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Methicillin-resistant Staphylococcus aureus (MRSA) has a penicillin-binding 
protein 2a encoded by mecA localized on staphylococcal cassette chromosome 
mec (SCCmec). MRSA has six different types that show resistance to all β-
lactam antibiotics. Patients with MRSA infections have higher healthcare costs, 
have to stay longer in hospital, and eventually died. 1,3-Benzoxazine is a class 
of heterocyclic compounds that act as antibacterial agents. The molecular 
docking analyses, molecular dynamics (MD) simulations, dynamic cross-
correlation matrix (DCCM) and Molecular mechanics Poisson-Boltzmann 
surface area (MM-PBSA) were performed to investigate the interactional 
analyses of PBP2a against the derivatives of 1,3-benzoxazine. Twenty (20) 1,3-
benzoxazine derivatives were subjected to molecular docking analyses using 
MOE software. Moreover, eight previously synthesized symmetrical 1,3-
benzoxazine compounds (21-28) with known activities against Staphylococcus 
aureus, along with twelve newly designed compounds (29-40), were also 
utilized. The molecular docking results revealed that the 3,4-dihydro-2H-1,3-
benzoxazine containing 5-methylisoxazole group (compound 28) showed the 
least binding energy among the synthesized compounds. Interestingly, it was 
observed that the 3,4-dihydro-2H-1,3-benzoxazine containing a 5-(4-
fluorophenyl) isoxazole group (compound 38) showed lowest binding energy 
among the newly modified 1,3-benzoxazines. MD simulation was performed for 
the selected targets, and top ranked compounds, 28 and 38, were reported. The 
results of MD analysis confirmed the stability of the penicillin binding protein-2a/ 
ligand 38 complex based on the results of root-mean-square deviation (RMSD), 
radius of gyration (Rg), and solvent accessible surface area (SASA) analysis, 
unlike ligand 28. The root-mean-square fluctuations (RMSF) results revealed 
that amino acid fluctuation of binding pocket residues was not observed upon 
binding of ligand 38. The binding analysis showed that ligand 28 disturbs the 
conformational space of the amino acid residues, whereas ligand 38 only affects 
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the non-local contacts. The hydrogen bond analysis of ligand 38 showed the 
highest occupancy of hydrogen bond formation with amino acid Asn-545 (84.0 
%) and (76.5 %) in both chains (A and B), respectively. In dynamics cross 
correlation matrix (DCCM) analysis, the binding of ligand 28 induced a large 
amount of anti-correlation, while ligand 38 only induced a small anti-correlation, 
depicting the stability. In MM-PBSA and MM-GBSA calculations, most of the 
poses for ligand 28 showed a higher PB1 value, which revealed the potential 
cause of the higher fluctuation. On the other hand, the PB and GB components 
revealed the stability of ligand 38. The computational results have concluded 
that ligand 38 is more potent than ligand 28, and further examinations will be 
required in the future for confirmation of the in vitro and in vivo antibacterial 
activity of ligand 38.  

