
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage :  www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON 

INFORMATICS 
VISUALIZATION

Recent Advances in Meta-heuristic Algorithms for Training Multilayer 
Perceptron Neural Networks 

Maher Talal Al-Asaady a,b, Teh Noranis Mohd Aris a,*, Nurfadhlina Mohd Sharef a, Hazlina Hamdan a 
a Department of Computer Science, Faculty of Computer Sciences and Information Technology, Universiti Putra Malaysia, Selangor,  Malaysia 

b Department of Network and Computer Software Techniques, Technical Institute Mosul, Northern Technical University, Mosul, Iraq 

Corresponding author: *nuranis@upm.edu.my 

Abstract—Artificial Neural Networks (ANNs) have demonstrated applicability and effectiveness in several domains, including 

classification tasks. Researchers have emphasized the training techniques of ANNs to identify appropriate weights and biases. However, 

conventional training techniques such as Gradient Descent (GD) and Backpropagation (BP) often suffer from early convergence, 

dependence on initial parameters, and susceptibility to local optima, limiting their efficiency in complex, high-dimensional problems. 

Meta-heuristic algorithms (MHAs) offer a promising alternative as practical approaches for training ANNs, providing global search 

capabilities, robustness, and improved computational efficiency. Despite the growing use of MHAs, existing studies often focus on 

specific subsets of algorithms or narrow application domains, leaving a gap in understanding their comprehensive potential and 

comparative performance across diverse classification tasks. This paper addresses this gap by presenting a systematic review of 

advancements in training Multilayer Perceptron (MLP) neural networks using MHAs, analyzing 53 publications from 2014 to 2024.  

The research papers were chosen explicitly from four widely used databases: ScienceDirect, Scopus, Springer, and IEEE Xplore. Key 

contributions include a comparative analysis of evolutionary, swarm intelligence, physics-based, human-inspired algorithms, and 

hybrid approaches benchmarked on classification datasets. The study also highlights bibliometric trends, identifies underexplored areas 

such as adaptive and hybrid algorithms, and emphasizes the practical application of MHAs in optimizing ANN performance. This work 

is a significant resource for researchers, facilitating the identification of effective optimization methodologies and bridging the gap 

between theoretical advancements and real-world applications.  
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I. INTRODUCTION

Artificial Neural Networks (ANNs) are computational 
models inspired by the structure and functionality of the 
human neural system, designed to address complex tasks such 
as classification, regression, and prediction across diverse 
domains [1]. Among the many types of ANNs, Multi-Layer 
Perceptrons (MLPs) are particularly popular due to their 
flexibility in handling different tasks [2]. However, despite 
their superiority, the performance of ANNs, including MLPs, 
is highly dependent on the success of the training process, 
where the weights and biases of the network are adjusted to 
minimize the difference between predicted and actual outputs 
[3], [4], [5].  

Traditional training methods, such as Backpropagation 
(BP), are the standard approaches for training ANNs that rely 
on gradient-based optimization to minimize error. However, 

these methods have limitations, including slow convergence, 
susceptibility to local optima, and high dependence on initial 
parameters [6], [7]. These issues, particularly evident in non-
convex loss functions, often result in unstable training or 
suboptimal performance [8], [9], [10]. These limitations 
highlight the need for advanced optimization techniques to 
enhance performance in high-dimensional, complex 
problems.  

Meta-heuristic Algorithms (MHAs) have emerged as a 
robust alternative to traditional gradient-based methods for 
training ANNs, overcoming many limitations, such as 
sensitivity to initial conditions and reliance on derivative 
information [11]. Inspired by natural processes like evolution, 
swarm intelligence, and social dynamics, MHAs employ 
global optimization strategies to explore solution spaces 
efficiently, avoid local minima, and handle complex, non-
convex optimization problems [12]. Their flexibility allows 
them to adapt to diverse ANN training scenarios without 
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extensive customization [13], while their balance of 
exploration (searching new regions) and exploitation (refining 
existing solutions) ensures faster and more reliable 
convergence [14]. These strengths make MHAs a powerful 
tool for addressing the challenges of ANN training. 

Over the past two decades, a variety of MHAs, such as 
Genetic Algorithms (GA), Particle Swarm Optimization 
(PSO), and Grey Wolf Optimizer (GWO), have been 
employed for training ANNs, showcasing their effectiveness 
in enhancing classification accuracy, convergence speed, and 
robustness across diverse applications [15]However, while 
using MHAs for training ANNs has seen significant 
advancements, gaps still need to be found in the literature. 
Comprehensive studies are required to holistically evaluate all 
MHA categories and provide unbiased performance 
comparisons based on existing research. Such a review is 
essential to better understand the strengths and limitations of 
different algorithms and to guide future research in this field. 

Several prior reviews have explored using MHAs in ANN 
training, focusing primarily on a subset of well-established 
algorithms—for instance, Si et al. [16] conducted an 
experimental study on 13 MHAs, concentrating mainly on 
medical data classification. Similarly, Mousavirad et al. [17] 
reviewed 15 algorithms for ANN training but limited their 
review to older methods such as PSO, GA, and Differential 
Evolution (DE). Another study by Emambocus et al. [18] 
focused exclusively on swarm intelligence algorithms, 
comprehensively reviewing how swarm-based methods have 
optimized ANN structures and training. While these reviews 
provide valuable insights into traditional MHAs, they often 
focus on specific application domains, such as medical 
datasets or benchmark tasks, limiting their generalizability to 
broader contexts. 

Furthermore, many earlier studies overlooked the latest 
advancements in the field. For example, the growing number 
of emerging MHAs, which have demonstrated significant 
potential in recent years, are rarely discussed compared to 
older methods [19]. Additionally, while comparative studies 
exist, many reviews need a systematic methodology, making 
their findings difficult to generalize or reproduce. 

This study addresses critical gaps in the literature by 
systematically evaluating major categories of MHAs, 
including hybrid, physics-based, and human-inspired 
algorithms, thereby offering a comprehensive and inclusive 
perspective. Applying bibliometric tools such as R-tool and 
VOS viewer identifies key trends, research gaps, and the 
interconnected nature of MHA research. Furthermore, the 
study emphasizes the practical implementation of MHAs for 
classification tasks across diverse datasets, focusing on 
essential evaluation metrics such as accuracy, Mean Square 
Error (MSE), and sensitivity.  

This paper provides a comprehensive and up-to-date 
survey of MHAs for ANN training, focusing on established 
and newly developed algorithms. The review includes an 
analysis of recent advancements in MHA research, 
highlighting algorithms introduced over the past decade. 
Specifically, the study evaluates the performance of various 
MHAs, including evolutionary algorithms, swarm 
intelligence algorithms, physics-based algorithms, and 
human-inspired algorithms, in the context of ANN training 
for classification tasks across diverse domains. Additionally, 

a trend analysis (Figure 1) of research publications from 2004 
to 2024, based on data from Scopus, illustrates the increasing 
interest in MHAs for ANN optimization, particularly in the 
areas of ANNs, optimization, and classification. The analysis 
reveals a steady rise in publications, with a significant surge 
in recent years, underscoring the growing recognition of 
MHAs' potential in enhancing ANN performance for 
classification tasks. 

