effectively prohibit illegal
open-burning sites. Besides, effective sensor placement is another chal-
lenge in obtaining representative data. Due to practical constraints, it is
often not feasible to deploy sensors over an entire area; therefore, sen-
sors are usually placed near known sources. The large number of sensors
required makes the implementation practical but not feasible. The
proposed method overcomes the shortcomings of the existing approach.
This study employs a combination of computational fluid dynamics
(CFD), mixed-integer linear programming (MILP), and artificial neural
network modeling (ANN) to optimize sensor deployment and number
and localize unknown burning sites arising from open burning of e-

waste. For the CFD simulation, a domain of 3 km x 3 km with multiple
buildings and terrains was selected. A total of 108 CFD simulations were
conducted to train the machine learning model with various dispersion
scenarios including different wind speeds and directions, with the
presence of buildings and terrain as obstacles.

The fast source identification model allows the authorities to stop the
burning behavior at the source before the toxic gases are continuously
released into the environment and to design an effective emergency
plan. This method is also expected to assist the world in embracing the
World Health Organization (WHO) Sustainable Development Goal
Target 3.9, which is to reduce the number of deaths and illnesses from
hazardous chemicals and air pollution.

2. Numerical method

The dispersion of toxic components in the air was simulated using the
Computational Fluid Dynamics (CFD) approach. The ANSYS Academic
Research FLUENT software was utilized for the purpose of simulation.
This study focused on copper, a frequently found heavy metal element in
e-waste and a major hazardous component generated during the com-
bustion of e-waste. During the simulation, the dispersion of copper
particles under varying wind conditions resulting from open burning
was investigated. The domain of the current work is considerably large
and thus, experiment work was not conducted. However, the CFD results
in the current work was obtained using well validated software, ANSYS
FLUENT, which was used in various similar studies involving particle
dispersion in the air in hilly areas and in complex urban environments
(Du et al., 2021; Fernández-Pacheco et al., 2023).

The framework of the proposed methodology for the development of
the source localization model is shown in Fig. 1. First, the domain was
divided into uniform zones where each has a designated leak source
location. The sets of leakage scenarios were established based on the
leak source locations and possible meteorological conditions of the
domain. A preliminary sensor layout was deployed through uniform
sensor placement. The sets of leakage scenarios were simulated using
CFD-based models and the gas concentration data in the form of copper
particle concentration plots were collected. With the dispersion infor-
mation, the MILP optimization problem based on the copper particle
damage coefficient and minimization of number of sensors was solved
using LINGO 20.0. After analysis and further optimization, the optimal
sensor layout was deployed for source localization purposes. The
training and validation of the ANN-based source localization model was
conducted to determine the accuracy and error. Additional reduction in
the number of sensors was performed based on the sensor importance
results to further save costs.

2.1. Computational domain

Penang, one of Malaysia’s most urbanized and industrialized cities, is
home to numerous electronic factories and a large residential popula-
tion. E-waste recycling data presented in Table 1 indicate that Pulau
Pinang (Penang) has the highest amount of e-waste recycled in the
formal industrial e-waste recycling system in Malaysia. However, latest
news reports have revealed that theMinistry of Environment intercepted
a shipment of electronic waste from the US disguised as "Aluminum
alloy" in Penang (Bernama, 2022). Therefore, Penang Island was
selected as the site of interest in this study.

After conducting a preliminary study of the topography and loca-
tions, a specific 3 km × 3 km rhombus-shaped simulation region was
chosen for this study. This region is in the southwest of Penang Inter-
national Airport, adjacent to the residential area of Teluk Kumbar, and
approximately 5 km from the Bayan Lepas Free Industrial Zone, home to
many electronic equipment manufacturing factories. The selected
simulation area comprises part of the coast and sea, part of the moun-
tains, and part of the residential buildings. A map of the study area is
shown in Fig. 2.

Fig. 1. The framework of the CFD-ANN source localization model.

Table 1
Statistics of the generated industrial e-waste in different States of Malaysia in
2017 (Yong et al., 2019).

State Generation of industrial
e-waste (tones)

State Generation of industrial
e-waste (tones)

Pulau
Pinang

48,931.6 Kelantan 294.56

Selangor 14,580.6 Sabah 140.44
Sarawak 3261.16 Kuala

Lumpur
120.46

Johor 3008.63 Pahang 87.07
Melaka 2537.09 Terengganu 43.12
Negeri
Sembilan

2287.15 Labuan 32.49

Kedah 928.14 Putrajaya 20.39
Perak 593.87 Perlis 18.95
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Fig. 2. The study area in Penang, Malaysia.

Fig. 3. Mesh of a section of the mountainous area.
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Since the burning point is unknown, it was decided that18 release
points for CFD simulation were selected, with each point located 500 m
apart. The dispersion of copper particles will be simulated multiple
times for each point, wherein each was subjected to different boundary
conditions.