Keywords: Antibacterial, Molecular Docking, Molecular Dynamic Simulation, 
MRSA,   PBP2a 
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Staphylococcus aureus (MRSA) yang tahan kepada methicillin mempunyai 
protein pengikat penisilin 2a yang dikodkan oleh mecA, disetempatkan pada 
kromosom kaset stafilokokus (SCCmec). Enam jenis yang berbeza telah 
dikenali dan menunjukkan ketahanan kepada semua antibiotik β-lactam. 
Jangkitan MRSA membawa kepada peningkatan kos penjagaan kesihatan, 
penginapan hospital yang lebih lama, dan kematian. 1,3-Benzoksazina adalah 
satu kelas sebatian heterosiklik dengan potensi yang besar sebagai agen 
antibakteria. Dok molekul, simulasi dinamik molekul (MD), matriks dinamik 
korelasi silang (DCCM) dan mekanik molekul kawasan permukaan Poisson-
Boltzmann (MM-PBSA) dilakukan untuk menyiasat interaksi PBP2a dengan 
terbitan 1,3-benzoksazina. Dua puluh (20) terbitan 1,3-benzoksazina telah 
dianalisa dok molekul menggunakan perisian MOE. Tambahan, lapan (8) 1,3-
benzoksazina simetrik (21-28) yang telah disintesis sebelum ini dengan aktiviti 
yang diketahui terhadap Staphylococcus aureus bersama-sama dengan dua 
belas (12) sebatian yang direka baru (29-40) juga telah diuji. Hasil dok molekul 
mendedahkan bahawa 3,4-dihidro-2H-1,3-benzoksazina yang mengandungi 
kumpulan 5-metilisoksazol (sebatian 28) mempunyai tenaga pengikat terendah 
di antara sebatian yang telah disintesis. Menariknya, 3,4-dihidro-2H-1,3-
benzoksazina yang mengandungi kumpulan 5-(4-florofenil)isoksazol (sebatian 
38) mempunyai tenaga mengikat terendah di antara 1,3-benzoksazina yang 
direka baru. Simulasi MD telah dijalankan untuk sasaran yang dipilih dan 
sebatian di kedudukan teratas, 28 dan 38, telah dilaporkan. Keputusan analisis 
MD mengesahkan kestabilan kompleks pengikat penisilin protein-2a/ligan 38 
berdasarkan keputusan sisihan punca min kuasa dua (RMSD), jejari legaran 
(Rg), dan analisis kawasan permukaan boleh diakses pelarut (SASA) tidak 
seperti ligan 28. Keputusan turun naik punca min kuasa dua (RMSF) 
mendedahkan bahawa tiada turun naik asid amino bagi sisa poket pengikat 
diperhatikan semasa pengikatan ligan 38. Analisis pengikatan menunjukkan 



© C
OPYRIG

HT U
PM

 
iv 

bahawa ligan 28 mengganggu ruang konformasi residu asid amino manakala 
ligan 38 hanya menjejaskan hubungan bukan setempat. Analisis ikatan hidrogen 
ligan 38 menunjukkan penghunian tertinggi pembentukan ikatan hidrogen 
dengan asid amino Asn-545 (84.0%) dan (76.5%) dalam kedua-dua rantai (A 
dan B), masing-masing. Dalam analisis matriks dinamik korelasi silang (DCCM), 
pengikatan ligan 28 menyebabkan sejumlah besar anti-korelasi manakala ligan 
38 hanya mendorong anti-korelasi kecil yang menggambarkan kestabilan. 
Dalam pengiraan MM-PBSA dan MM-GBSA, kebanyakan pose untuk ligan 28 
menunjukkan nilai PB1 yang lebih tinggi, mendedahkan potensi penyebab turun 
naik yang lebih tinggi. Sebaliknya, komponen PB dan GB mendedahkan 
kestabilan ligan 38. Keputusan pengiraan telah menyimpulkan bahawa ligan 38 
lebih poten daripada ligan 28, dan pemeriksaan lanjut diperlukan pada masa 
hadapan untuk pengesahan aktiviti antibakteria untuk ligan 38 secara in vitro 
dan in vivo.  

Kata kunci: Antibakteria, Pengikatan Molekul, Simulasi Dinamik Molekul, 
MRSA, PBP2a 

SDG: MATLAMAT 3: Kesihatan dan Kesejahteraan Baik 
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CHAPTER 1 

1 INTRODUCTION 

Heterocyclic compounds have received the most interest in scientific research 
in the field of organic chemistry due to their wide range of biological activity. Most 
of the pharmaceutically important molecules are heterocycles. The use of 
heterocycles in medicine is pervasive since they hold the majority of marketed 
drugs today. 

The fused heterocyclic ring system is one of the most important scaffolds in 
medicinal chemistry and has been commonly found in several natural and non-
natural compounds with significant pharmacological properties (Horton et al., 
2003).  

