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Hydroxyl compounds currently used in the production of polyurethane foam (PUF) 

are petrochemical products. However, they are non-renewable resources and may 

cause environmental pollution, and maybe exhausted in the near future. Thus, the 

availability of methyl oleate (MO) derived from palm oil provides an excellent 

feedstock to produce bio-polyol for polyurethane applications. The main objective is 

to investigate rigid polyurethane foams (RPUFs) prepared from MO are potential for 

thermal insulating material. Firstly, MO underwent epoxidation reaction and produced 

epoxidized methyl oleate (EMO) with the oxirane oxygen content (OOC) of 5.10%. 

Then, EMO was further subjected to two types of epoxide ring-opening reaction, 

namely epoxide ring-opening reaction with glycerol and oligomerization reaction of 

EMO in solvent. For epoxide ring-opening reaction with glycerol, the reaction 

conditions were optimized in order to obtain the maximum hydroxyl value (OHV) of 

bio-polyol, denoted as MOG-polyol, giving the highest OHV of 306 mg KOH/g. For 

the oligomerization reaction of EMO in solvent, the highest OHV obtained was 166 
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mg KOH/g and denoted as OMOP-polyol. These two bio-polyols then undergo 

amidation reaction to increase OHV and produced alkanolamide polyols. The 

optimum reaction conditions for amidation reaction of MOG-polyol were 1:2 mole 

ratio of (MOG-polyol: DEA) with catalyst loading of 0.25% over 3hrs reaction at 120 

°C, giving the highest OHV of alkanoamide polyol, denoted as MOAG-polyol of 313 

mg KOH/g. The similar reaction conditions were used in order to synthesis 

alkanolamide polyol denoted as OMOAP-polyol from OMOP-polyol where the OHV 

obtained was 282 mg KOH/g. Both alkanolamide polyols were used as polyols for the 

production of RPUFs. RPUFs prepared from both of the alkanolamide polyols showed 

higher reactivity compared to the references foam which prepared from 100% of 

petroleum-based polyol due to its higher viscosity. RPUFs containing alkanolamide 

polyol also have higher apparent density (27.20-34.40 kg/m3) and compressive 

strength (141-180 kPa) compared to the reference foams. Reference foam have largest 

cell size compared to the RPUFs that were modified with alkanolamide polyols. 

Thermal conductivity is closely correlated with closed cell content. Higher thermal 

conductivity was found in RPUFs due to lower closed cell content. However, the 

thermal conductivities of RPFUs are still within the range for thermal insulating 

materials (<0.1 W/mK). Thus, the RPUFs made from alkanolamide polyols are 

potential candidate to be used as thermal insulation for refrigerator or freezers.  

Keywords: synthesis, alkanolamide polyol, thermal insulation, rigid polyurethane 

foams 
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Sebatian hidroksil yang kini digunakan dalam penghasilan busa poliuretana (PUF) 

ialah produk petrokimia. Walau bagaimanapun, ia adalah sumber yang tidak boleh 

diperbaharui dan boleh menyebabkan pencemaran alam sekitar, dan mungkin habis 

dalam masa terdekat. Oleh itu, ketersediaan metil oleat (MO) yang diperoleh daripada 

minyak sawit menyediakan bahan suapan yang sangat baik untuk menghasilkan bio-

poliol untuk aplikasi poliuretana. Objektif utama adalah untuk menyiasat busa 

poliuretana tegar (RPUFs) yang disediakan daripada MO berpotensi untuk dijadikan 

bahan penebat haba. Pertama, MO menjalani tindak balas epoksidasi dan 

menghasilkan metil oleat terepoksida (EMO) dengan kandungan oksigen oksirana 

(OOC) sebanyak 5.10%. Kemudian, EMO digunakan untuk dua jenis tindak balas 

pembukaan cincin epoksida, iaitu tindak balas pembukaan cincin epoksida dengan 

gliserol dan tindak balas oligomerisasi EMO dalam pelarut. Untuk tindak balas 

pembukaan cincin epoksida dengan gliserol, keadaan tindak balas telah dioptimumkan 

untuk mendapatkan nilai hidroksil (OHV) maksimum bio-poliol, dilambangkan 

sebagai MOG-poliol, memberikan OHV tertinggi sebanyak 306 mg KOH/g. Untuk 
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tindak balas oligomerisasi EMO dalam pelarut, OHV tertinggi yang diperolehi ialah 