The presence of obstacles has a notable impact on fluid behavior in
CFD simulations. This study acknowledges this issue and, to achieve a
more accurate depiction of gas dispersion in the chosen region, moun-
tains and buildings were integrated into the geometric model.
Geographic information, required for this modeling, was obtained from
OpenStreetMap (OpenStreetMap, 2018).

The mesh used in the study consisted of around 4.56M elements with
850 K nodes and all cells were tetrahedral cells. A mesh of a section of
the mountainous area can be seen in Fig. 3.

A grid-sensitivity study or mesh independence study was conducted
using three different grid resolutions, which are 2.5, 4.5 and 7.9 million
cells. The leak scenario consisting of release position P9 with release
velocity of 5 m/s and wind velocity of 1.6 m/s was chosen to check grid
independence. As illustrated in Fig. 4, the three grid resolutions are
relatively consistent with one another. Thus, the 4.5 million cells grid
was chosen to model the dispersion of copper particles as it was deemed
a balance between computational resources and simulation accuracy.

2.2. Governing equation

The continuity equation and momentum equation shown below are
the governing equations for this study. Given the low level of impact,
thermal effects will not be considered, and no reactions are anticipated.

Continuity equation:

∂ρ
∂t +∇⋅

(
ρV→

)
= 0 (1)

Momentum Equation: x – component:

∂(ρu)
∂t +∇⋅

(
ρuV→

)
= −

∂p
∂x+

∂τxx
∂x +

∂τyx
∂y +

∂τzx
∂z + ρfx (2)

y – component:

∂(ρυ)
∂t +∇⋅

(
ρυV→

)
= −

∂p
∂y+

∂τxy
∂x +

∂τyy
∂y +

∂τzy
∂z + ρfy (3)

z – component:

∂(ρw)
∂t +∇⋅

(
ρwV→

)
= −

∂p
∂z +

∂τxz
∂x +

∂τyz
∂y +

∂τzz
∂z + ρfz (4)

Where, ρ is the density of the fluid; t is time; V→ is the velocity vector; u, υ

Fig. 4. The copper particle concentration at a height of 50 m for points at an interval of 10 m up to 100 m downwind release from Point 9 with 1.6 m/s east wind.

Table 2
Boundary conditions.

Particle Copper

Size 5 µm
Release rate 0.0972 kg/s
Initial rise velocity 5 m/s
Wind speed 1.6 m/s, 3.4 m/s, 5.5 m/s
Wind direction East & West

Table 3
Conditions of validation sets.

Release Locations Point 1 to Point 18 (18 points)

Wind speed 2.5 m/s or 4.5 m/s
Wind direction East and West

Fig. 5. Case 55: Point 10, 1.6 m/s east-wind.
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and w are the velocity component in x, y and z direction respectively; τ is
the component of the stress tensor; f is the body force per unit mass in
each direction.

The Discrete Phase Model (DPM) is a widely used computational
fluid dynamics simulation technique used to analyze the behavior of
dispersed particles or droplets in a fluid flow. DPM is a framework that
tracks the motion and interactions of individual discrete phases,
allowing for the analysis of various phenomena, such as particle
dispersion, deposition, and coalescence. For example, the use of a
coupled CFD simulation and the DPM approach can be used to predict
particle deposition in horizontal gas flows and is validated by experi-
mental data (Stone et al., 2019). The DPM is efficiently applied to track
individual particles in the fluid flow, accurately simulating their tra-
jectories and deposition patterns. The method demonstrates a strong
correlation between simulated and observed results, highlighting its
reliability and adaptability to a wide range of particle sizes and flow
conditions. The effectiveness of the DPM method lies in its ability to
provide accurate predictions and valuable insights for optimizing in-
dustrial processes involving particulate matter. Therefore, the DPM
method was utilized to simulate the dispersion of copper particles in air.
The governing equation for DPM in ANSYS FLUENT is described as
(ANSYS, 2020):

mp
d u→P

dt
= mp

u→− u→P

τr
+ mp

g→
(
ρp − ρ

)

ρp
+ F→ (5)

where mp is the particle mass, u→ and u→P are the velocities of the fluid
phase and the particle respectively, ρ is the fluid density, ρp is the density

of the particle, F→ is an additional force,mp
u→− u→P

τr is the drag force, and τr
is the droplet or particle relaxation time calculated by:

τr =
ρpd2p
18μ

24
CdRe

(6)

Here, μ is the molecular viscosity of the fluid, dp is the particle
diameter, and Re is the relative Reynolds number.

