

UNIVERSITI PUTRA MALAYSIA

PRODUCTION AND CHARACTERISATION OF LOW SODIUM HYDROLYSATES FROM DEFATTED SOY FLOUR [GLYCINE MAX (L.) MERR.] AND ROSELLE SEED FLOUR (*HIBISCUS SABDARIFFA* L.)

WONG KAM HUEI

FSMB 2003 4

PRODUCTION AND CHARACTERISATION OF LOW SODIUM HYDROLYSATES FROM DEFATTED SOY FLOUR [GLYCINE MAX (L.) MERR.] AND ROSELLE SEED FLOUR (*HIBISCUS SABDARIFFA* L.)

By

WONG KAM HUEI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of Requirement for the Degree of Doctor of Philosophy

June 2003

Dedicated to:

My beloved and dearest

Husband and Son

Mum and Dad

Sisters and Brothers

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy.

PRODUCTION AND CHARACTERISATION OF LOW SODIUM HYDROLYSATES FROM DEFATTED SOY FLOUR [GLYCINE MAX (L.) MERR.] AND ROSELLE SEED FLOUR (*HIBISCUS SABDARIFFA* L.)

By

WONG KAM HUEI

June 2003

Chairman: Suhaila Mohamed, Ph.D.

Faculty: Food Science and Biotechnology

The study investigated production and characterisation of low sodium hydrolysates from defatted soy flour (DSF) and roselle seed flour (RSF). The problem of high sodium content in acid hydrolysis was over-come by replacing partly sodium with other cations in the neutralisation process and using enzymatic hydrolysis method. The results showed that acid hydrolysates, neutralised with 75.0% sodium hydroxide, 12.5% calcium hydroxide, and 12.5% potassium hydroxide, were at an acceptable level.

The enzymatic hydrolysis of DSF and RSF by three different commercial enzymes- crude Bromelain, Flavourzyme and Protamex were studied. The enzyme decay experiment showed that all enzymes were inactivated at 100°C. They had both endopeptidase and exopeptidase activities, with Flavourzyme showing the most prominent exopeptidase properties. The pK_a value for Bromelain with DSF (DB) was 7.39, while the optimum conditions were pH 6.5 at 55°C with 100 mg/ml enzyme at 3% protein substrate concentration. The pK_a value for Flavourzyme with DSF

(DF) was 6.50, while the optimum conditions were pH 6.5, 50°C, with 200 mg/ml enzyme at 3% protein substrate concentration. For Protamex with DSF (DP), the pK_a was 7.50, while the optimum conditions were pH 6.5, 60°C, with 150 mg/ml enzyme at 3% protein substrate concentration. RSF with Bromelain (RB) had a pK_a value of 6.97, optimum conditions were pH 7.0, 55°C, with 100 mg/ml enzyme at 2.5% protein substrate concentration. Flavourzyme with RSF (RF) had a pK_a value of 6.80 and optimum activity was at pH 6.5, 50°C, with 100 mg/ml enzyme at 3% protein substrate concentration substrate concentration. Protamex with RSF (RP) showed a pK_a of 6.49, while optimum conditions were at pH 5.5, 55°C, with 100 mg/ml enzyme at 3.5% protein substrate concentration.

DB had the highest degree of hydrolysis (DH) whereas RF had the lowest DH among the hydrolysates. After 5-hour hydrolysis, DP and RF produced a small peptide of about 90 Dalton (Da), similar in size to alanine. Amino acids released were determined by reverse phase chromatography and were used to predict the possible flavour properties of the hydrolysates obtained by comparing the flavour notes of amino acids that had undergone Maillard reaction. Most of the produced hydrolysates contained high amount of cysteine and glutamic acid. Therefore they were evaluated for meaty flavour and umami taste through sensory evaluation. Sensory evaluation studies showed that DF and RF have good potential as flavour ingredients or enhancers.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah.

PENGHASILAN DAN PENCIRIAN TERHADAP HIDROLISAT RENDAH NATRIUM DARIPADA TEPUNG SOYA TANPA LEMAK [GLYCINE MAX (L.) MERR.] DAN TEPUNG BIJI ROSELLE (*HIBISCUS SABDARIFFA* L.)

Oleh

WONG KAM HUEI

Jun 2003

Pengerusi: Suhaila Mohamed, Ph.D.