 

 
Fig. 1  Annual publication trend for ANN, optimization, and classification 
keywords (Dec 2024) 
 

Additionally, this study employs a systematic review 
methodology to ensure rigor and reproducibility when 
comparing the performance of various MHAs. Conducting a 
comprehensive evaluation provides actionable insights into 
the most effective algorithms for ANN training. The findings 
aim to enhance researchers' and practitioners' understanding 
of the strengths and limitations of different MHAs, thereby 
establishing a foundation for future exploration of adaptive 
and hybrid approaches to optimize neural network 
performance. 

The rest of this article is organized as follows: Section II 
overviews the materials and study method. Section III presents 
the results and discussion. Finally, Section IV concludes the 
article. 

II. MATERIALS AND METHODS 
This study aims to present, identify, and evaluate different 

MHAs and their strategies for ANN training for classification 
tasks. We followed a structured methodology proposed by [20] 
and clearly defined guidelines to achieve this objective. 
Additionally, our research was conducted in alignment with the 
PRISMA guidelines for systematic reviews, as detailed in [21]. 

A. Systematic Process 

Fig. 2 shows the general approach to identifying the 
relevant literature and highlights the main steps underpinning 
the study's literature review process. These include study 
identification, title, abstract screening, inclusion and 
exclusion criteria application, and a full-text review. 
Compliance with these criteria guarantees the most rigid 
approach to selecting sources and their further analysis, using 
only the most relevant studies. The above methodology is 
explained in the following sub-sections. 

1) Search Query: The search process starts in December 
2023. Specific keywords, such as ‘artificial neural network,’ 
‘feedforward,’ ‘multilayer perception,’ ‘training,’ meta-
heuristic algorithms’, and ‘classification,’ were used to find 
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appropriate articles. The Boolean operators fine-tuned the 
search queries “AND” and “OR.”  

 

 
Fig. 2  A PRISMA flow diagram for study selection with the research query 
and inclusion criteria 

2) Information Sources: A comprehensive literature 
search was conducted across four databases: Scopus, 
Springer, ScienceDirect, and IEEE Xplore. The search queries 
are guided entirely to ensure that all the chosen articles meet 
the required quality factors of uniqueness, a high citation 
index, and high impact. 

3) Study Selection: The study selection process was 
conducted in two phases to ensure rigor and transparency.  

 Initial screening: Articles were filtered based on their 
titles and abstracts to exclude irrelevant studies. 
Duplicate studies were also removed. 

 Full-Text review: The remaining articles were assessed 
for relevance and adherence to the inclusion criteria. 

Table I summarizes the reasons for exclusion at each stage, 
detailing the number of articles removed and ensuring 
adherence to the eligibility process. 

TABLE I 
SUMMARY OF REASONS FOR EXCLUSION AT EACH STAGE 

Stage #Articles Reasons for Exclusion 

Initial 
Screening 

1,788 Irrelevant based on 
title/abstract. 

Full-Text 
Review 

93 Studies outside the scope, non-
English, and other ANN types. 

Final Inclusion 53 Met all inclusion criteria. 

4) Eligibility Criteria: To ensure the inclusion of high-
quality and relevant studies, specific eligibility criteria were 
established, and a systematic study selection process was 
followed. Table II illustrates the requirements that guided the 
inclusion and exclusion of studies. 

5) Search Results: The first search returned 2,313 
articles, with 1,329 from ScienceDirect, 107 from Scopus, 
801 from Springer, and 76 from IEEE Xplore, spanning 2014 
to 2024. 1788 articles were excluded from the databases 
utilized because they did not comply with the inclusion 
criteria. After scanning the titles and abstracts, 432 unrelated 
articles were eliminated, leaving 93 papers. 19 articles were 

eliminated after reading the whole text, leaving 53 papers in 
the final collection. 

TABLE II 
CRITERIA FOR INCLUSION AND EXCLUSION 

Criteria Description 

Inclusion 
Criteria 

Studies on ANNs (Feedforward Neural 
Networks and MLPs). 
Applied to classification tasks. 
Published between 2014–2024 in peer-reviewed 
journals or conferences. 
Applied on benchmark dataset. 

Exclusion 
Criteria 

Non-English articles, books, or reports. 
Studies focus on other neural network types 
(e.g., Convolution Neural Networks). 
Regression-focused research or datasets not 
related to classification. 

6) Analytical Tools and Software: Specific analytical 
tools were employed to enhance the rigor and reproducibility 
of the review analysis. The bibliometric tools, R-tool and 
VOSviewer, were selected because they effectively visualize 
co-occurrence networks and scientific production patterns. 
These tools supported a systematic representation of the 
results, aligning with the PRISMA guidelines. 

B. Meta-heuristic Algorithms 

Meta-heuristic Algorithms (MHAs) are powerful problem-
solving methods that find near-optimal solutions across 
various problems, often at a reasonable computational cost. 
Unlike traditional algorithms, which aim for optimal solutions 
in predefined constraints, MHAs navigate complex solution 
spaces more dynamically [22]. These algorithms are 
population-based, each inspired by natural, physical, or social 
processes. The four categories explored in this study include 
Evolutionary Algorithms (EA), Swarm Intelligence 
Algorithms (SI), Physics-Based Algorithms (PBA), and 
Human-Based Algorithms (HBA). Fig. 3 represents these 
categories and the specific MHAs discussed in this study that 
are applied to training ANNs. 

 

 
Fig. 3  Classification of MHAs used to train ANN in this study 

1) Evolutionary Algorithms: EAs are practical for solving 
optimization problems with the help of the “survival of the 
fittest” principle. They start with a population that evolves 
across generations, improving through genetic operations like 
crossover and mutation [23]. Fig. 4 illustrates the general 
scheme of an EA [24]. The process starts with the 
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initialization of a population of potential solutions. Of this 
population, the parents are chosen, and then, through 
crossover and mutation, the offspring come. These offspring 
are then assessed, and the survival returns to the population. 
It continues until a stopping condition is reached when the 
solution is near the optimal solution. 

 
Fig. 4  The general scheme of the evolutionary algorithms 

2) Swarm Intelligence Algorithms: SIs are nature-
inspired optimization methods developed based on the 
interaction behavior of living organisms such as animals and 
insects. These algorithms operate on the principle of 
decentralization, wherein candidate solutions are updated 
through local interactions among agents and their 
environment. Fig. 5 depicts the general scheme of SIs [25]. 
The process begins with the initialization of a population of 
agents. Each agent's solution is evaluated using a fitness 
function. If the stop condition is not reached, the agents are 
updated and moved to explore the search space further. This 
loop continues until the stop condition is met; at this point, the 
algorithm returns the global best solution and terminates. 

 
Fig. 5  The general scheme of swarm intelligent algorithms 

3) Physics-based Algorithms: PBAs are naturally 
inspired by physical principles, and the interactions of search 
agents are modeled according to physical laws. These 
algorithms mimic gravity, electricity, heat, and waves to 
control the search process for the best solution [26]. 

4) Human-based Algorithms: HBAs are computational 
methods derived from human activities and behavior, 

including communication, problem-solving, and social 
relations. These methods copy various human thinking 
properties to help solve optimization problems. Many HBAs 
contain learning, cooperation, and adaptation features that 
make them suitable for solving cases of dynamic optimization 
problems [26]. 