2.3. Boundary condition

The dispersion of gases in outdoor environments is significantly
impacted by release rate, release point, wind speed, and wind direction.
This study investigates the impact of varied wind speed and direction, as
well as the location of the burning sites. Wind speeds of 1.6 m/s, 3.4 m/s,
and 5.5 m/s were selected based on average, maximum, and minimum
wind speeds recorded in Penang International Airport in 2021

Fig. 6. Terrain effects in case 2, 26, 80 and 101 with 1.4 × 10–7 kg/m3 isosurface copper particles.
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(Meteoblue, 2022). The most frequently observed wind directions in
Penang, East and West, were also included in the study. The atmosphere
class was assumed to be stable (Pasquill Stability Class E) with negligible
vertical thermal gradient variation, thereby the impact of vertical
thermal gradient was not considered. In this current work, the scope was
limited to the stable atmosphere only as the focus is primarily on the
development of the coupled method of CFD, MILP, and ANN for sensor
placement optimization and source localization. Further work will be
considered to improve the accuracy of the model by simulating various
atmospheric stability classes. In regard to the buoyancy effects from the
burning source, it was considered that the thermal gradient is more
obvious closer to the source. When taking into account the overall
dispersion over long distances, the influence of the burning source is
compared to the influence of the wind speed, which dominates over long
distances (Liu and Wen, 2002).

In order to simulate the release of copper particles during the com-
bustion of e-waste, the release point was preset as a circular plane with a
diameter of 4 m and a height of 3 m above the ground. Based on the
literature, it was deduced that the release percentage of copper during

the combustion of e-waste was in the range of 0.056–0.111 kg/s (Cesaro
et al., 2019). In contrast, Achtemeier et al. (2011) showed that the initial
plume velocity of the smoke released by combustion ranged from 5 m/s
to 15 m/s. Şahin et al. (2012) analyzed the particle size of copper par-
ticles in air and found that the most common particle distribution was
mainly in the range of 3.3–5.8 µm. Therefore, in this study, the release
velocity of copper particles was assumed to be 0.0972 kg/s and to rise
vertically with a velocity of 5 m/s. For the constant release rate, fluid
release and dispersion have been found to use constant release rates
(Kontos et al., 2022; Zheng and Chen, 2010). The particle size of copper
was set at 5 µm. A summary of the boundary conditions is presented in
Table 2.

A total of 18 release points will be simulated in this study, with each
point individually evaluated for dispersion under three distinct wind
speeds and two wind directions, resulting in 108 simulations. These 108
scenarios will be employed for optimizing sensor placement as well as
training artificial neural network models. Furthermore, to ensure the
validity and accuracy of the trained model, an additional 36 data sets
will be simulated at wind speeds of 2.5 and 4.5 m/s and used as

Fig. 7. Terrain effects in case 2, 26, 80 and 101 with 1.4 × 10–5 kg/m3 isosurface copper particles.
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validation data (Table 3).

2.4. Sensor optimization

The MILP formulation for gas sensor placement optimization is
described as below,

max
∑

i∈I
Zi
∑

j∈J
di,jxi,j (7)

subject to

∑

j∈J
yj ≤ p (8)

xi,j ≤ yj ∀ i ∈ I, j ∈ J (9)

Fig. 8. Terrain effects in case 2, 26, 80 and 101 with 0 to 1.4 × 10–5 kg/m3 contour plot copper particles.
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∑

j∈J
xi,j = 1 ∀ i ∈ I (10)

yj ∈ {0,1} ∀ j ∈ J (11)

xi,j ∈ {0,1} ∀ i ∈ I, j ∈ J (12)

Where, i is the set of release scenarios, indexed by I; j is the set of
candidate sensor locations, indexed by j; Zi is the occurrence probability
of release scenario i; di,j is the damage coefficient for release scenarios i
at location j; xi,j is the indicator of location j is the highest concentration
for scenario i; yj indicating if a sensor is installed at monitoring point j; p
is the maximum quantity of gas sensor.

The objective function in Eq. (7) is to maximize the damage coeffi-
cient, di,j, associated with the detected release using a limited number of
sensors. The damage coefficient, in this study, is the copper particle
concentration present in the domain measured by the sensor network as

obtained from CFD simulations. As the number of sensors increase, it is
expected that the total copper particle concentration measured by the
network also increases until all the copper particle concentration has
been measured, which suggests that the sensor network has reached
maximum coverage. The maximization of sensor network coverage area
is one of the key goals of sensor layout optimization (Karatas, 2020;
Yakıcı and Karatas, 2021). By quantifying the coverage area using total
copper particle concentration, the model is able to determine the
optimal sensor count needed, thereby saving costs without compro-
mising too much on performance.

The probability of each release scenario occurring is assumed to be
the same in this work, i.e. the Zi coefficients are assumed to be 1. The
concentration of copper particles detected by the sensor is a primary
factor affecting the damage coefficient, di,j. Eq. (8) limits the number of
sensors and ensures that the number can be optimized to the minimum.
In Eq. (11), yj is equal to 1 only when the sensor is at position j, and
0 otherwise. In Eq. (12), The parameter xi,j is defined as 1 when position

Fig. 9. Dispersion profiles at release point 1, 12, 17 and 18 under 3.4 m/s west-wind.
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j is the highest concentration in case i, and 0 otherwise. Eq. (9) ensures
that there is a sensor placed at the location j with the highest concen-
tration in case i. Eq. (10) ensures that each case has at least one sensor
used to detect the concentration at its location j. The maximum number
of sensors will be tested and adjusted until the damage coefficient rea-
ches its maximum.