Fakulti: Sains Makanan dan Bioteknologi

Satu kajian telah dijalankan terhadap penghasilan dan pencirian tentang hidrolisat rendah natrium tepung soya tanpa lemak (DSF) dan tepung biji roselle (RSF). Masalah tentang kandungan natrium yang tinggi ini telah diatasi dengan menggantikan sebahagian daripada natrium tersebut dengan jenis kation yang lain dalam proses peneutralan dengan menggunakan kaedah hidrolisis berenzim. Keputusan menunjukkan bahawa hidrolisat asid yang dineutralkan dengan 75.0% natrium hidroksida, 12.5% kalsium hidroksida dan 12.5% kalium hidroksida adalah diterima.

Kaedah hidrolisis berenzim yang dilakukan terhadap DSF dan RSF dengan menggunakan tiga jenis enzim komersial- Bromelain kasar, Flavourzyme dan Protamex telah dikaji. Eksperimen degradasi enzim menunjukkan bahawa semua enzim dapat dinyahaktif pada 100°C. Eksperimen ini juga menunjukkan kedua-dua aktiviti endopeptidase dan eksopeptidase, dengan Flavourzyme menunjukkan ciri-ciri eksopeptidase yang paling utama. Nilai pK₃ untuk Bromelain dengan DSF (DB) adalah 7.39,

manakala keadaan optimum adalah pada pH 6.5, 55°C, 100 mg/ml enzim dan 3% kepekatan substrat protein. Nilai pK_a untuk Flavourzyme dengan DSF (DF) adalah 6.50, dan keadaan optimum adalah pada pH 6.5, 50°C, 200 mg/ml enzim dan 3% kepekatan substrat protein. Bagi Protamex dengan DSF (DP), nilai pK_a adalah 7.50, dan keadaan optimum adalah pada pH 6.5, 60°C, 150 mg/ml enzim dan 3% kepekatan substrat protein. RSF dengan Bromelain (RB) mempunyai nilai pK_a sebanyak 6.97, dan keadaan optimum pada pH 7.0, 55°C, 100 mg/ml enzim dan 2.5% kepekatan substrat protein. Flavourzyme dengan RSF (RF) mempunyai nilai pK_a sebanyak 6.80 dan aktiviti optimum pada pH 6.5, 50°C, 100 mg/ml enzim dan 3% kepekatan substrat protein. Protamex dengan RSF (RP) menunjukkan bahawa pK_a adalah pada 6.49 dan keadaan optimum pada pH 5.5, 55°C, 100 mg/ml enzim dan 3.5% kepekatan substrat protein.

DB memberikan darjah hidrolisis (DH) yang paling tinggi dan RF mempunyai DH yang paling rendah di antara hidrolisat. Selepas hidrolisis untuk 5 jam, DP dan RF menghasilkan peptida yang halus kira-kira 90 Dalton (Da) dan ia adalah agak serupa dengan saiz alanin. Asid amino yang dibebaskan ditentukan dengan kromatografi fasa terbalik. Asid amino tersebut telah digunakan untuk meramalkan ciri-ciri perisa yang mungkin bagi hidrolisat yand dihasilkan dengan membandingkan perisa asid amino yang telah melalui reaksi 'Maillard'. Kebanyakan daripada hidrolisat yang dihasilkan adalah tinggi kandungan sistein dan asid glutamik. Oleh yang demikian hidrolisat tersebut telah dinilaikan terhadap perisa daging dan rasa

umami melalui penilaian rasa. Kajian penilaian rasa menunjukkan bahawa DF dan RF berpotensi sebagai bahan perisa ataupun penambah perisa.

ACKNOWLEDGEMENTS

Firstly, I would like to express my sincere gratitude and heartfelt appreciation to all my supervisors, Prof. Dr. Suhaila Mohamed, Dr. Suraini Abdul Aziz and Dr. Nazamid Saari for their supervision, guidance, understanding and patience throughout the research. It was their supportive, productive and effective suggestions, which led to the success of this research. Special thanks are due to Prof. Suhaila for always being there in good and bad times, and for continued confidence in me even when I despaired. To her I owe so much for making my dream a reality.

Secondly, I would like to thank my beloved husband, Chee Kiean, my lovely 23-month old son, Eugene and my parents for giving me the strength and unremitting love, encouragement and undivided support throughout my study. I would also like to thank my sisters and brother, as they were always there for me when I needed their support. I am deeply grateful.