166 mg KOH/g dan dilambangkan sebagai OMOP-poliol. Kedua-dua bio-poliol ini 

kemudiannya menjalani tindak balas amidasi untuk meningkatkan OHV dan 

menghasilkan poliol alkanolamide. Keadaan tindak balas optimum untuk tindak balas 

amidasi MOG-poliol ialah nisbah mol 1:2 (MOG-poliol: DEA) dengan pemuatan 

mangkin sebanyak 0.25% dalam tindak balas 3 jam pada suhu 120 °C, memberikan 

OHV tertinggi, iaitu sebanyak 313 mg KOH/g dan poliol alkanoamide dilambangkan 

sebagai MOAG -poliol. Keadaan tindak balas yang sama digunakan untuk mensintesis 

poliol alkanolamide yang dilambangkan sebagai OMOAP-poliol daripada OMOP-

poliol di mana OHV yang diperolehi ialah 282 mg KOH/g. Kedua-dua poliol 

alkanolamide digunakan sebagai poliol untuk penghasilan RPUF. RPUF yang 

disediakan daripada kedua-dua poliol alkanolamide menunjukkan kereaktifan yang 

lebih tinggi berbanding dengan buih rujukan yang disediakan daripada 100% poliol 

berasaskan petroleum kerana kelikatannya yang lebih tinggi. RPUF yang 

mengandungi poliol alkanolamide juga mempunyai ketumpatan ketara yang lebih 

tinggi (27.20-34.40 kg/m3) dan kekuatan mampatan (141-180 kPa) berbanding 

dengan buih rujukan. Buih rujukan mempunyai saiz sel terbesar berbanding RPUF 

yang diubah suai dengan poliol alkanolamide. Kekonduksian terma berkait rapat 

dengan kandungan sel tertutup. Kekonduksian terma yang lebih tinggi didapati dalam 

RPUF kerana kandungan sel tertutup yang lebih rendah. Walau bagaimanapun, 

kekonduksian terma RPFU masih dalam julat untuk bahan penebat haba (<0.1 W/mK). 

Oleh itu, RPUF yang diperbuat daripada poliol alkanolamide adalah calon yang 

berpotensi untuk digunakan sebagai penebat haba untuk peti sejuk atau penyejuk beku. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 General Background of Study 

Polyurethane (PU) is a versatile polymer which has been employed in a wide range of 

applications such as coatings, adhesives, foams, elastomers, and others. With a proper 

selection of reactant, PU products ranges from high performance of elastomers to 

tough and rigid plastics can be easily fabricated (Lu & Larock, 2008). Polyurethane 

foams (PUFs) are among the most important class of specialty PU. It can be divided 

into two major classes which are flexible and rigid polyurethane foams (Lee et al., 

2007). Foams are also divided into categories depending on their pore morphology 

(open or closed) (Prociak et al., 2019). The rigid polyurethane foams (RPUFs) have 

been attracting more and more interest over the recent years becausee of excellent 

thermal insulating properties, low apparent density, and good resistance to various 

weather (Kurańska & Prociak, 2016; Tan et al., 2011). RPUFs have been primarily 

used as thermal insulation materials due to their beneficial properties in applications 

such as construction industry, domestic appliances and refrigerators, transportation of 

liquified natural gas and insulation of cryogenic space (Dutta, 2018). In principle, the 

required physical properties of appliances RPUFs include low foam density, high 

dimensional stability and low thermal conductivity. The preparation of RPUFs can be 

performed using petroleum-based polyol as well as with the biobased polyol (Ionescu 

et al., 2012). They are usually formed via the reaction of isocyanates and polyols 

having lower molecular weight which are usually smaller than 1000 Da and hydroxyl 

value (OHV) of 250 – 400 mg KOH/g (Gama et al., 2018).  
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Basically, PU backbone structures consists of a soft segment from polyol and hard 

segment from isocyanates. Polyols are compounds containing multiple hydroxyl 

functional groups. As one of the major feedstocks for polyurethane (PU) production, 

most polyols used today in the PU industry are petroleum derived. Concerns about 

depletion and price increases of the world’s petroleum resources, have led to increased 

research and industrial interests in developing bio-polyols from renewable resources 

as alternatives to conventional petroleum-based polyols (Luo et al., 2013). In addition, 

a replacement of petrochemical components by low-cost natural oils allows a 

reduction of the carbon footprint. Thus, for the economic and environmental reasons, 

the use of vegetable oils in polyol synthesis has been investigated by many researchers.  