C. ANN Training Using MHAs 

Given the limitations of traditional training methods, 
MHAs are seen as promising alternatives to train the weights 
and biases of ANNs to improve their performance. The first 
step in training ANN using MHA is problem representation. 
ANN variables can be a vector, binary string, or a real array 
whose length equals the sum of all the weights and biases. Fig. 
6 illustrates the vector representation of an MLP architecture, 
mapping its weights and biases into a solution vector [17]. The 
diagram demonstrates how the connections between input, 
hidden, and output layers are encoded into a vector format, 
enabling MHAs to optimize the parameters systematically. 
Such encoding ensures a structured approach to ANN 
parameter tuning, contributing to improved training 
efficiency and accuracy.   

 

 
Fig. 6  Vector representation of an MLP architecture 

In the representation of MHAs, each individual in the 
population (P) is expressed as a vector in (D) dimensions, 
which is computed using equation (1):   

 � � �� � �� � �� � 	� � � � 	  (1) 

where N, M, and R represent the corresponding numbers of 
nodes in the input, hidden, and output layers. The network's 
connections' weights and biases are included in the vector as 
shown in equation (2): 

 
� �  
�1������⃗ �� , �1�����⃗ �, �2������⃗ �� , �2�����⃗ ��  � � 1, … �
 (2) 

where �1������⃗ �� and �2������⃗ ��  are weights between the input to the 

hidden layer and the hidden to the output layer. �1�����⃗ � and  �2�����⃗ � 
are the biases of the hidden to the output layer, respectively, 
and NP is the total number of agents. 

As shown in Fig. 7 [27], training an ANN with MHAs 
begins by randomly initializing weights and biases. The 
training data are then fed into the network, and the MLP 
generates outputs compared to the target values using an 
objective function. This comparison produces an error used to 
calculate a fitness value, typically measured by error metrics 
such as Mean Square Error (MSE) or Root Mean Square Error 
(RMSE). Based on this error, the MHA iteratively adjusts the 
weights and biases to minimize the fitness value and improve 
performance. This process continues until specific stopping 
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criteria are met, and the solution with the optimal fitness 
value, indicating the lowest error, is selected for future 
classification tasks. 

 

 
Fig. 7  ANN training process using MHA 

III. RESULTS AND DISCUSSION 
In this section, we present the results of our study on 

applying various MHAs for training ANNs. The findings are 
divided into four algorithm groups: EAs, SIs, PBAs, and 
HBAs. 

A. Evolutionary Algorithms for ANN Training 

1) Genetic Algorithm (GA): GA is an algorithm derived 
from the natural selection principle and evolution [23]The 
initial population is generated with random assignments and 
then assessed using the fitness function. GA contains three 
operators: selection (deciding which individuals should be 
used), crossover (exchanging information between two 
selected solutions), and mutation (changing a particular 
portion of this information). Rojas et al. [13] introduced the 
Cellular Genetic Algorithm (CGA) with Damped Crossover 
(DX) for optimizing MLP weights and biases for medical data 
classification. The method demonstrated outstanding results 
with lower MSE values compared to other MHAs. Bansal et 
al. [28] proposed GGA-MLP, using a Greedy Genetic 
Algorithm (GGA) to train MLPs. The GGA employs a greedy 

approach for the initial population generation. The approach 
was applied to ten benchmark medical datasets, some of 
which had outstanding results. 

2) Biogeography-based Optimizer (BBO): BBO is an 
MHA that uses biogeography principles like species 
migration and evolution to find optimal solutions [29]. 
Mirjalili et al. [30] presented a BBO approach to training 
MLPs. The study findings indicated a good performance, 
especially in avoiding local minima. Another study by Zhang 
et al. [31] presents an enhanced BBO approach for training 
MLPs. The advanced strategy introduced various probability 
distributions, which include gamma, beta, and Gaussian, to 
migrate the BBO algorithm, whereas the prior method had the 
random distribution and known migration probability. 

3) Artificial Algae Algorithm (AAA): AAA mimics the 
behavior of microalgae specifically for the light-seeking 
behavior of photosynthesis [32]. Turkoglu and Kaya [33] 
presented a study using AAA to train MLPs. AAA showed 
superior performance in classification tasks compared to BP 
and other methods. Another survey by Karakoyun [34] 
presents a modified version of the AAA employed for ANN 
training. The new improvement uses a multi-selection in the 
position update step to improve how the algorithm avoids 
local optima and generally brings better results to the search. 

EAs have been widely utilized in ANN training due to 
their ability to optimize complex, non-linear problems. They 
work by evolving populations and breeding superior 
individuals to avoid local minima. Table III highlights the 
application of various EAs in ANN training, providing 
detailed insights into the specific algorithms employed, key 
metrics, significant findings such as enhanced convergence 
speed or improved classification accuracy, and the 
Interpretation field, which explains the methodologies and 
mechanisms that contributed to these outcomes.  

TABLE III 
OVERVIEW OF STUDIES UTILIZING EVOLUTIONARY ALGORITHMS FOR TRAINING MULTILAYER PERCEPTRON NEURAL NETWORKS 

Ref. MHA Metrics Key Findings Interpretation 

[13] GA Accuracy 
Specificity 
Sensitivity 

Cellular Genetic Algorithm-Damped Crossover 
(CGA-DX) showed lower MSE values than other 
MHAs. 

A novel mutation mechanism with a modified version 
of GA leads to improved results. 

[28] GA Accuracy 
Specificity 
Sensitivity 

Greedy Genetic Algorithm (GGA) outperformed 
traditional MLP on several medical datasets. 

Enhanced initial population selection ensures better 
convergence for domain-specific tasks like medical 
datasets. 

[30] BBO Accuracy Effective in avoiding local minima, enhancing 
MLP performance. 

Migration strategies improve global search but can be 
sensitive to parameter tuning. 

[31] BBO Area Under 
Curve (AUC) 
Sensitivity 
Specificity 

Effective in avoiding local minima and enhancing 
performance. 

Migration strategies improve global search but can be 
sensitive to parameter tuning. 

[33] AAA Accuracy 
Wilcoxon 
Friedman 

A superior performance compared to BP and 
others. 

Mimics algae's adaptive behavior for adequate 
classification. Less validated in larger datasets. 

[34] AAA Sensitivity 
Specificity 
Accuracy 
MAE 
R2 

Avoids local optima and has better performance in 
in some datasets. 

Balances exploration and exploitation, making it 
versatile but sensitive to parameter fine-tuning. 

 

Table IV provides a comparative overview of these EAs, 
highlighting their advantages and disadvantages as reported 
in the reviewed studies [35], [36]This comparison offers 

valuable insights into each algorithm's strengths and 
limitations, aiding in selecting the most suitable approach for 
specific ANN training tasks. 
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TABLE IV 
COMPARATIVE ANALYSIS OF EVOLUTIONARY ALGORITHMS FOR TRAINING 

ANN MODELS 

MHA Advantages Disadvantages 

GA Good coverage of initial 
solutions. 
Easy to implement. 

Can converge to local 
minima. 
Performance depends on 
tuning parameters. 

BBO Fewer parameters to tune. 
Sharing information between 
solutions, helping avoid local 
minima. 

Sensitive to initial 
parameters. 