Special acknowledgement is extended to Dr. Lee Tak Chen and Puan Sumangala Pillai for their valuable help in editing of the thesis and to all my lab-mates, sensory panels and Lisa Ong for their great assistance towards the completion of this research.

Last but not least, I also would like to express my appreciation to all the staff of the Faculty of Food Science and Biotechnology. To my friends, thanks for everything.

viii

TABLE OF CONTENTS

	Page
DEDICATION	ii
ABSTRACT	iii
ABSTRAK	V
ACKNOWLEDGEMENTS	viii
APPROVAL	ix
DECLARATION	xi
LIST OF TABLES	xvi
LIST OF FIGURE	XX
LIST OF ABBREVIATIONS	xxi
CHAPTER	

1	INTE	RODUCTION	1
2	LITE	RATURE REVIEW	5
	2.1	Protein Substrate	5
		2.1.1 Defatted Soy Flour	6
		2.1.2 Roselle Seed Flour	8
	2.2	Maillard Reaction	12
		2.2.1 Major Reaction Pathways in the Maillard	
		Reactions	14
		2.2.2 Effect of Various Factors on the Maillard	
		Reaction	16
		2.2.3 Product of Maillard Reaction	20
	2.3	Hydrolysed Vegetable Protein	23
		2.3.1 Acid Hydrolysis	25
		2.3.2 Enzymatic Hydrolysis	28
		2.3.3 Degree of Hydrolysis	39
		2.3.4 Protein Hydrolysate and its application	41
		2.3.5 Functional Properties of Protein	
		Hydrolysates	43
		2.3.6 Bitterness of Protein Hydrolysates	46
		2.3.7 Flavour Characteristic of Protein	
		Hydrolysates	49
	2.4	High Performance Liquid Chromatography	57
		2.4.1 Size Exclusion Chromatography	57
		2.4.2 Reverse-phase Chromatography	59
	2.5	Sensory Assessment	62
3	MET	HODOLOGY	70
	3.1	Materials	70
		3.1.1 Protein Substrates	70
		3.1.2 Source of Chemicals and Reagents	70
		3.1.3 Enzymes	71
	3.2	Methods	73
		3.2.1 Maillard Reaction of Amino Acids and	
		D-Glucose	73

	3.2.2	Proximate Analysis of DSF and RSF	
		Contents	76
	3.2.3	Production Method of Acid Hydrolysis	
		of DSF and RSF	77
	3.2.4	Characterisation of the Neutralised DSF	
	005	and RSF Acid Hydrolysates	78
	3.2.5	Production Method of Enzymatic Hydrolysis	00
	326	OF DSF and RSF Determination of the nK of Enzymatic	80
	5.2,0	Hydrolysis of DSE and RSE	85
	3.2.7	Determination of Free Amino Groups of	00
		DSF and RSF Enzymatic Hydrolysates	86
	3.2.8	Enzyme Decay Experiment on the Enzymes	
		Used	87
	3.2.9	Analysis of Exo and Endoproteases	
		Activities of the Enzymes Used	87
	3.2.10	High Performance Liquid Chromatography	04
	3211	Analysis 1 Sensory Evaluation	94 07
	3212	2 Data Analysis	97 107
	0.2.12		107
STUD	Y ON	THE FLAVOUR NOTES OF AMINO ACIDS	
FOR	PROTE	EIN HYDROLYSATE SENSORY	
CHAF	RACTE	RISATION	108
4.1	Introd	uction	108
4.2	Mater	ials	109
4.3		Das Maillard Reaction of Amino Acids and	110
	4.3.1	D-Glucose	110
	432	Sensory Evaluation	110
4.4	Resul	ts and Discussion	111
	4.4.1	Flavour Notes of Individual Amino Acids	111
	4.4.2	Flavour Notes in a Combination of Amino	
		Acids	120
4.5	Concl	usion	121
PROL			404
50DI	UNI AC	ID HYDROLYSATES OF DSF AND RSF	124
5.1 5.2	Mator		124
5.2 5.3	Mothe	als	120
5.5	531	Proximate Analysis of DSF and RSF	120
	0.0.1	Contents	126
	5.3.2	Production Method of Acid Hydrolysis of	
		DSF and RSF	126
	5.3.3	Characterisation of DSF and RSF Acid	
		Hydrolysates	127
- .	5.3.4	Data Analysis	128
5.4	Resul	its and Discussion	129