Bio-polyols can be obtained from different types of vegetable oils. The chemical 

structure of oils allows two types of modification in their molecular structures: 

modifications in ester bonds and/or in alkene groups (Prociak et al., 2018). A well-

known method based on epoxidation of alkene groups can produce polyol with 

different chemical structures through epoxide ring opening with reagent containing 

OH group likes methanol, diethylene glycol and ethanol. This method is very often 

used given its industrial applicability and low cost. Self-oligomerization is one type of 

ring-opening at epoxide group but the different is, it will produce bio-polyol with 

lower hydroxyl value (Soi et al., 2017). Thus, it needs to be functionalized at the ester 

group to increase the OHV. The functionalization at the ester bond known as 

amidation reaction. This reaction produced bio-polyol named as alkanolamide. 

Alkanolamide can be made using a variety of reactants. Alkanolamide is produced 

from the reaction between the reactant is that one reactant is a fatty acid, methyl ester 

or triglyceride and the other is an alkanolamine, most commonly diethanolamine. The 
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commonly used raw material is methyl ester. Methyl ester will become a serious 

consideration if it is used because methyl ester produces abundant foam (Sari et al., 

2017). In addition, alkanolamide is physically and chemically stable nitrogen 

containing compounds. It has a broad spectrum of uses due to their diversity of unique 

properties, economy and ease of preparation. Alkanolamides can be used as anti-slip 

and anti-block additives for polyethlene films, water repellents for textiles, coating for 

paper, mold release agent, lubricant additives, printing ink additives, defoaming 

agents and flow improvers (Salleh et al., 2001). 

Recently, the successful synthesis of RPUFs from vegetable oils-based polyol derived 

from palm oil, rapeseed oil, castor oil and mustard oil has been reported (Arniza et al., 

2015; Borowicz et al., 2020; Lee et al., 2021; Prociak et al., 2018). However, to the 

best of the author’s knowledge, no research has been reported on the production of 

RPUFs from palm oil derivatives namely, methyl oleate (MO). Therefore, in this 

research, functionalization of MO was made and utilized to produce RPUFs and they 

were characterized and evaluated as the potential for thermal insulating materials. 

1.2 Problem Statement 

In the modern chemical society, most of the organic chemicals likes polymers are 

produced using non-renewable resources such as coal and fossil fuels. In order to 

obtain chemicals from these resources, a substantial amount of carbon dioxide is 

released into the open environment during processing, which has contributed to the 

acceleration of global warming. In addition, the refinery and fractionation process of 

petrochemical produced more harmful derivatives such as phenol, toluene, xylene and 

others which is harmful to human health and environment. On the other hand, the 
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limited supply and non-renewable nature of fossil feedstock that resulted in a price 

increase for chemicals derived from petroleum (Singh et al., 2019).  

Polyurethanes (Pus) are one of the most promising polymers in the polymer family, 

with a worldwide production of 18 million tonnes in 2016, and it is anticipated that 

the global polyurethane market would reach a value of $149.91 billion by 2023 

(Leszczynska et al., 2021). As one of the major feedstocks for Pus production, most 

polyols used today in the Pus industry are petroleum derived. Polyols are compounds 

containing multiple hydroxyl functional groups. Owing to the aforementioned factors, 

modern industries have prompted concerned researchers to propose renewable 

biobased polyol as the alternatives. The starting material to produce polyols can be 

derived from renewable vegetable oil. In fact, vegetable oil represents one of the most 

abundant and economically competitive biological feedstocks available today. Its use 

as the starting material for the production of polyols has attracted interest because of 

its positive attributes, including the inherent biodegradability and the low toxicity 

(Abril-Milan et al., 2018).  

Various types of vegetable oil, such as palm oil, soybean oil, and sunflower oil, have 

been studied.  However, the majority of polyol obtained through chemical 

modification of vegetable oil almost solid or semi-solid at room temperature which is 

a major drawback for the production rigid polyurethane foams (Polaczek et al., 2021). 

The manufactures of RPUFs requires polyol need to be in liquid form because it can 

be easily blended with isocyanates. Additionally, most of the bio-polyols prepared 

from vegetable oils have hydroxyl values lower than 250 mg KOH/g and molecular 

weight higher than 1000 Da (Arniza et al., 2015; Kuranska et al., 2020; Tan et al., 
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2011). These bio-based polyols were found not suitable for making RPFU but rather 

more suitable for making semi-rigid PU and flexible PU foams. Generally, polyols for 

making RPUFs should have molecular weight between 500 – 1000 Da and hydroxyl 

value in the range of 250 – 400 mg KOH/g. Polyols with these properties are desirable 

for making RPUFs with optimal strength, rigidity and stability and suitable for thermal 

insulation material.  