1,3-Benzoxazine is a class of heterocyclic compounds with great potential as an 
antimicrobial agent. The privileged structure of 1,3-benzoxazine has been 
investigated for its biological activity when compared with the standard drugs.  
Benzoxazine derivatives, especially at 1,3-position, are reported to possess 
antimicrobial, antifungal, antiproliferative, and antibacterial activities ( Sharma et 
al., 2018; Taira et al., 1992; Burckhalter et al., 1948; Mathew et al., 2010; Alber-
Hayta et al., 2006; Macchiaarulo et al., 2002; Khan et al., 2016; Verma et al., 
2012). Many substituted 1,3-benzoxazines have been shown to possess 
biological activities such as methoxy 1,3-benzoxazine which is present in many 
pharmaceutically active molecule (Mandzyuk et al., 2020) such as calcium 
channel antagonists, central nervous system drugs, and analgesics (Dilesh et 
al., 2013). Moreover, the 1,3-benzoxazines bearing isoxazole group displayed 
excellent antibacterial and antifungal activity (Rajanarendar et al., 2008). 
Symmetrical 1,3-Benzoxazines exhibited excellent to moderate antibacterial 
activity towards the positive bacteria Staphylococcus aureus, especially, 1,3-
benzoxazine bearing oxazole group (Hassan, 2017).  

Staphylococcus aureus that is resistant to the drug methicillin is known as 
methicillin-resistant Staphylococcus aureus (MRSA) (Fluit et al., 2001; Hidron et 
al., 2008; Sader et al., 2006; Voss et al., 1994). It is a Gram-positive bacterium 
that is responsible for a group of diseases ranging from simple skin diseases to 
serious pneumonia and blood bacteria (Qin et al., 2020, Chambers & Deleo, 
2009; Grundmann et al., 2006; Klevens et al., 2007; Hersh et al., 2008; Hope et 
al., 2008). Many hospitals do MRSA colonisation checks before admission as an 
essential infection control measure (Bode et al., 2010; Coia et al., 2006; Huang 
et al., 2006; Jain et al., 2011; Muto et al., 2003; Robicsek et al., 2008; Siegel et 
al., 2007).   
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1,3-Benzoxazine Figure 1.1 is a molecule that consist of an oxazine ring, a six-
membered heterocyclic ring with oxygen and nitrogen atom, which is fused to a 
benzene ring. The numbering of 1,3-benzoxazine is according to the IUPAC 
system of heterocyclic compounds, in which the oxygen atom is the prefix 
followed by the nitrogen atom (Ishida, 2011).  

 

Structure of 3-alkyl-3,4-dihydro-2H-1,3-benzoxazine 

Figure 1.1 : General nomenclature of benzoxazine 
 
 
Inspired by the biological importance and pharmaceutical applications of 1,3-
benzoxazine compounds and the continuation of ongoing research on 
biologically active molecules, and to improve our understanding on the 
molecular properties of the MRSA-1,3-benzoxazines interaction, a theoretical 
study comprising molecular docking and molecular dynamics simulation was 
performed as part of our aim to understand the 1,3-benzoxazine behaviour 
toward PBP2a from MRSA. 

1.1 Problem Statement   

Methicillin-resistant Staphylococcus aureus (MRSA) has a penicillin-binding 
protein 2a encoded by mecA. PBP2a's low affinity for most β-lactams, leads to 
resistance to MRSA against many antibiotics. Patients with MRSA infections 
have to face numerous issues, including increased healthcare costs, longer 
stays in hospitals, and fatalities. MRSA is considered as an endemic in hospitals 
worldwide, and patients have had major surgery. Although 50-60% of MRSA 
patients are merely colonized, indicating symptomless carriage, serious 
infections such as respiratory tract and bone/joint infections occur. These 
infections are harder to treat than methicillin-susceptible isolates, and MRSA can 
readily transmit among patients in the hospital. MRSA control and prevention 
require awareness among all healthcare professionals and the general public, 
rapid and dependable detection in the research laboratory, effective monitoring, 
immediate patient isolation, standard preventive measures,  good professional 
practice by all healthcare workers, effective hospital hygiene programs, and 
antibiotic stewardship (Hughes-Fitzgerald et al., 2012). Computational methods 
are essential in solving a wide range of problems across various fields. Using 
computational methods has increased the discovery of effective ligands to treat 
MRSA in a shorter time than experimental methods (Lavanya et al., 2016; 
Coates and Hu, 2007). Molecular docking and molecular dynamic (MD) 
simulations are two commonly used computational methods in drug design, as 
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they help us predict and understand drug-protein interactions. Today, 
pharmaceutical industries require these computational methods for drug 
research because these techniques address different aspects of the drug 
discovery process and complement each other effectively. Moreover, these 
approaches are cost  effective  (Naqvi et al., 2018). Interactions between drugs 
and proteins guide the rational design of new drug candidates and help optimize 
existing ones, ultimately improving the efficiency of the drug discovery process 
and increasing the likelihood of identifying effective therapies for various 
diseases. 