AAA Combines exploration and 
exploitation. 
Solving both discrete and 
continuous problems. 

Less studied; hence, there 
are fewer empirical 
validations. 
Sensitive to parameter 
settings. 

B. Swarm Intelligence Algorithms for ANN Training 

1) Practical Swarm Optimization (PSO): PSO is an 
optimization technique emulating the social behaviors of 
birds, flocks, or fish schooling [37]. It involves finding the 
solution to the problem within the search space using a 
population of candidate solutions called particles. Rauf et al. 
[11] present a novel initialization technique called (PSOLL-
NN) to improve the training of FNNs. PSOLL-NN improved 
the training of FNNs compared to standard PSO and BP. 

2) Animal Migration Optimization (AMO): The AMO 
algorithm simulates the movement of animals from one 
location to another in the search for a resource or better 
standards of living and iteratively scans the search space in an 
optimal problem solution [38]. Gülcü et al. [39] improved the 
AMO algorithm by integrating the function based on Lévy 
flight to train MLPs. Thus, the IAMO-MLP algorithm 
optimizes the search and acquisition process and provides a 
good way to avoid being trapped in local optima. 

3) Grey Wolf Optimization (GWO): GWO, inspired by 
the social structure and hunting tactics of grey wolves, 
emulates the roles of alpha, beta, delta, and omega wolves 
within a pack to guide the search process toward optimal 
solutions [40]. Mirjalili [4] applied GWO to train MLPs. The 
performance was assisted by using diverse datasets for 
classification and function approximation. GWO 
demonstrated superior performance in training MLPs 
compared to traditional methods. Similarly, Altay and Varol 
[41] presented an improved GWO (IMP-GWO), which 
addressed standard GWO's limitations, such as premature 
convergence and exploration-exploitation balance. The IMP-
GWO-MLP method showcased superior performance 
compared to conventional optimization techniques.  

4) Tree-Seed Algorithm (TSA): TSA is inspired by nature, 
as in the case of tree seed propagation, resulting in the growth 
of seeds into mature trees by adapting to environmental 
factors [42]. Cinar [43] developed an approach to train MLPs 
using TSA. This approach compared results with other 
algorithms using two statistical analysis techniques: the 
Wilcoxon Signed Rank Test and Friedman's Test. The study 
stresses TSA’s exploration capabilities and advises more 
research into the improved versions of TSA for MLP training. 

5) Ant Lion Optimizer (ALO): ALO symbolically 
represents antlions as candidate solutions, with their hunting 
strategies guiding the optimization process within the search 

space  [44]. Yamany et al. [45] applied ALO to train MLPs. 
ALO-MLP was effective in training MLPs, showing 
improved performance over other algorithms. In addition, 
ALO was also enhanced by Heidari and Faris (Heidari et al., 
2020), and the model's effectiveness was evaluated against 
DE, GA, PSO, and PBIL. The improved model showed 
enhanced performance in diverse datasets. 

6) Moth-flame Optimization Algorithm (MFO): MFO is 
an algorithm designed to replicate the flying behavior of a 
moth’s flight used in navigation. Transverse orientation is a 
direction-finding mechanism that moths use to stay oriented 
relative to light sources [34]. In a paper by Yamany et al. [47], 
the MFO algorithm was applied to train the MLPs. The model 
demonstrated practical training of MLPs with better 
performance in classification tasks. Yang et al. [48] propose 
the Floating Flame MFO (FMFO) algorithm to avoid 
problems with local optimization traps and optimize search 
speed and accuracy in MLP classifier training. Thus, the 
segmented search improves by learning to combine 
exploitation and exploration of the FMFO algorithm. 

7) Monarch Butterfly Optimization (MBO): The MBO 
algorithm is based on the behavioral aspects of the monarch 
butterfly. This algorithm is based on constructive and 
explorative behavior patterns seen in monarch butterfly 
migration [49]. Firas et al. [50] proposed an Improved MBO 
(IMBO) algorithm to train ANNs. The IMBO modifies the 
position updating mechanism to include previous solutions 
and the best solution. This modification enhances the 
algorithm's ability to avoid local optima and accelerates 
convergence. 

8) Crow Search Algorithm (CSA): CSA is based on 
crows' foraging skills that are closest to crows’ habit of storing 
and finding food [51]. Khamees et al. [52] used CSA to train 
ML. While GA and PSO algorithms stuck to local minima, 
the CSA algorithm was much better at sliding into the global 
minima. Besides, the CSA model has been used by Erdoğan 
and Gülcü [53], which was thoroughly tried on several 
classifying datasets. The CSA-CSA-MLP model is compared 
to different models and found to be the best algorithm for 
training the MLPs. 

9) Whale Optimization Algorithm (WOA): WOA 
simulates whale behavior using techniques like encircling 
prey and spiral movements to update the positions of whale 
agents, which represent potential solutions [54]. Bhesdadiya 
et al. [55] presented the WOA-MLP approach that shows 
superiority in terms of better classification results, solutions 
to the problem of local minima, and quick termination. 
Likewise, Aljarah et al. [56] have shown their algorithm to be 
competent at training MLPs on 20 different datasets with 
varying complexity levels. Kushwah et al. [57] introduce a 
modified WOA by enhancing the optimization with a roulette 
wheel selection mechanism, which balances exploration and 
exploitation. The modified WOA improved convergence and 
classification accuracy. Similarly, Raziani et al. [58] propose 
a novel WOA that gives an advanced nonlinear function to 
enhance the exploration and exploitation stages and tackle the 
prevalent problems of local optima and slow convergence 
resulting from random initialization of weights and biases. In 
another study, Chatterjee et al. [59] combined chaotic 
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functions and oppositional-based learning with the WOA 
model to train FNNs. The modified WOA addressed local 
optima issues and showed fast convergence. 

10) Dragonfly Algorithm (DA): DA is inspired by the 
group behavior observed in dragonflies, where agents 
simulate natural dragonfly interactions to resolve 
optimization problems [60]. Abo-Elsoud et al. [61] used DA 
to train MLP. DA-MLP-based optimization compared 
favorably with traditional methods such as GA, ACO, and 
PSO, bringing impressive results. In addition, Gülcü [62] 
proposed a hybrid DA-MLP algorithm as an enhancer 
technique. The effectiveness of this method was demonstrated 
on a civil engineering task as well as several datasets 
involving classification problems. 

11) Spotted Hyena Optimizer (SHO): SHO models spotted 
hyenas' complex social and hunting skills; every hyena in the 
algorithm symbolizes the possible solutions through the 
hunting and local processes [63]. Panda and Majhi [64] 
present a study using SHO to train the MLP. They perform 
some statistical tests to evaluate whether the SHO-MLP 
method is superior. Moreover, Luo et al. [65] examined the 
effect of SHO in enhancing the performance of FNNs in the 
tested scenarios, including classification and function 
approximator tasks. They showed and improved efficiency, 
especially in searching the complex search spaces. 

12) Grasshopper Optimization Algorithm (GOA): GOA 
mimics the behavior of grasshoppers to tackle several real-
world optimization problems. Each grasshopper adjusts its 
position according to its previous position, the best solution 
encountered, and the collective information shared by 
neighboring grasshoppers [66]. Heidari et al. [67] utilized the 
GOA algorithm to train the MLPs. The approach of GOA-
MLP is compared with the results of eight other optimization 
algorithms. The results demonstrated the highest 
classification of all datasets. 