		5.4.1 5.4.2	Proximate Contents of DSF and RSF Production of Acid Hydrolysates of DSF	129
		543	and RSF Characteristics of DSF and RSF Acid	130
		0.4.0	Hydrolysates	132
	5.5	Concl	usion	148
6	OPTI	MISATI	ON OF THE PARAMETERS OF ENZYMATIC	
	HYDR	OLYS	IS OF DSF AND RSF	151
	6.1	Introd	uction	151
	6.2	Mater	ials	152
	6.3	Metho	ods	153
		6.3.1 6.3.2	Preparation of RSF as a Protein Substrate Enzyme Decay Experiment on the Enzymes	153
			Used	153
		6.3.3	Exo and Endoproteases Activities Assay	153
		6.3.4	Determination of Optimum Enzymatic	
			Hydrolysis Parameters of DSF and RSF	154
		6.3.5	Determination of the pKa values of DSF	4 5 4
		626	and RSF Enzymatic Hydrolysis	154
		0.3.0	and RSE Hydrolycatos	151
	61	Posul	ts and Discussion	154
	0.4		Enzyme Decay Experiment of the Enzymes	155
		0.4.1	Lizyme Decay Experiment of the Enzymes	155
		642	Exo and Endoproteases Activities Assay	158
		643	nK Values of DSF and RSF Enzymatic	100
		0.1.0	Hydrolysis Processes	159
		6.4.4	Effect of Variable Parameters in DSF	100
		0	and RSF Hydrolysis Processes	160
	6.5	Concl	usion	164
_				
1	CHAR	ACTE	RISATION OF DSF AND RSF ENZYMATIC	407
		ULYS	ATES	167
	7.1	Introd		167
	7.2			169
	1.3		DOS Description of DSE on a Drotain Substrate	169
		7.3.1	Enzymetic Hydrolycic of DSE and DSE	169
		1.3.2	with Optimum Parameters	160
		733	Determination of the Degree of Hydrolysis	109
		7.5.5	of DSE and RSE Hydrolysates	170
		734	Determination of Free Amino Groups of	170
		7.0.4	DSE and RSE Hydrolysates by TNBS	
			Method	170
		7,35	Preparation of DSF and RSF Enzymatic	., 0
			Hydrolysates Samples for HPLC Analysis	170
		7.3.6	Peptide Analysis of DSF and RSF	
			Enzymatic Hydrolysates	171

		7.3.7	Amino Acid Analysis of DSF and RSF Enzymatic Hydrolysates Using Pico-Tag	
			Method	171
		7.3.8	Data Analysis	171
	7.4	Result	ts and Discussion	172
		7.4.1	Production of Enzymatic Hydrolysates of	
			DSF and RSF Under Optimum Conditions	172
		7.4.2	Degree of Hydrolysis of DSF and RSF	
			Hydrolysates	173
		7.4.3	Free Amino Groups of DSF and RSF	
			Hydrolysates	176
		7.4.4	Peptide Profile of DSF and RSF	
			Enzymatic Hydrolysates	180
		7.4.5	Amino Acid Profile of DSF and RSF	
			Hydrolysates	186
	7.5	Concl	usion	198
8	FLA	JOUR A	CCEPTANCE OF THE DSF AND RSF	
	ENZ	YMATIC	HYDROLYSATES	201
	8.1	Introdu	uction	201
	8.2	Materi	als	202
	8.3	Metho	ods	203
		8.3.1	Enzymatic Hydrolysis of DSF and RSF	
			with Optimum Parameters	203
		8.3.2	Preparation of DSF and RSF Hydrolysates	
			Samples for Sensory Evaluation	203
		8.3.3	Sensory Evaluation of DSF and RSF	
			Enzymatic Hydrolysates	203
		8.3.4	Data Analysis	204
	8.4	Result	ts and Discussion	204
		8.4.1	Sensory Evaluation of DSF and RSF	
		• •	Enzymatic Hydrolysates	204
	8.5	Conclu	usion	213
9	CON	CLUSIC	ON AND RECOMMENDATIONS	215
	9.1	Conclu	usion	215
	9.2	Recon	nmendations for Future Studies	221
BIBLIOGRA	PHY			224
APPENDIC	ES			245
VITA				300