To solve the MILP problem, LINGO 20.0 software (Educational Li-
cense) was utilized. This software is well-suited for modeling and solving

complex linear, nonlinear, and integer programming problems across a
variety of industries. Previous studies by Opit et al. (2021) and Zhou
(2021) have demonstrated the efficacy of LINGO software in optimizing
sensor placement and network deployment using MILP models. From
these studies, it can be concluded that the LINGO software, as a light-
weight and programmable optimization software, performs well in MILP
optimization.

Fig. 10. Copper concentration contour plots under 1.4 × 10–5 kg/m3 for cases of release points 1, 12, 17 and 18 under 3.4 m/s west-wind.
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2.5. Sensor number reduction by ANN model

To achieve an efficient "sensor detection-combustion source location
system", the number of sensors is further reduced through an ANN
model. The JustNN software is able to provide an "Importance List" for
each input, which will be an indicator to compare all sensors to deter-
mine the effectiveness of sensors in the detection. The importance list
consists of the descending order of the summation of the absolute
weights of the connections from input node to all the nodes in the first
hidden layer. This implies that the concentration measured by the least
important input nodes or sensors do not have much impact on the
determination of the source location. First, CFD and MILP was used to
sort out a total of 1611 sensors to 106 sensors. Then, from these 106
sensors, additional points were sorted out based on the importance list
from the ANN. Based on the importance list, sensors with lower
importance are deleted in order to test the performance of system
without these low-importance sensors. The remaining sensors are used
to establish a new ANN network, which is trained using the same 108
datasets. According to the initial importance list, the number of sensors
is sorted and reducedmultiple times to find a value that canmaintain the

same validation percentage but requires fewer sensors.

2.6. Neural network modelling

The Artificial Neural Networks (ANN) method was chosen as the
approach to identify the source location in this study, using the JustNN
software. JustNN is a neural network software that has been utilized in
numerous previous studies. For instance, Al Barsh et al. (2021)
employed JustNN to train an ANN model to accurately classify and
predict the miles per gallon of current and future cars with a precision of
92.77 %. Similarly, in Alkronz et al. (2019) research, JustNN was
applied to train a multilayer ANN model to predict whether mushrooms
were poisonous or not, achieving an accuracy rate of 99.25 %.
Furthermore, Yu et al. (2022) utilized JustNN in their study to predict
the location of illegal plastic burning sites, proving the feasibility of
CFD-ANN methodology for source location identification.

There are two objectives to train the ANN model in current work.
First was to further optimize the sensor numbers required while second
was to train an ANN model that was able to identify the e-waste burning
location based on the optimized sensors number. Here, the input

Fig. 11. Copper concentration isosurface plots at 1.4 × 10–5 kg/m3 for cases of release points 1, 12, 17 and 18 under 3.4 m/s west-wind.
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neurons are the copper concentrations at all the possible sensors while
the output neurons are the 18 possible locations. For the number of
hidden layers, more hidden layers may be helpful to improve the ac-
curacy of the model, but it will greatly increase the time complexity
(Uzair and Jamil, 2020). Two hidden layers are utilized for current work
because the model accuracy up to 97.22 % could be achieved with the
optimized number of sensor (Refer to Section 3.3 for further
explanation).

The training set comprised 108 concentration datasets obtained from
CFD simulation to enable the model to be trained in recognizing from
the existing 18 release points. On top of the 108 training datasets, 36
validation sets, which the model had not previously learned, were uti-
lized to evaluate the validation rate of the model. All the data was
labeled using the supervised learning method to facilitate the model’s
learning of classification and prediction results. The model extracted the
feature values and mapping relationships by learning from these labeled
sample data and tried to find a function that maps the input data to the
output data. The weights between neurons were adjusted accordingly by
the neural network via the use of the loss function and validation rate to
identify errors. During training, the loss function guides the optimiza-
tion process by providing metrics for evaluating the performance of the
model, i.e., adjusting the weights to minimize the value of the loss
function. This process was repeated until an acceptable validation rate
or error was achieved.

3. Result and discussion

3.1. CFD simulation

3.1.1. Metal concentration
Fig. 5 shows the dispersion profile for burning site 10 at east wind

speed of 1.6 m/s. The inhalation reference concentration (RfC) for
copper is approximately 1.4 × 10− 7 kg/m3 (Cesaro et al., 2019).
Consequently, a contour plot was generated to depict copper concen-
trations with an upper limit of 1.4 × 10− 7 kg/m3, which can be useful
for analyzing the contamination of this study area by copper particles.