1.2 Goals and Objectives  

Based on all the information mentioned above about the biological significance 
of 1,3-benzoxazine derivatives, this research project aims to:   

 
1. identify 1,3-benzoxazine derivatives with the highest binding affinity 

and potential antibacterial activity against PBP-2a of methicillin-
resistant Staphylococcus aureus (MRSA) through molecular docking 
studies. 

2. assess the stability and dynamics of the top-ranked 1,3-benzoxazine 
compounds in complex with PBP-2a using molecular dynamics 
simulations. 

3. investigate the potential mechanism of action and binding behavior of 
the selected 1,3-benzoxazine derivatives, providing insights into their 
ability to inhibit PBP-2a and suggesting their potential as antibacterial 
agents against MRSA.  

 
 
1.3 Scope of the Research  

In the current study, the structural basis for the binding affinity and stability of 
1,3-benzoxazine compounds within specific protein targets has been 
investigated through a comprehensive workflow that encompasses molecular 
docking and molecular dynamics (MD) simulations. Recent advances in 
computational chemistry and structural biology techniques have opened new 
avenues for rational drug design, providing an opportunity to understand atomic-
level interactions between small molecules and their target proteins. 

In the first phase of our research, molecular docking of a set of previously 
synthesized 1,3-benzoxazine compounds (21-28) into their respective protein 
targets has been performed. Molecular docking, a computational technique, was 
utilized to predict the binding mode and affinity of these small molecules within 
the active site of the proteins. These docking studies provided crucial initial 
insights into the binding preferences and interactions of the compounds with 
their protein targets. 



© C
OPYRIG

HT U
PM

 
4 

From the molecular docking studies conducted in the current study, one 
compound, Compound 28, was identified as the top hit among the from 
previously eight synthesized compounds based on its binding affinity and 
interaction profiles with the protein target. This compound was selected for 
further analysis. 

Continuing with the current study, we proposed a set of new 1,3-benzoxazine 
compounds (29-40) by changing the functional groups of the original compounds 
(21-28). These modifications were aimed at enhancing binding affinity, 
specificity, and drug-like properties. 

 The newly modified 1,3-benzoxazine compounds (29-40) were subjected to 
molecular docking studies. This step allowed us to evaluate the binding affinity 
and interaction profiles of these modified compounds within the active site of the 
target protein. The goal was to identify potential lead compounds with improved 
binding properties compared to the original compounds. 

As the molecular docking studies of the modified compounds continued, 
Compound 38 was chosen as the best match based on how well it bound and 
interacted with the protein target. This compound, along with compound 28, was 
selected for further investigation using molecular dynamics simulations. 

In the final phase of our research, molecular dynamics simulations were 
conducted on three protein systems, including the target protein of interest and 
two complexes involving the top hit compounds (Compounds 28 and 38). 
Molecular dynamics simulations provided a dynamic view of protein-ligand 
interactions over time, enabling us to assess stability, conformational changes, 
and binding energetics. 

The outcomes of the current study hold significant scientific implications. Our 
holistic approach, which combines molecular docking and molecular dynamics 
simulations, contributed to a deeper understanding of the binding affinity and 
stability of 1,3-benzoxazine compounds within specific protein targets. This 
research will have far-reaching implications in the drug discovery field, offering 
valuable insights into the rational design of novel therapeutics. By identifying top 
hit compounds and elucidating their binding mechanisms, we aim to facilitate the 
development of potential drug candidates with enhanced efficacy and specificity. 
In conclusion, the current study contributes to the scientific understanding of 
small molecule-protein interactions by investigating the structural basis for the 
binding affinity and stability of 1,3-benzoxazine compounds. The results of this 
study have the potential to drive advancements in the development of novel 
therapeutics with enhanced efficacy and specificity. 
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CHAPTER 5 

5 CONCLUSION  

Computational methodologies like molecular docking and molecular dynamics 
(MD) simulations play a pivotal role in exploring intricate ligand-protein 
interactions. These techniques enable in-depth exploration of molecular 
behaviours that would otherwise remain hidden. Our study delved into the 
interactions of synthesized 1,3-benzoxazines (21-28) and modified analogs (29-
40), highlighting compelling insights into their binding activity. 