Conventional thermal insulation materials have a lot of limitation as compared to 

RPUFs insulation. RPUFs insulation eliminates thermal bridging, provides air sealing, 

and minimizes moisture build up, which are encountered in conventional insulation 

materials such as polystyrene, mineral wool, glass wool or hemp. All of these feature’s 

help minimize heating and cooling costs, creating a cozy and cost-effective working 

environment. Insulation requires space and just how much depends on the insulating 

performance of the material used. Conventional insulating materials will consume too 

much spaces. RPUFs insulate better than most other conventional insulating materials. 

That makes thinner solutions possible and creates more living space. RPUFs panels 

can be cut to any size using simple tools. Even more design flexibility can be achieved 

by foaming the insulation material (Petcu et al., 2023).  

On the other hand, most of the vegetable oils are classified as first generation of bio-

based raw materials. This means that the synthesis of polyols based on edible oils is 

competing with the production of food. Therefore, one of the main non-food 

applications of vegetable oils is biodiesel and for this application, vegetable oil is 

converted to fatty acid methyl ester (FAME). Methyl oleate (MO) is one type of fatty 

acid methyl esters (FAME), derived from the transesterification of fats or vegetable 



© C
OPYRIG

HT U
PM

 

6 

oils. Due to the abundant availability of palm oil in Malaysia, this situation drives 

Malaysia towards the development of biodiesel technology and production. The 

biodiesel production capacity in Malaysia is about 10.2 million ton (Tuan Ismail et al., 

2018). However, Malaysia Biodiesel Industry faced some challenges due to the 

insignificant public support and escalating nontariff barrier, which indirectly influence 

the demand on the palm oil biodiesel (Lim & Teong, 2010). Diversification of methyl 

oleate (MO) into other chemical products would assist to decrease the excess supply 

and capacity of the biodiesel industry. Thus, functionalization of methyl oleate (fatty 

acid methyl ester) by introducing hydroxyl functional group may develop new useful 

bio-based products such as bio-polyol, which has been one of the most promising 

developments in the oleochemical industry. It worth to mention that, the lower 

molecular weight of MO which is only 312 Da, is suitable to use as starting material 

and functionalized through series of reaction in order to maximize the hydroxyl value 

without molecular weight exceed than 1000 Da as targeting for making RPUFs for 

insulating material. 

Due to the environmental concern and sustainability, RPUFs based vegetable oil is 

preferred.  Although there are many studies on vegetable oil to produce RPUFs have 

been reported, most of them have a higher molecular weight (>1000) and lower 

hydroxyl value less than 250 mg KOH/g and are not suitable to be used as insulation 

materials. Therefore, current study focuses on using polyol with lower molecular 

weight to obtain better insulation properties. 
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1.3 Objectives of the Study 

The aim objective in this study is to investigate the potential of rigid polyurethane 

foams (RPUFs) derived from palm oil derivatives for thermal insulating materials. To 

achieve this objective, specific objectives have been identified: 

1. To synthesis the alkanolamide polyol from epoxide ring-opening reaction 

with glycerol and followed by amidation reaction. 

2. To synthesis the alkanolamide polyol from self-oligomerization reaction and 

followed by amidation reaction. 

3. To evaluate the physical, mechanical and thermal properties of RPUFs made 

from both alkanolamide polyols as potential for thermal insulating materials. 

 

1.4 General Overview of the Thesis 

The thesis is organized in five chapters and structured as indicated hereafter. The first 

chapter provides the background of the research with a brief introduction to rigid 

polyurethane foams and bio-polyols, followed by problem statements and the 

objectives of the present study.  

The second chapter reviews the literature related to preparation of polyurethane, the 

modification of vegetable oil to polyol as well as a review about rigid polyurethane 

foam from the previous study. The third chapter presents the materials, multistage 

preparation and various characterization process of the synthesized bio-polyol and 

rigid polyurethane foams.  

Chapter four covers the experimental results and discussion of all the experimental 

works. This chapter is divided into four parts; i) production of alkanolamide polyol 
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from epoxide ring opening reaction with glycerol and followed by amidation reaction 

ii) production of alkanolamide polyol from self-oligomerization and followed by 

amidation reaction, and iii) characterization and evaluation of rigid polyurethanes 

foams as potential for rigid polyurethane foams. The conclusion and recommendations 

for future works are summarized in chapter five. 
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