13) Butterfly Optimization Algorithm (BOA): BOA 
mimics butterflies' random foraging behavior, where the 
movements are driven by environmental cues and the 
attractiveness of possible food sources as measures of 
solutions' fitness features [68]. Jalali et al. [69] proposed an 
approach using ANN trained by BOA to classify vertebral and 
Parkinson's diseases. The ANN-BOA model showed superior 
performance in medical data classification—furthermore, 
Irmak et al. [70] also proposed a BOA-MLP model that 
enhanced exploration and exploitation for MLP training. In 
another study, Irmak et al. [71] proposed an improved BOA 
incorporating chaotic properties to improve the exploration 
and exploitation of the search space. 

14) Seagull Optimization Algorithm (SOA): SOA mimics 
the seagulls' approach to finding food and avoiding predators, 
translating these behaviors into strategies for exploring and 
exploiting the search space in optimization problems [72]. 
Bacanin et al. [73] presented a modified version of the SOA 
to enhance the training of ANNs. The proposed enhanced 
SOA was then validated on ten binary classification 
benchmark datasets. The research has shown that the 
improved SOA offered better total performance than other 
current algorithms. 

15) Mayfly Algorithm (MA): MA mimics mayflies' swarm 
behavior and life cycle. The male mayflies explore the 
solution space, and during the period of exploitation, they may 
find a mate and improve solutions [74]. Moosavi et al. [75] 
present the MFANN algorithm for training ANNs. The 
algorithm tested on two benchmark datasets: Banknote 
Authentication and Cryotherapy. Comparative analysis 
showed that MFANN outperformed the PSO and GWO. by 1-
2% in training accuracy and 2% in testing accuracy.  

16) Marine Predators Algorithm (MPA): The MPA 
algorithm is based on the hunting method of marine predators. 
Using the same search pattern, it applies optimal solutions in 
rugged search space optimization [76]. Bagchi et al.[16] 
applied MPA in improving ANNs for medical data 
classification, using it in ten benchmark datasets that opposed 
its results to those of the LM method and PSO. Likewise, 
Zhang and Xu [77] proposed an MPA variation with a 
ranking-based mutation operator. This operator helps lead the 
identification of the optimal agent, which searches avoid 
stagnation, and as a result, the convergence rates improve. 

17) Coot Optimization Algorithm (COOT): COOT took 
ideas after the coot bird creole's foraging behaviors. The 
algorithm recognizes differences among leaders (high-quality 
solutions) and members (lower-quality solutions) within the 
flock [78]. Özde and İşeri [79] focused on COOT's use in 
training MLPs and classifying benchmark datasets. The 
COOT-ANN method was benchmarked against the classical 
optimizer methods like GD and the Levenberg-Marquardt 
algorithm.  

SI algorithms are inspired by the characteristics, habits, 
and properties of different animals and insects and offer 
unique advantages in ANN training by leveraging 
decentralized interactions. Table V highlights the application 
of various SI algorithms, detailing their metrics, key findings, 
and interpretation, which explains the mechanisms driving 
their effectiveness. Table VI provides a comparative overview 
of SI algorithms, focusing on their specific strengths and their 
limitations based on previous studies [36], [80], [81], [82]. 

TABLE V 
 OVERVIEW OF STUDIES UTILIZING SWARM INTELLIGENCE ALGORITHMS  FOR TRAINING MULTILAYER PERCEPTRON NEURAL NETWORKS 

Ref. MHA Metrics Key Findings Interpretation 

[11] PSO Accuracy The proposed PSO  Log Logistic (PSOLL-
NN) approach improved the training of 
FNNs compared to standard PSO-NN and 
BP. 

Practical and straightforward, it may need 
help with premature convergence in high-
dimensional problems. 

[39] AMO Sensitivity 
Specificity 
Accuracy 

Enhanced search capabilities and avoided 
local optima effectively. 

Adaptive movement mimics ant behavior, 
ensuring robust optimization but slower 
convergence. 
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Ref. MHA Metrics Key Findings Interpretation 

[4] GWO Accuracy 
MSE 

Superior performance in training MLPs 
compared to traditional methods. 

Balances exploration and exploitation 
effectively, reducing the chance of local 
minima. 

[41] IGWO Accuracy 
Precision F1 

Addressed limitations of standard GWO, 
showing better performance and 
convergence. 

Improved GWO variant with enhanced 
accuracy but slightly increased 
computational cost. 

[43] TSA Accuracy 
MSE 
Wilcoxon 
Friedman 

Excellent exploration capabilities and 
improved MLP training performance. 

Excels in exploring solution spaces but is 
less effective in exploitation than other SIs.  

[47] ALO Accuracy 
MSE 

Improved performance over other 
algorithms. 

Spiral-based movement enhances global 
optimization, but convergence is relatively 
slow. 

[46] ALO Accuracy 
MSE 

Improved ALO showed enhanced 
performance in diverse datasets. 

Adaptive updates improve generalization, 
but high computational costs limit 
scalability. 

[47] MFO Classifica-tion Rate 
Test Error 

Demonstrated better performance in some 
datasets. 

Compelling flame-based attraction 
prevents local minima but works best with 
smaller datasets. 

[48] FMFO MSE 
Accuracy Speed 
Time 

Improved search speed and accuracy in 
MLP training. 

Combines flame-based search with 
adaptive behavior for fast, precise results. 

[50] IMBO Accuracy Standard 
Deviation 
Speed 

Enhanced convergence and avoided local 
optima. 

Iterative migration ensures robust 
convergence and scalability for large 
datasets. 

[52] CSA Accuracy MSE Outperformed GA and PSO in avoiding 
local minima. 

Ideal for escaping local minima; it requires 
careful parameter tuning.  

[53] CSA Accuracy 
Sensitivity 
Specificity 

Superior performance compared to other 
models. 

Ideal for escaping local minima; requires 
careful parameter tuning.  

[55] WOA Accuracy MSE Better classification results and quick 
termination. 

Whale-inspired search effectively balances 
speed and accuracy in classification tasks. 

[56] WOA Accuracy Improved convergence and classification 
accuracy. 

Exploits bubble-net for efficient 
convergence but struggles with parameter-
heavy datasets. 

[57] MWOA Accuracy MSE 
Time 

Modified WOA improved convergence 
and classification accuracy. 

Adaptive updates improve real-time 
performance, albeit with higher 
computational demand. 

[58] MWOA Accuracy AUC 
Specificity 
Sensitivity 

Modified WOA addressed local optima 
issues and showed fast convergence. 

Robust for avoiding local minima; 
particularly effective for medical datasets. 

[59] CWOA Accuracy Sensitivity 
Specificity 

Improved performance in training FNNs 
with chaotic functions and oppositional-
based learning. 

Incorporates chaotic theory to enhance 
global search and exploration capabilities. 

[61] DA Accuracy MSE Impressive results compared to traditional 
methods. 

Uses dragonfly-inspired group behavior to 
balance exploration and exploitation 
effectively. 

[62] DA Accuracy MSE Enhanced performance in classification 
tasks. 

Uses dragonfly-inspired group behavior to 
balance exploration and exploitation 
effectively. 