The computed binding energies identified compounds 28 and 38 as notable 
contenders, boasting binding energies of -7.8 kcal/mol and -8.5 kcal/mol, 
respectively. Notably, through comprehensive structural analysis, we found that 
ligand 28 prompts heightened fluctuations in both Chain A and B of the protein, 
indicating destabilization of the binding interface. In contrast, ligand 38 exhibits 
a more stable binding profile, strengthening interactions with both Chains A and 
B. 

Calculations of the radius of gyration (Rg) show that when ligand 28 binds to the 
protein, it causes the protein's structure to expand significantly, which means it 
is less compact.Conversely, binding of ligand 38 leads to an increase in 
compactness, supporting its stable binding profile. Surface area calculations 
(SASA) corroborate this trend, with ligand 28 causing elevated protein core 
exposure, while ligand 38 induces a more compact, less solvent-exposed protein 
configuration. 

Hydrogen bond analysis indicates ligand 38's persistent and stable interaction 
throughout the 100 ns simulation, in contrast to ligand 28's higher hydrogen bond 
count, hinting at reduced conformational stability. This collective evidence 
positions ligand 38 as a potential compound with favorable dynamics and 
binding attributes. 

Further substantiating our findings, MM-PBSA and dynamic cross-correlation 
analysis underscore the distinct activity of ligands 28 and 38. Ligand 28's binding 
yields substantial anti-correlation, inducing protein fluctuations, potentially 
impacting its own stability. Meanwhile, ligand 38's binding exhibits partial anti-
correlation, indicating a more stable binding configuration. 

Notably, our conclusion aligns with MM-PBSA and GBSA analyses, showing 
ligand 38's more stable binding. The higher PB and GB components in ligand 38 
highlight its stable binding activity. In particular, ligand 38's GBSA configurational 
space reaches an impressive -34 kcal/mol in the GB1 configuration, where GB1 
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dominates different poses. This confirms that it has stable interactions with 
protein residues. 

In summary, our comprehensive analysis collectively confirms that ligand 38's 
binding showcases a better interaction with both Chain A and B. But it is also 
important to consider that the current in-silico analysis is not enough to comment 
on the stability and potential of ligand 38 to act as a potent drug candidate.  
Further examinations are required to conclusively talk about ligand 38’s activity. 

5.1 Recommendations for Future Work 

Based on the conclusions drawn from this study, several avenues for future 
research and exploration emerge that can further deepen our understanding of 
ligand-protein interactions and contribute to drug development endeavours. 
These prospective directions encompass: 

Multiscale Simulations: Employing advanced computational techniques, such 
as multiscale simulations that integrate quantum mechanics and molecular 
mechanics, could provide a more accurate representation of the intricate 
interactions between ligands and proteins. This approach would facilitate a 
deeper exploration of the binding mechanisms and energetics of ligand 38.  

Longer Timescale Simulations: Extending the simulation duration beyond the 
current 100 ns timeframe could enable the observation of rare or slow 
conformational changes within the protein-ligand complex. This prolonged 
exploration of dynamics might provide insights into binding stability and long-
term behavior. 

Experimental Validation: Collaborating with experimental researchers to 
validate the computational findings through techniques like X-ray 
crystallography, NMR spectroscopy, and biophysical assays would enhance the 
credibility of the computational predictions and reinforce the robustness of the 
conclusions. 

In summary, the present study opens up a spectrum of promising avenues for 
future research, ranging from computational techniques to experimental 
validations, aimed at further elucidating ligand-protein interactions and 
advancing drug discovery efforts. Each of these directions has the potential to 
enrich our understanding of molecular behavior and ultimately contribute to the 
development of effective therapeutic agents. 
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