LIST OF TABLES

Table)	Page
2.1	Amino acid content of soybean flour (grams per 100 grams) (Orr and Watt, 1966)	7
2.2	Chemical composition of whole roselle seed cultivars (El-Adawy and Khalil, 1994)	10
2.3	Amino acid profile of roselle seed cultivars (grams per 16 grams of N) (El-Adawy and Khalil, 1994)	11
2.4	Fatty acids composition of roselle seed oil (percent of total fatty acids)	12
2.5	Flavour characteristic of amino acids	17
2.6	Some bitter peptides isolated from hydrolysed soy protein	29
2.7	Molecular weight profile of different classes of protein hydrolysates	45
2.8	Key volatiles of some chemical components in HVP	51
2.9	Amino acid in mg/gm of protein and protein in % (w/w) of HVP, blended soy sauce and matured soy sauce (Chia <i>et al</i> ., 1979)	52
2.10	Taste qualities elicited in man by different concentrations of NaCI	64
2.11	Intensity studies on basic tastes (ASTM Committee E-18, 1981)	64
2.12	Intensity scale values (0 to 15) for the four basic tastes (Meilgaard e <i>t al.</i> , 1991)	65
3.1	Specifications of Flavourzyme	72
3.2	Specifications of Protamex	73
3.3	The types and amounts of amino acids involved in the Maillard reaction of the combination of 15 types of amino acids	75
3.4	The types and amounts of amino acids involved in the Maillard reaction of the combination of 17 types of amino acids	76
3.5	The composition of 5 different combinations of alkaline used in the neutralisation of acid hydrolysates	78

3.6	Standards used in peptide analysis	95
3.7	Standards (amino acids) used in amino acid analysis	97
4.1	Colour and odour of mixtures of amino acids and glucose after heating for 14 and 24 hours at original pH	116
4.2	Colour and odour of mixtures of amino acids and glucose after heating for 24 hours at uncontrolled and controlled pH	117
4.3	Colour and odour of mixtures of amino acids and glucose reacted in presence of 6 M HCI	118
4.4	Colour and odour of Maillard products of amino acids and glucose formed under same reaction conditions but served at room temperature and 60°C	119
4.5	Mixture of odours detected from the Maillard reaction of a combination of amino acids with glucose under five different conditions	121
5.1	Proximate contents of DSF and RSF	130
5.2	The composition of alkaline used for neutralising the acid hydrolysates	131
5.3	The pH values of acid hydrolysates and commercial samples	133
5.4	The total soluble solid content (% Brix) of acid hydrolysates and commercial samples	134
5.5	The total soluble protein content of acid hydrolysates and commercial samples	135
5.6a	Amino acids contents of DSF and RSF acid hydrolysates at 24 hours (in mg/g)	137
5.6b	Amino acids contents of DSF acid hydrolysates at 24, 48 and 72 hours (in mg/g)	139
5.6c	Amino acids contents of RSF acid hydrolysates at 24, 48 and 72 hours (in mg/g)	140
5.7a	Types of flavours detected by panels for DSF acid hydrolysate samples	142
5.7b	The intensities of tastes detected by panels for DSF acid hydrolysate samples at different concentrations	142

5.7c	Types of flavours detected by panels for RSF acid hydrolysate samples	142
5.7d	The intensities of tastes detected by panels for RSF acid hydrolysate samples at different concentrations	143
5.8a	The intensities of flavours detected in DSF and RSF acid hydrolysate samples when served with porridge	144
5.8b	The intensities of flavours detected in commercial samples at different concentrations when served with porridge	144
5.9a	Acceptance scores of the sensory attributes for DSF acid hydrolysates	147
5.9b	Acceptance scores of the sensory attributes for RSF acid hydrolysates	147
5.9c	Acceptance scores of the sensory attributes for acid hydrolysates, salt, soy sauce and Ajieki	147
5.9d	Acceptance scores of the sensory attributes for acid hydrolysates, salt and Vegemite	147
6.1	Half-life of the enzymes at different temperatures using casein protease assay as indicator	155
6.2	Protease enzyme activities	158
6.3	pK _a values of enzyme-substrate	160
6.4	Optimum parameters for the six different enzymatic hydrolysis processes	160
7.1	DH values for DSF and RSF hydrolysates at 5-hour hydrolysis time	173
7.2	The approximate values of molecular weights of the DSF and RSF enzymatic hydrolysates	184
7.3a	Amino acids content of DSF enzymatic hydrolysates (in mg/g)	194
7.3b	Amino acids content of DSF enzymatic hydrolysates (in %)	195
7.4a	Amino acids content of RSF enzymatic hydrolysates (in mg/g)	196
7.4b	Amino acids content of RSF enzymatic hydrolysates (in %)	197
8.1	Number of panel members who detected the odour and taste of DSF enzymatic hydrolysate samples	206