Because the study area has high and undulating topography, the contour
plot was set at 50 m altitude to display the copper concentrations
accurately across the entire region.

The dispersion profile clearly indicates that copper particle concen-
tration was extremely high at the point of release. Subsequently, because
of wind influence, the plume gradually expanded, and the impacted area
became wider. Upon reaching the boundary of the study area, it was
revealed that copper concentrations had decreased, with some regions
exhibiting concentrations below RfC value. Nevertheless, despite the
diminishing concentrations, the highest concentration at the boundary,
the greatest distance from the release point, remains above the RfC
value. Undoubtedly, this indicates that open burning of electronic waste
can pose a serious risk of heavy metal exposure to the surrounding
population.

3.1.2. Terrain effect
Given the introduction of terrain and buildings in the 3D geometry, it

is of great interest to observe how copper flow is impacted by these
obstacles. Obstacles affect the diffusion of copper particles in two main
ways, one is the change of direction and path and the other is the ten-
dency to generate turbulence. The complex topography of high moun-
tains can lead to multi-directional changes in airflow, creating complex
movement patterns and making the diffusion path of copper particles
more variable. Localized turbulence caused by high mountains or high
buildings will increase the mixing and diffusion rate of particles, making
their distribution in the air more extensive and complex, and generating
eddies and reflux zones on the leeward side, which will increase the
concentration of particles some localized spots. It was found that due to
the presence of obstacles such as terrain and buildings, copper particle
streams are subjected to different drag and lift forces as well as pressure
variations, and therefore their direction of diffusion is more affected.

The use of iso-surfaces for copper concentrations at 1.4 ×

10− 7 kg/m3, with reference to the maximum RfC value was applied in
investigating the effects of flow in the study area, as depicted in Fig. 6.
The copper concentrations within the region of the iso-surface were
higher than the RfC value. In short, the copper concentrations in the

Fig. 12. Effect of wind direction at point 13 (wind speed: 5.5 m/s).

Y. Lang et al. Digital Chemical Engineering 14 (2025) 100216 

13 



region shown in the figure that in touch with the iso-surface was higher
than RfC value, which was unsafe.

The case of point 1 under 3.4 m/s east-wind (Case 2) reveals that
when fluid encounters high mountain barriers, it moves up the moun-
tain, and gradually affects the lower terrain as it spreads out. The
presence of obstacles can contribute to the deflection of the plume and
subsequent movement of the plume upward over the obstacles, allowing
the plume to be dispersed to greater heights compared to unobstructed
cases (Galeev et al., 2013a). Upon encountering a gap between two
mountains, as observed in the case of east-wind at point 5 (Case 26), the
flow was obstructed and followed the mountain instead of the direction
of the wind. The trajectory of the copper particle flow in Case 26 also
became further confined by two towering buildings on its right and the
hill below. Unlike in Case 1, the plume in Case 26 did not rise nor split
when encountering the obstacles. This could be due to the combined
hinderance effect provided by the two buildings and the mountains,
which flanked the plume, creating a canyon-type geometry which

controlled and directed the flow of the plume. Only after leaving the
canyon, the direction of the plume was then directed by the wind. Upon
leaving the mountainous areas and taller buildings, the fluid flow
gradually spread out in open areas as no obstacles were close or large
enough to block and affect the dispersion.

For burning at point 14 under west wind (Case 80), unlike Case 2, the
fluid sinked directly after flowing over the hill, thus contaminating the
ground; this is possibly due to the hill being lower in Case 80 with a
height of up to 150 m, in contrast to the larger hill in the north at a
height of about 200 m. The size and height of obstacles can significantly
impact plume dispersion as observed by Xu et al. (2023) and Derudi
et al. (2014) where in the case of a lower obstacle, the plume can easily
cross over and gather behind the obstacle, creating high concentration
zones in front and behind the obstacle, similar to that as seen in Case 80.
When the obstacle is sufficiently tall, the plume may be blocked entirely
or the plume may also cross over but move higher and is blown away by
the wind, rather than fall back down behind the obstacle, as observed in

Fig. 13. Effect of wind speed at point 2 under east-wind.
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Fig. 14. Side view of three cases release from point 1 under west-winds.
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Case 1.
At point 17 and west wind (Case 101), since the release point is on

the west side and the wind blows from the west to east, the copper
particle flow is blocked first by the mountain upon entering the middle
area and subsequently influenced by buildings. The flow passes from the
north of the building before gradually spreading out and affecting the
surrounding residential areas. Initially, the plume blew towards the west
due to the west wind and was slightly redirected as it moved between the
two mountains in the canyon or valley zone. After the valley, the plume
returned to moving towards the western direction for some short dis-
tance before encountering obstacles in the form of buildings, which was
similar in height to the 150 m mountain in Case 80. This caused the
plume in Case 101 to cross and subsequent fall over the building in the
same manner as when the plume in Case 80 encountered the mountain
(Derudi et al., 2014; Xu et al., 2023).