[64] SHO Accuracy 
RMSE 

Statistical superiority in training MLPs. Performs well in high-dimensional tasks 
but is computationally intensive. 

[65] SHO Accuracy MSE Improved FNN performance in various 
scenarios. 

Robust in diverse scenarios but requires 
fine-tuning of parameters for optimal 
results. 

[67] GOA AUC 
Accuracy  
Specificity 
Sensitivity, 

GOA-MLP approach demonstrated high 
classification accuracy. 

Grasshopper-based movement excels in 
classification tasks but is resource-
intensive for large datasets. 

[69] BOA AUC 
Accuracy  
Specificity 
Sensitivity 

Superior performance in medical data 
classification. 

Butterfly movements adapt well to medical 
datasets; parameter sensitivity may require 
fine adjustments. 

[70] BOA Accuracy  
Specificity 
Sensitivity 
F1, MSE 

Improved BOA enhanced exploration and 
exploitation for MLP training. 

Combines adaptive attraction mechanisms 
for balanced optimization, but exploitation 
could be more robust. 
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Ref. MHA Metrics Key Findings Interpretation 

[71] IBOA Sensitivity 
Specificity 
Precision, F1 
Friedman  

Improved BOA incorporated chaotic 
properties for better search performance. 

Chaotic strategies boost search efficiency; 
implementation complexity can be a 
drawback.  

[73] SOA Accuracy Standard 
Deviation 
Speed 

Improved total performance in binary 
classification tasks. 

Reliable for binary classification but 
slower in datasets with high variability. 

[75] MA Accuracy Outperformed PSO and GWO in training 
accuracy and testing accuracy. 

Strong balance of exploration and 
exploitation; it requires parameter 
adjustments for optimal results. 

[16] MPA AUC 
Accuracy  
Specificity 
Sensitivity 

Superior performance in medical data 
classification. 

Robust for medical datasets, but 
computational complexity may limit 
scalability. 

[77] MPA Accuracy 
p-value 

Improved search performance and 
convergence rates. 

Reliable for high-accuracy classifications; 
requires significant computational 
resources. 

[79] COOT Accuracy Outperformed classical optimization 
methods. 

Models cooperative optimization; limited 
validation in diverse datasets. 

TABLE VI 
COMPARATIVE ANALYSIS OF SWARM INTELLIGENCE ALGORITHMS FOR TRAINING ANN MODELS 

MHA Advantages Disadvantages 

PSO Converges quickly in the early stages. 
Requires fewer parameters. 

May get trapped in local minima. 
Premature convergence. 

AMO Adjusts migration behavior automatically, enhancing 
performance. 

Slow convergence. 

GWO Fewer parameters. 
Simplicity in implementation. 

May suffer from premature convergence. 

TSA Strong exploration capabilities. Less effective in exploitation. 
ALO Strong global search capabilities. Slow convergence rate. 

Complexity in parameter tuning. 
MFO Avoid local minima. 

Faster convergence. 
May suffer from premature convergence. 

MBO Enhance global exploration. Slow convergence. 
CSA The use of memory to store the best solutions helps 

improve performance. 
May require parameter tuning. 

WOA Efficient in global optimization. 
Simple to implement. 

Risk of premature convergence. 
May be stuck at local optima. 

DA Efficiently balances exploration and exploitation. Complexity in modeling behavior. 
SHO Robust against local optima. Computational complexity. 
GOA Strong global search 

Dynamic adaptation. 
Increased computation time. 

BOA High exploration capability. 
Effective for global optimization. 

Sensitivity to parameter settings. 

SOA Effectively explores the search space. May converge slowly. 
MA Effectively combines exploration and exploitation. Depends on careful tuning of attraction. 
MPA High exploration and exploitation. Complex parameter tuning. 

Computationally expensive. 
COOT High efficiency in exploration. 

Easy to implement. 
May get stuck in local optima. 
Parameter sensitivity. 

C. Physics-Based Algorithms for ANN Training 

1) Gravitational Search Algorithm (GSA): GSA is a 
model based on principles of geophysics, such as the law of 
gravity and mass interactions. It employs gravity's mass, 
weight, and force to quantitatively traverse the search space 
and arrive at the ideal solutions. [83]. Rather et al. [84] present 
an enhanced GSA model, which combines Lévy flight and 
chaos theory to train MLPs. Lévy flight enhances the 
diversification of the search space, while chaotic maps 
intensify candidate solutions towards the global optimum. 

2) Hypercube Optimization Search (HOS): HOS is 
inspired by doves' foraging behavior and tailored for high-

dimensional numerical optimization tasks [85]. Tunay et al. 
[86] applied HOS to train MLPs. The findings demonstrated 
the HOS-MLP model's superior performance in MSE, 
classification accuracy, and convergence speed, highlighting 
its potential as an effective decision-support tool in medical 
applications. 

3) Lighting Search Algorithm (LSA): LSA imitates the 
occurrence of lightning and the step leader traveling 
mechanism by using the projectiles concept that travels fast 
and are particles [87]. Aljarah et al. [88] used LSA to train 
MLPs. The LSA-MLP performance had been compared to a 
range of machine learning algorithms, and the findings 
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showed that the LSA could escape from the local minima and 
achieve fast convergence. 

4) Sine Cosine Algorithm (SCA): SCA uses sine and 
cosine functions as inspirational roots to move into the 
problem of optimization [89]. The paper by Gupta and Deep 
[90] showed the utilization of SCA and its structural change 
in the classifier adaptation version technique (HSCA) to train 
the ANN. In contrast with other optimization techniques such 
as PSO and ACO, they noted SCA as having better 
performance, especially in datasets like Breast Cancer. 

5) Multi-Verse Optimizer (MVO): MVO utilizes the 
concept of the Multiverse Cosmology, in which different 
universes function under disparate principles, to identify and 
solve optimization problems [91]. Faris et al. [92] used the 
MVO algorithm to train MLPs evaluated on bio-medical 
datasets. MVO performed better in representing local optima 

and achieving steady convergence than GA and PSO. In 
another study, Hassanin et al. [93] examine MVO as the 
training technique for FNN and establish its effectiveness on 
XOR and Breast Cancer datasets as some function 
approximation tasks. At the same time, the results display 
MVO-FNN as the superior option for all such experiments.  

The laws and principles of natural physical phenomena 
inspire PBAs. These algorithms, studied extensively in the 
literature, are frequently applied to complex applications, 
such as engineering design and optimization. Table VII 
presents a summary of PBAs applied in ANN training. It 
details the specific algorithms, performance metrics, key 
findings, and the interpretation field, which provides insights 
into the mechanisms that drive their effectiveness. Table VIII 
presents a comparative analysis of PBAs, focusing on their 
advantages and disadvantages [81] [82]. 

TABLE VII 
OVERVIEW OF STUDIES UTILIZING PHYSICS-BASED ALGORITHMS  FOR TRAINING MULTILAYER PERCEPTRON NEURAL NETWORKS 

Ref. MHA Metrics Key Findings Interpretation 

[84] GSA MSE Convergence Rate Superior performance in training MLPs with 
Lévy flight and chaos theory. 

Chaos theory enhances search, 
improving performance in complex 
spaces. 

[86] HOS Accuracy 
MSE 

Superior performance in medical 
applications. 