8.2	Number of panel members who detected the odour and taste of RSF enzymatic hydrolysate samples	207
8.3	Taste intensity of DSF enzymatic hydrolysate samples	207
8.4	Taste intensity of RSF enzymatic hydrolysate samples	208
8.5a	Acceptance scores of the sensory attributes for DSF enzymatic hydrolysate samples	209
8.5b	Acceptance scores of the sensory attributes for RSF enzymatic hydrolysate samples	209
8.5c	Acceptance scores of the sensory attributes for DSF and RSF enzymatic hydrolysate samples	209
8.5d	Acceptance scores of the sensory attributes for DSF enzymatic hydrolysate samples that served with porridge	209
8.5e	Acceptance scores of the sensory attributes for RSF enzymatic hydrolysate samples that served with porridge	210
8.5f	Acceptance scores of the sensory attributes for DSF and RSF enzymatic hydrolysates samples that served with porridge	210
8.5g	Acceptance scores of the sensory attributes for the most favoured hydrolysates, soy sauce, Ajieki and salt	210

LIST OF FIGURES

Figure		
3.1	Function of the reaction of pH-stat method	81
3.2	Schematic set-up diagram for pH-stat reactor (Ong, 2001)	85
6.1	Heat inactivation of three commercial enzymes using casein protease activity as indicator at (a) 35°C, (b) 50°C, (c) 65°C, (d) 75°C and (e) 100°C	156-57
7.1	The optimum enzymatic hydrolysis curves of DSF hydrolysates (a) DB (DSF & Bromelain), (b) DF (DSF & Flavourzyme) and (c) DP (DSF & Protamex)	s: 174
7.2	The optimum enzymatic hydrolysis curves of RSF hydrolysates (a) RB (RSF & Bromelain), (b) RF (RSF & Flavourzyme) and (c) RP (RSF & Protamex)	s: 175
7.3	pH-stat calibration curve for the relationship between free amino groups and amount of hydrolysis for DSF hydrolysates: (a) DB (DSF & Bromelain), (b) DF (DSF & Flavourzyme) and (c) DP (DSF & Protamex)	177
7.4	pH-stat calibration curve for the relationship between free amino groups and amount of hydrolysis for RSF hydrolysates: (a) RB (RSF & Bromelain), (b) RF (RSF & Flavourzyme) and (c) RP (RSF & Protamex)	178
7.5	Standard calibration curve of peptide analysis using TSK 3000SW column	181
7.6	Chromatograms of peptide analysis of DB hydrolysates sampled at specific intervals for a duration of 5 hours	187
7.7	Chromatograms of peptide analysis of DF hydrolysates sampled at specific intervals for a duration of 5 hours	188
7.8	Chromatograms of peptide analysis of DP hydrolysates sampled at specific intervals for a duration of 5 hours	189
7.9	Chromatograms of peptide analysis of RB hydrolysates sampled at specific intervals for a duration of 5 hours	190
7.10	Chromatograms of peptide analysis of RF hydrolysates sampled at specific intervals for a duration of 5 hours	191
7.11	Chromatograms peptide analysis of RP hydrolysates sampled at specific intervals for a duration of 5 hours	192

LIST OF ABBREVIATIONS

- AH Amount of hydrolysis
- AU Anson Unit, a measure of proteolytic activity on denatures hemoglobin at pH 7.5 and 25°C
- B Volume of base consumed during the hydrolysis (L)
- BCA Bicinchoninic acid
- BSA Bovine serum albumin
- Da Dalton
- DAC1 Acid hydrolysate of DSF that neutralised with alkaline of composition C1 (Table 3.5)
- DAC2 Acid hydrolysate of DSF that neutralised with alkaline of composition C2 (Table 3.5)
- DAC3 Acid hydrolysate of DSF that neutralised with alkaline of composition C3 (Table 3.5)
- DAC4 Acid hydrolysate of DSF that neutralised with alkaline of composition C4 (Table 3.5)
- DAN Acid hydrolysate of DSF that neutralised with alkaline of composition N (Table 3.5)
- DB Enzymatic hydrolysate of DSF that hydrolysed by Bromelain
- DF Enzymatic hydrolysate of DSF that hydrolysed by Flavourzyme
- DH Degree of hydrolysis
- DP Enzymatic hydrolysate of DSF that hydrolysed by Protamex
- DSF Defatted soy flour
- EVP Enzymatically hydrolysed vegetable protein
- *h* Hydrolysis equivalents, defined as equivalents of peptide bonds cleaved per kg protein
- h_{tot} Total number of peptide bonds in a protein, expressed in the same unit as h
- HPA Hide powder azure