The impact of terrain effects is more obvious when using higher
concentration isosurfaces of 1.4 × 10–5 kg/m3, as shown in Fig. 7. The
higher concentration copper fluid in Case 2 under 3.4 m/s east-wind
with point 1 that was obstructed by the high mountain managed
maintain the higher concentration even after rising along the mountain
terrain and moving at the higher heights. In Case 80 at point 18 and Case
101 at point 17, both with 3.4 m/s west-wind, the higher concentration
isosurface fluid plot also maintained the concentrated flows across the
shorter mountain and building obstacles, respectively. However, the
higher concentration isosurfaces clearly indicated some degree of drop
of the plume in Case 80 and Case 101 after encountering their respective
obstacles.

For Case 26 with point 5 under 3.4 m/s east-wind, the flow of the
higher concentration fluid broke up and dispersed after leaving the
mountainous areas and taller buildings into open area, as observed by

Fig. 15. Relationship between sensor number and damage coefficient.

Fig. 16. Initial 1611 sensor candidates’ locations.
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the gradual disappearance of the higher concentration isosurface plots.
For Case 26, the copper particle fluid concentration contours (Fig. 8)
indicated the dilution of the plume after changing direction and moving
into the open area, with fluid expanding from narrow and more
concentrated to a wider, less concentrated plume. On the other hand, the
copper particle fluid in Case 101 mostly maintained its concentration
even after changing location due to the presence of obstacles, whichmay
have impeded the dispersion. After leaving the mountainous area, the
plumes in Case 2, 26, 80, and 101 all gradually lowered in concentra-
tion. Due to the absence of obstacles, the plume further away from the
source readily mixed and was diluted with the surrounding air. The
combination of buildings and terrain has complex effects on the
dispersion and diffusion of the fluid as well as the shape and size of the

concentrated fluid plumes.
From the concentration contour figures (Fig. 8), the copper particle

fluids in Case 2 and Case 80 can be observed to travel far whilst main-
taining their concentration and only dispersed after passing their
respective mountainous areas. It can also be observed that there is some
dilution of the plume after encountering the areas populated with
buildings for Case 2 and Case 80. The presence of the buildings caused
portion of the plume to be deflected and split up to move along the sides
of the buildings, leading to decreased pollutant concentration in the
centreline downwind from the release as well as the leeward side of the
obstacles (Galeev et al., 2013b). There is also accumulation of larger,
high concentration zones in the windward side of the obstacles, as noted
in plume concentration isosurfaces in Fig. 6 and concentration contours

Fig. 17. The optimized 106 sensors’ locations.

Fig. 18. Result graph of the ANN model.
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Fig. 19. Importance list for the first 100 sensors obtained from the original 106-sensor ANN model.

Fig. 20. Validation percentage of ANN models with different sensor numbers.

Fig. 21. Result graph of 87-sensors ANN model.
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in Fig. 8 for Case 2 and Case 101. Moreover, the concentration contours
also showcased the dispersion of the plume where it was observed that
the plume in Case 2 did not fall down after crossing over the higher 200
m mountain. While in Case 80 and Case 101, the concentration contours
clearly illustrated the falling of the plume after the 150 m tall mountain
and the tall building, respectively.

3.1.3. Burning location effect
As the dispersion distribution and contaminated areas may vary

significantly based on different release sites, four representative sites
with fixed wind direction and speed were selected for analysis, as shown
in Fig. 9. Point 1, in close proximity to the eastern boundary, was
observed to have a limited affected area under a west wind. This has
reached the limits of scope in this study. Combined with the map, it can
be seen that outside the eastern boundary is the Penang International
Airport, with no obstacles in the form of buildings or terrain. Therefore,
based on the results from other release sites, it is reasonable to assume
that the area to the east of this release site may be heavily contaminated,
though the lack of obstacles may possibly cause minimal vertical and
horizontal diffusion of the highly concentrated copper particle fluid
until some distance away from the source. Conversely, at point 12,
located on the eastern side of the mountain where there are a few ob-
stacles to impact dispersion under a west wind, the contaminated area
was larger. From the concentration contours in Fig. 10, it can be
observed that there is significant vertical and horizontal diffusion
whenever the copper particle fluid encountered obstacles, increasing the
size of the contaminated area and showcasing the blocking effect of
obstacles against gas dispersion. In contrast, point 17 encountered a
middle area with two mountains and many tall buildings, resulting in
greater obstruction, and thus, a smaller area with higher copper particle
concentration than point 12.