Tailored for domain-specific tasks, 
ensuring precision. 

[88] LSA Accuracy 
p-value 

Fast convergence and effective avoidance of 
local minima. 

Mimics natural phenomena, ensuring 
rapid convergence while avoiding 
local minima. 

[90] SCA Accuracy 
MSE 

Better performance in training MLPs, 
especially in complex datasets. 

Sine-cosine mechanics navigate non-
linear datasets effectively. 

[92] MVO Accuracy 
MSE 

Better performance in local optima and 
convergence. 

Multiverse-inspired exploration 
excels at avoiding local optima and 
requires high computational 
resources. 

[93] MVO MSE MVO-FNN proved superior in classification 
tasks. 

Effective in classification, 
computational demand grows. 

TABLE VIII 
COMPARATIVE ANALYSIS OF PHYSICS-BASED ALGORITHMS FOR TRAINING ANN MODELS 

MHA Advantages Disadvantages 

GSA Efficiently explores the search space. The calculation of forces between agents increases computational complexity. 
HOS Can adaptively change search granularity. May require many function evaluations. 

Computationally intensive for high dimensions. 
LSA Strong exploration capabilities. Complexity increases with iterations. 
SCA Fewer parameters. 

Stable and reliable. 
May suffer from slow convergence. 

MVO Good global search capability. Computationally expensive. 
May get stuck in local optima. 

D. Human-Based Algorithms for ANN Training 

1) Teaching Learning-Based Optimization (TLBO): 
TLBO models the educational dynamics of a classroom to 
optimize solutions. The algorithm is divided into two main 
phases: the 'Teacher Phase,' where the most optimal solution 
guides others, and the 'Learner Phase,' where solutions 
improve by mutual learning [94]. Ang et al. [95] explored 
TLBO's application in training FNNs. The approach was 
tested on classification problems, comparing its efficacy with 
other advanced TLBO variants. TLBO-ANN showed 
improved learning efficiency and classification performance. 

2) Yin-Yang-pair Optimization (YYPO): YYPO is a 
lightweight optimization technique inspired by the concept in 

the Yin-Yang philosophy. This algorithm efficiently solves 
complex optimization problems by leveraging unidirectional 
and multi-directional search capabilities [96]. Shekhar et al. 
[97] introduce the PYYPO algorithm for MLP training. The 
results showed that the algorithm achieved better 
classification accuracy on most datasets. 

3) Battle Royale Optimization Algorithm (BRO): The 
BRO algorithm is influenced by battle royale gaming, where 
agents, represented as players or soldiers, compete with each 
other to be the last standing by going to safe locations on the 
virtual battlefields [98]. Agahian and Akan [99] investigated 
the application of BRO in MLP training and compared its 
findings with BP and six other optimization algorithms based 
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on ten benchmark datasets. The BRO-MLP method showed 
superior performance in MSE, accuracy, and convergence.  

4) Political Optimizer (PO): PO is a novel optimization 
algorithm derived from the politics process, which is multi-
phased. It mathematically models the phases of politics, such 
as constituency allocation, party switching, election 
campaigns, inter-party elections, and parliamentary affairs 
[100]. Askari and Younas [101] introduce the PO approach 
for FNN training. The algorithm was tested on five 
classifications and five function-approximation datasets, 
presenting equal or even better results than several meta-
heuristic competitor algorithms. The study highlights PO's 
excellent convergence speed and balanced exploration and 
exploitation behavior. 

5) Ali Baba and the Forty Thieves Optimization 

Algorithm (AFT): AFT is a novel algorithm inspired by the 
tale of Ali Baba and the Forty Thieves. It focuses on 

conceptualizing solutions as thieves attempting to maximize 
their gains while minimizing risks [102]. Al-Hiary et al. [103] 
We introduce a training method for ANNs based on the AFT 
algorithm. It was tested on 15 benchmark datasets and showed 
superior performance in faster convergence compared to other 
MHAs. 

HBAs leverage human-inspired decision-making processes 
for optimization tasks, making them particularly effective for 
ANN training. Table IX summarizes various HBAs applied in 
this context, detailing the algorithm's name, metrics used, 
significant findings, and the interpretation field. The table 
provides a comprehensive overview of how HBAs optimize 
ANN models by mimicking human-inspired strategies like 
teaching, competition, and resource allocation. Table X 
provides a comparative overview of these algorithms, 
summarizing their advantages and disadvantages [82], [104].  

TABLE IX 
OVERVIEW OF STUDIES UTILIZING HUMAN-BASED ALGORITHMS  FOR TRAINING MULTILAYER PERCEPTRON NEURAL NETWORKS 

Ref. MHA Metrics Key Findings Interpretation 

[95] TLBO Classification 
Accuracy Rate 
(CAR)  
p-value 

Improved learning efficiency and 
classification performance. 

The structured Teacher-Learner phases enhance knowledge 
transfer and accurate convergence. 

[97] YYPO Accuracy 
Standard Deviation 

Better classification accuracy on most 
datasets. 

The dual search strategy ensures robust exploration and 
minimizes the risk of local optima. 

[99] BRO Accuracy 
MSE 

Superior performance in MSE accuracy 
and convergence. 

BRO’s competitive mechanisms drive solutions toward 
optimal regions, improving convergence speed and 
accuracy. 

[101] PO MSE 
Cross-entropy 
Accuracy 

Excellent convergence speed and 
balanced exploration-exploitation 
behavior. 

Adaptive multi-phased modeling balances global search 
and local refinement effectively. 

[103] AFT Accuracy Faster convergence and superior 
performance in various datasets. 

Strategic resource allocation ensures solution diversity, 
accelerating convergence. 

TABLE X 
COMPARATIVE ANALYSIS OF HUMAN-BASED ALGORITHMS FOR TRAINING ANN MODELS 

MHA Advantages Disadvantages 

TLBO Fewer parameters to tune. 
Balances global search capability with convergence. 

Slower convergence. 
May require multiple iterations for stability. 

YYPO Dual search mechanism. 
Adaptability. 

Parameter sensitivity. 
Slower convergence. 

BRO Promotes competition among solutions, enhancing global exploration. Potential for premature convergence. 
Computationally expensive due to battles. 

PO Escape local minima. 
Simple and flexible. 

Slow convergence. 
Parameter sensitivity. 

AFT Avoid local minima in MLP training. 
Diversity preservation. 

Complex implementation. 
Slow convergence. 

E. Hybrid Meta-heuristic Algorithms 

Hybrid meta-heuristic algorithms use two or more 
algorithms to make them work better, enhancing the strengths 
and mitigating the weaknesses of each algorithm. Tarkhaneh 
[105] introduced LPSONS, an evolutionary algorithm 
combining PSO's velocity with Mantegna Lévy distribution 
for diverse solution generation and preventing premature 
convergence. Tested on UCI datasets, LPSONS outperformed 
traditional gradient-based and evolutionary methods. 

Agrawal et al. [106] developed a hybrid algorithm, HWBO, 
combining GWO and Bat Algorithm (BA) for training ANNs. 
Tested on ten UCI medical datasets, HWBO integrates 
GWO's exploration abilities with BA's exploitative strengths. 