HPLC	High performance liquid chromatography
HVP	Hydrolysed vegetable protein
3-MCPD	3-Monochloro-propane-1,2-diol
MP	Mass of protein
MSG	Monosodium glutamate
Nb	Normality of base in protein hydrolysis experiments
RAC1	Acid hydrolysate of RSF that neutralised with alkaline of composition C1 (Table 3.5)
RAC2	Acid hydrolysate of RSF that neutralised with alkaline of composition C2 (Table 3.5)
RAC3	Acid hydrolysate of RSF that neutralised with alkaline of composition C3 (Table 3.5)
RAC4	Acid hydrolysate of RSF that neutralised with alkaline of composition C4 (Table 3.5)
RAN	Acid hydrolysate of RSF that neutralised with alkaline of composition N (Table 3.5)
RB	Enzymatic hydrolysate of RSF that hydrolysed by Bromelain
RF	Enzymatic hydrolysate of RSF that hydrolysed by Flavourzyme
RP	Enzymatic hydrolysate of RSF that hydrolysed by Protamex
RSF	Roselle seed flour
TNBS	Trinitrobenzensulphonic acid
UV	Ultraviolet
V _{max}	Maximum velocity
α	Degree of dissociation of the α -amino group

CHAPTER 1

INTRODUCTION

Chemical and biological methods are widely used for protein hydrolysis. Chemical hydrolysis involving acid or alkali is more common in industrial practices. However, occasionally hydrolysis by chemical reagents is believed to produce potentially hazardous by-products (Kristinsson and Rasco, 2000) such as the recently reported 3-monochloropropane-1,2-diol (3-MCPD) compound (Anon., 2001a; 2001b; Hodgson, 2001). However, the extent of usage of an acid hydrolysate as a flavour enhancer or ingredient in food is limited. According to Nagodawithana (1994), a high level of sodium salt is also a major concern. Against these concerns, the production of low sodium hydrolysates through acid and enzymatic hydrolysis processes was studied in this work.

Enzymatic hydrolysates are relatively new products and differ from acid hydrolysates. For processing, they need a more neutral pH and a lower temperature (Aaslyng *et al.*, 1998). Consequently, they are more promising for the food industry because it results in products of high functionality and nutritive value (Kristinsson and Rasco, 2000). There are indications that enzymatically hydrolysed vegetable proteins (EVPs) are becoming the interest for production of processed meat flavours (Aaslyng *et al.*, 1999). Moreover, EVP can be produced in a few hours, compared with the

traditional method of producing soy sauce which needs a fermentation period of several months (Weir, 1986).

Plant proteins are finding increasing commercial application in a number of formulated foods as an alternative to proteins from animal sources (Clemente *et al.*, 1999). Among plant proteins, soybean and wheat are the high protein sources most widely used for obtaining protein hydrolysates, followed by other sources such as peas (Periago *et al.*, 1998), chickpeas (George *et al.*, 1997) and also by-products of the oil industry, such as sunflower (Villanueva *et al.*, 1999) and rapeseed (Vioque *et al.*, 2000). Roselle seed, a by-product of the food industry, was also found to be a high protein source by Morton (1987). The factors that dictate the selection of raw materials for the production of hydrolysed vegetable proteins (HVPs) are price and the chemical, physical, organoleptic and toxicology properties of the finished product (Olsman, 1979). Thus, low priced plant proteins which are easily obtained from the market were used as the substrates of the hydrolysis processes in the study.

HVPs have long been used as flavouring agents. Generally, the flavour of HVPs is a result of the presence of free amino acids, smaller peptides, salt and various volatile compounds. The free amino acids have distinctive taste profiles, especially glutamic acid which is very important because of its umami taste (Aaslyng *et al.*, 1998). Glutamate, as part of a protein, is not a flavour enhancer, but when it is bound into a peptide structure, it may have the flavour enhancing properties of free form (Hamada

2