The blocking effect was weaker here with release point 17 as the

obstacles were not directly along the path of the copper particle
dispersion, as illustrated in the isosurface plots in Fig. 11. For point 18,
although the residential area on the west end of the mountain was
heavily contaminated, the dispersion of copper particles in the area
situated on the east end of the mountain was blocked by the mountain,
resulting in no significant contamination. As the copper particles passed
along the mountain, the fluid was highly concentrated without signifi-
cant vertical and horizontal diffusion until travelling some distance by
leaving the mountainous area into a more open location. Moreover, each
release point would affect a distinct residential area; for example, the
northeast corner was contaminated in the case of point 12, but it would
remain unaffected in the case of point 18.

3.1.4. Effect of wind direction
Fig. 12 compares the effect of wind direction on the dispersion

profile of copper particles at point 13 with a wind speed of 5.5 m/s. The
comparison clearly illustrates the crucial role played by wind direction
in the dispersion range of copper particle flow. If the wind is from the
west, the eastern side of the release point is more contaminated, and vice
versa. It can be concluded that establishing an effective monitoring
system to detect copper concentration across the entire area is chal-
lenging, indicating the need for subsequent optimization of sensor
placement.

The effect of wind direction on the dispersion profile is compared in
the. Here the two wind directions are compared at point 13 at a wind
speed of 5.5m/s. The wind direction plays a crucial role in the dispersion
range of the copper particle flow. If the wind is from the west, the
eastern side of the release point will be more contaminated, and vice
versa. This means that it is difficult to establish an effective monitoring
system to detect the copper concentration covering the whole area,
indicating that the subsequent optimization of the sensor placement is
necessary.

Fig. 22. The final 87 sensors locations.
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3.1.5. Effect of wind speed
Furthermore, wind speed is a key factor in the dispersion of copper

particle flow. Fig. 13 presents three profiles at point 2, with three
varying wind speeds (1.6, 3.4, and 5.5 m/s), all in the same wind di-
rection (east wind). It is evident that at slower wind speeds, a larger area
is affected by copper particles despite having the same release point and
wind direction. In the case of 1.6 m/s wind speed, the affected area was
continuous from the release point until the boundary of the study area.
However, when wind speed was 5.5 m/s, after passing over the hill, the
copper particles did not affect the residential area near to the west of the
hill but affected a small area at about 2.5 km downwind. The area that
was affected by copper particles is found to be reducing with higher
wind speed, as shown in Fig. 14, which contained side-view figures of
the gas dispersion from point 1 under the three wind speeds. The copper
particles in the air were dispersed and blown further away from the
release point at higher wind speed. Thus, the copper concentration was
reduced with the higher wind speed, which is the same concept as the
Pasquill-Gifford dispersion model.

3.2. Sensor optimization

To train an accurate machine learning model for ignition point
identification, effective concentration data must be provided to the al-
gorithm. The MILP method was used to optimize sensor placement and
minimize the number of sensors needed while still providing sufficient
concentration data. The optimal sensor locations were selected to obtain
the required concentration data.

The LINGO 20.0 software was utilized to optimize the sensor
arrangement using the MILP method. Sensor numbers were tested from
5 to 160 in order to determine the optimal value that would maximize
the damage coefficient. The software was able to calculate the optimal
result for one test within a few minutes. The outcome of this optimiza-
tion process is displayed in Fig. 15.

The damage factor exhibits significant growth as the number of
sensors increases from 5 to 50. When the number of sensors reaches 100,
the curve becomes entirely smooth, and the damage factor nearly ap-
proaches its maximum level. Consequently, after reaching 100 sensors,
the change in the damage coefficient for each additional sensor was
tested. The optimal value, identified as the minimum number of sensors
required to maximize the damage factor, was found to be 106 sensors.

The locations of sensors are illustrated in Fig. 16. Initially, sensor
candidates were generated uniformly on the 50m height plane, resulting
in 1611 sensor candidates. Following optimization, the number of sen-
sors drastically decreased to 106, yet they still cover a significant portion
of the area.

Although the optimized sensor placement successfully maximizes the
damage coefficient, it is worth noting that some sensors are in close
proximity to one another, such as the 12 sensors on the right side
(including 1531, 1532, 1557, 1558, etc.). While these closely situated
sensors may contribute to the maximization of the damage coefficient,
the actual detection may experience overlapping issues. The proximity
of sensors creating overlapping detection areas can be an indication of
the areas having a larger overlap of pollutant dispersion and hence
require additional number of sensors to detect andmeasure the pollutant
concentration in these areas in order to more accurately ascertain the
damage coefficient. The occurrence of overlapping sensor detection
areas or some sensors in close proximity can also be seen in gas detector
placement optimization studies (Benavides-Serrano et al., 2013; Lee
et al., 2024; Liu et al., 2020; Sun et al., 2020). Hence, further optimi-
zation of sensor placement may be necessary to ensure the practicality of
the current results.