Results showed HWBO outperformed other MHAs in most 
cases, with better accuracy and notably faster convergence 
speed. HWBO's execution time was also competitive. Zhou et 
al. [107] introduced an improved TLBO with the WOA 
algorithm (TSWOA) for training MLPs. The TSWOA 
enhances exploration through TLBO’s teacher phase and 
incorporates the simplex method to increase search agent 
diversification, enabling quicker convergence to the global 
optimum. Tested on 15 UCI datasets, The results show it to 
be highly effective in optimizing MLPs. 

Aleksa et al. [108] proposed a hybrid approach, GGE-
ABC, combining GA and ABC algorithms to train MLP. This 
method merges GA's evolutionary process with ABC's key 
phases to find optimal solutions. Evaluated on two 
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benchmarks, GGE-ABC outperformed nine other MHAs, 
demonstrating its robustness and efficiency. Younis et al. 
[109] propose the (IHGWOSCA) that combines GWO and 
SCA. The hybrid algorithm leverages GWO's social 
hierarchy, hunting strategies, and SCA's superior exploration 
and exploitation capabilities.  Yilmaz et al. [110] proposed a 
hybrid algorithm, MVOSANN, for training ANNs, 
combining Simulated Annealing (SA) and MVO algorithms. 
The MVOSANN algorithm was tested on 12 benchmark 
datasets and compared with 12 well-recognized meta-
heuristic algorithms. 

F. Analyzing Scientific Maps 

In the existing literature, researchers work on systematic 
reviews and meta-analyses to provide a clear heading toward 
synthesizing results and locating areas lacking research. 
However, due to potential bias, bibliometric methods like the 
R-tool and VOS viewer were employed for the analysis [111]. 
These procedures provided simple visual representation 
methods of data, making them convenient. This research uses 
the bibliometric approach, which is explained in subsequent 
sections. 

1) Country Scientific Production: The scientific 
production map highlights contributions by authors and 
nations to MHAs training for ANNs. Fig. 8 presents a color-
coded map showing the variation in scientific output, with the 
darkest blue for the highest and bright blue for the lowest 
production. Gray areas have minimal output. India and China 
lead in this field, providing critical insights for researchers and 
policymakers. 

 
Fig. 8  A color-coded map of literature for MHAs to train ANNs 

2) Cloud of Words: The word cloud in Fig. 9 visually 
represents critical terms from previous research titles, 
highlighting their prominence.  

 

 
Fig. 9  Cloud of words 

 

The size of each term within the cloud corresponds to its 
frequency across the studies reviewed, with larger fonts 

signifying more common occurrences and smaller fonts 
indicating less frequent mentions. Thus, the cloud effectively 
encapsulates essential themes in literature. 

3) Co-Occurrence: Co-occurrence networks are derived 
from key terms in the literature illustrated in Fig. 10, revealing 
the interconnected theoretical foundations of a field. In this 
network, nodes symbolize topics, with their size reflecting 
thematic prevalence. This visualization aids researchers in 
synthesizing existing knowledge, as seen with the prominent 
mention of 'optimization algorithms' in ANN training, 
highlighting its critical role in meta-heuristic research. 

The findings of this study underscore the critical role of 
MHAs in advancing ANN training, particularly in addressing 
the limitations of traditional methods. For example, improved 
classification accuracy through MHAs can enhance disease 
diagnosis and patient outcomes by accurately analyzing 
complex datasets, such as medical imaging or genetic 
information. Similarly, in finance, the robustness of MHAs 
can aid in fraud detection, risk management, and market trend 
prediction by efficiently processing high-dimensional 
financial data. 

One key finding is the superior performance of MHAs 
compared to traditional gradient-based methods. 
Approximately 74% of reviewed studies show that MHAs 
outperform BP regarding test accuracy and training MSE on 
benchmark datasets. Furthermore, SI algorithms 
demonstrated better convergence speed and robustness than 
EAs, HBAs, and PBAs. 

 

 
Fig. 10  The co-occurrence network 

 
Another significant finding is the effectiveness of hybrid 

algorithms, which combine the strengths of different MHAs 
to achieve superior optimization. By leveraging 
complementary capabilities, hybrid approaches address 
common issues like premature convergence and sensitivity to 
parameter settings, achieving better overall performance. 

This study distinguishes itself from previous research by 
offering a broader analysis of MHAs. Unlike earlier reviews 
focusing on specific subsets or domains, this work evaluates 
all significant categories, including hybrid, physics-based, 
and human-inspired approaches. Using bibliometric tools, 
such as VOSviewer, adds value by identifying thematic trends 
and interconnections in MHA research. The emphasis on 
practical applications and benchmarking diverse datasets also 
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bridges the gap between theoretical advancements and real-
world utility. 

The study also identifies opportunities for innovation. Most 
studies rely on traditional metrics like MSE and fixed network 
architectures, which, while enabling comparability, limit 
flexibility. Exploring alternative loss functions and dynamic 
architecture could enhance the adaptability of ANN training. 
Similarly, reliance on benchmark datasets highlights the need 
to test MHAs on real-world datasets to understand their 
practical utility and limitations better. 

In this sense, this study provides a comprehensive review 
of all MHAs used during ANN training. It suggests future 
research directions for adaptive MHAs, dynamic parameter 
control, and scaling to deep neural networks. However, these 
innovations can also increase MHAs’ efficiency, scalability, 
and robustness to optimize neural network performance. 

IV. CONCLUSION 

This study highlights the critical advancements and 
contributions of Meta-heuristic Algorithms (MHAs) in 
optimizing the training of Artificial Neural Networks 
(ANNs), particularly for classification tasks. The study 
comprehensively analyzes their strengths and limitations by 
systematically reviewing recent developments across 
evolutionary, swarm intelligence, physics-based, and human-
inspired algorithms. The findings emphasize how MHAs 
address key challenges in ANN training, such as avoiding 
local optima, improving convergence rates, and enhancing 
robustness to initial parameter settings. 

Through the comparative analysis presented in this work, 
we identified that hybrid MHAs offer significant advantages 
by leveraging the complementary strengths of multiple 
algorithmic paradigms. For instance, their ability to balance 
exploration and exploitation has improved accuracy and 
computational efficiency in benchmark datasets. 
Additionally, the bibliometric analysis provided novel 
insights into research trends, highlighting areas such as 
adaptive MHAs and underexplored domains that warrant 
further investigation. 

These findings have profound practical implications. 
MHAs can enable practitioners to develop accurate and 
efficient models for critical applications, such as early disease 
detection, personalized treatment planning, and healthcare 
resource optimization. In finance, MHAs can support the 
development of predictive models for credit scoring, fraud 
detection, and algorithmic trading.  

This study bridges the gap between theoretical 
advancements and their real-world implementation by 
comprehensively evaluating MHAs and emphasizing their 
practical applications. The insights and recommendations 
establish a solid foundation for future exploration, ensuring 
that MHAs continue to drive innovation in ANN training and 
optimization. 

Future research in this field should prioritize developing 
adaptive MHAs that dynamically adjust parameters during 
training, creating hybrid algorithms combining strengths of 
different MHAs, tailoring algorithms to specific domains, and 
extending their application to training Deep Neural Networks 
(DNNs) for high-dimensional optimization tasks. 
Additionally, exploring dynamic parameter control and 

testing MHAs on complex real-world datasets can enhance 
performance and practical utility. 
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