3.3. ANN model for source tracking

The ANN model was built for source localization of e-waste burning
sites and was used to further optimize the number of sensors after

successfully verifying the feasibility and accuracy of source localization.
To identify and track the e-waste open burning sites, the ANNmodel was
generated by the concentration data from the MILP optimized 106
sensors, as shown in Fig. 17. The network comprises of an input layer
with 106 neurons, a first hidden layer consisting of 5 neurons, a second
hidden layer consisting of 8 neurons, and an output layer with 18 neu-
rons. During the training phase, the neural network identifies patterns
using 108 sets of CFD data. The concentration data from the 106 sensors
is inputted into the 106 input neurons. Additionally, release point data is
provided to the 18 output neurons. The learning rate and momentum
rate were optimized by the JustNN software and fixed at 0.7 and 0.8
respectively. Validation was conducted each 100 cycles and 10 % error
of desired outputs were accepted. The learning process was stopped only
when 95 % of the examples were validated within the accepted error.
The weights between neurons were adjusted accordingly by the ANN via
the use of the loss function and validation rate to identify errors. The
scaled input, activation parameters, bias, and error of each node can be
obtained from the JustNN software.

The result is shown in Fig. 18. After 1601 cycles, the model achieved
97.22% validation percentage indicating the neural network was able to
effectively match the concentration profiles and the release points dur-
ing the training. Out of the 36 validation sets, the trained ANN model
successfully assessed 35 sets of e-waste burning locations. The average
error rate of this model is approximately 0.9088 %, which is below the
target of 1 %. These findings demonstrate the feasibility of the ANN
model and its exceptional ability to detect open burning sites in large,
multi-obstacle environments with only the concentration information
from 106 sensors.

From the importance list shown in Fig. 19 sensor 79 has the highest
importance, 65.1761. More than half of the 100 sensors listed had an
importance index below 25. Consequently, five new ANN models were
constructed based on the importance ranking. The models had minimum
importance limits of 10, 15, 20, 23, and 25, respectively.

Fig. 20 demonstrates that the validation percentage of the ANN
model remains steady at 97.22 %when the number of sensors is reduced
to 94 and 87. However, when the number of sensors is further reduced to
84, the validation percentage gradually decreases and drops to 88.89 %.
Additionally, when the number of sensors was reduced to 64 and 56, the
validation percentage plummeted to 63.89 % and 58.33 %, respectively.
Based on these results, it can be concluded that the optimal number of
sensors for this experiment is 87, which maintains the verification per-
centage at 97.22 %.

In the 87-sensor model, the training error was only 0.1525 % after
2000 cycles, as shown in Fig. 21. The locations of the 87 sensors are
plotted in Fig. 22, and a comparison with the original 106-sensor loca-
tions indicates that some sensors with overlapping ranges have been
removed, such as sensor No.391, No.1417, and No.1558. The remaining
87 sensors, as sensors of high importance, can continue to provide a
good validation rate to detect the location of the release point. This
means that the number of sensors can be reduced to minimize costs and
to preserve good detection efficiency.

The ANN model built with JustNN in this study is capable of accu-
rately identifying the location of illegal e-waste open burning sites. This
model relies on reliable CFD simulation data to efficiently pinpoint the
burn sites. By utilizing data from 106 sensors, the trained model can
determine the release point location without requiring additional wind
speed and direction information, resulting in an effective and efficient
system. Moreover, reducing the number of sensors demonstrated that 87
sensors are adequate to achieve the same function with a 97.22 %
validation accuracy. This model provides a fast and reliable method for
identifying the location of e-waste burning. By using these 87 sensors
and the ANNmodel, e-waste burning sites can be identified immediately
once an abnormal concentration of copper particles is detected, allowing
for early detection and control of illegal e-waste burning. This is crucial
for protecting the urban environment and residents from toxic
substances.
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4. Conclusion

This study presents a novel CFD-MILP-ANN method for identifying
the source location of open burning of e-waste with sensor placement
and number optimization. The dispersion profile of copper particle re-
leases was simulated by CFD for a 3 km x 3 km area on Penang Island,
Malaysia. Subsequently, the concentration profiles obtained were
employed to optimize the sensor arrangement for the MILP method. The
optimization yielded a reduction of the total number of sensors required
for the detection of burning operations to 106. An ANN model was
trained using concentration data from 106 sensors. Themodel consists of
106 input neurons, 13 hidden neurons laid out in two layers (5 for layer
1 and 8 for layer 2), and 18 output neurons. The trained ANN model
achieved a validation percentage of 97.22 % for 36 unlearned validation
sets. By further reducing the sensors based on the ANN model, it was
found that only 87 sensors were needed to achieve the same 97.22 %
validation for open-air combustion source identification. This indicates
that the source localization by ANN model can be used to quickly
identify and precisely locate the e-waste burning activities in the region.
In conclusion, the combination of CFD simulation, MILP optimization,
and the ANN model provides a highly precise and efficient method for
toxic gas source localizations. This simple and fast method exhibits great
potential for early prevention and protection of residents from hazard-
ous substances while embracing Sustainable Development Goal target
3.9.
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