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The growing interest in geopolymer foam, driven by its exceptional properties 

and environmental benefits, presents promising prospects for diverse industrial 

applications. However, its reliance on highly concentrated alkaline solutions 

and fresh water poses significant limitations. Concentrated alkaline solutions 

are expensive, low in supply, and corrosive, while fresh water is becoming 

scarce globally. This study developed geopolymer foams using low molarity 

alkaline solutions and seawater to address these issues. The geopolymer 

consisted of aluminosilicate zeolite, a mixture of Potassium Silicate (KSil), 

below 2M Potassium Hydroxide (KOH), Potassium Chloride (KCl), and 

seawater as the alkaline solution, with Sodium Lauryl Ether Sulphate (SLES) 

and Benzalkonium Chloride (BAC) as surfactants to stabilize the foam 

produced by Hydrogen Peroxide (H2O2). Nanocellulose (NC) was used as 

reinforcement. 
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Geopolymerisation validation revealed successful depolymerization, 

reticulation, networking, and solidification of aluminosilicates, indicating that 

low molarity alkaline solution and seawater can effectively produce 

geopolymers. Response Surface Methodology (RSM) was used to statistically 

analyze the impact of each material on properties such as density, porosity, 

water absorption, and compressive strength. All four models displayed high R² 

values of more than 0.85, indicating that the chosen factors (SW/KSil, 

KOH/KCl, SLES/BAC, and H2O2/NC) effectively explain the variability in the 

tested properties. Optimization yielded a density of 1.691 g/cm³, porosity of 

52.86%, water absorption of 43.106%, and compressive strength of 0.677 

MPa, each with an average error below 15%. This study is the first to report on 

low molarity alkaline solution and seawater-based geopolymer foam, 

highlighting its potential as an eco-friendly alternative for various applications. 

Keywords: Low molarity; Geopolymer Concrete, Nanocellulose, Response 

Surface Methodology, Seawater 

SDG: GOAL 12: Responsible Consumption and Production 
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Minat yang semakin meningkat dalam geopolimer berbusa, didorong oleh sifat 

luar biasa dan faedah alam sekitar, memberikan prospek yang menjanjikan 

untuk pelbagai aplikasi industri. Walau bagaimanapun, kebergantungannya 

pada larutan alkali yang sangat pekat dan air tawar menimbulkan had yang 

ketara. Larutan beralkali pekat adalah mahal, rendah bekalannya, dan 

menghakis, manakala air tawar semakin berkurangan di seluruh dunia. Kajian 

ini menghasilkan geopolimer berbusa berasaskan larutan alkali kemolaran 

rendah dan air laut. Geopolimer terdiri daripada zeolit aluminosilika, campuran 

Kalium Silikat (KSil), Kalium Hidroksida (KOH) di bawah 2M, Kalium Klorida 

(KCl), dan air laut sebagai larutan alkali, dan surfaktan Natrium Lauril Eter 

Sulfat (SLES) and Benzalkonium Klorida (BAC) untuk menstabilkan busa yang 

dihasilkan oleh Hidrogen Peroksida (H2O2). Nanoselulosa (NC) digunakan 

sebagai tetulang.
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Pengesahan geopolimerisasi mendedahkan kejayaan penyahpolimeran, 

retikulasi, rangkaian, dan pemejalan aluminosilikat, menunjukkan bahawa 

larutan alkali kemolaran rendah dan air laut boleh menghasilkan geopolymer 

dengan berkesan. Metodologi Permukaan Tindak Balas (RSM) digunakan 

untuk menganalisis secara statistik kesan setiap bahan terhadap sifat 

geopolimer seperti ketumpatan, keliangan, penyerapan air, dan kekuatan 

mampatan. Keempat-empat model memaparkan nilai R² yang tinggi iaitu lebih 

daripada 0.85, menunjukkan bahawa faktor yang dipilih (SW/KSil, KOH/KCl, 

SLES/BAC, dan H2O2/NC) menerangkan dengan berkesan kebolehubahan 

dalam sifat yang diuji. Pengoptimuman menghasilkan ketumpatan 1.691 g/cm³, 

keliangan 52.86%, penyerapan air 43.106%, dan kekuatan mampatan 0.677 

MPa, setiap satu dengan ralat purata di bawah 15%. Kajian ini adalah yang 

pertama melaporkan tentang geopolymer berbusar berasaskan larutan alkali 

kemolaran rendah dan air laut, menonjolkan potensinya sebagai alternatif 

mesra alam untuk pelbagai aplikasi. 

 

Kata Kunci: Kemolaran rendah, Konkrit geopolimer, nanoselulosa, Metodologi 

permukaan tindak balas, air laut 

SDG: MATLAMAT 12: Tanggungjawab terhadap pengunaan dan pengeluaran lestari 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Research Background 

 

Geopolymers are networks of mineral molecules linked by covalent bonds 

(Davidovits, 2017; Davidovits, 2018). This inorganic polymer is produced 

mainly by mixing aluminosilicates with alkaline solution, forming a ceramic-like 

structure (Davidovits, 2017). By varying its main composition of 

aluminosilicates (Esparham et al., 2020) and alkaline solutions (Sore et al., 

2020), and additional components such as water content (Vu et al., 2020) and 

reinforcement (Dheyaaldin et al., 2023), the properties of geopolymer can be 

tailored accordingly.  

 

Initially, geopolymer was invented to develop a nonflammable and 

noncombustible plastic material (Davidovits, 2015a). Over time, geopolymer 

has evolved to exhibit similar or higher compressive strength compared to 

Ordinary Portland Cement (OPC) (Chowdhury et al., 2021), making it a 

greener, potential alternative to OPC, which emits high energy during its 

production (Amran et al., 2020). This is because the preparation of geopolymer 

avoids the “two grinding and one burning” process in the current OPC 

production (which are the raw material grinding, clinker calcination, and 

cement grinding) (Zhao et al., 2021). Governed by its environmentally friendly 

approach of using low embodied energy aluminosilicates, and low processing 
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energy, geopolymer has been developed as other materials such as ceramics 

(Mohd Mortar et al., 2022), coatings (Jiang et al., 2020), adhesives (He et al., 

2011), and resin for composites (Ranjbar and Zhang, 2020), for potential 

applications in construction, manufacturing, and environmental engineering.  

 

Geopolymer foam is an emerging material for similar applications mentioned 

beforehand but with higher porosity and therefore lower compressive strength. 

This is conducted by introducing porosity in the material through methods such 

as the addition of foaming agent (Hajimohammadi et al., 2018). Thus, 

geopolymer foam exhibits additional properties such as low density (Shakouri 

et al., 2020) and high-water absorption (Alnahhal et al., 2022) which expands 

its potential applications to lightweight concrete (Dhasindrakrishna et al., 2021) 

and evaporative cooling construction material (Emdadi et al., 2017).  As such, 

this drives the escalating studies on the effect of variation in composition of 

geopolymer foam and its relation to the material’s properties, such as density 

(Dhasindrakrishna et al., 2021), porosity (Gu et al., 2020), water absorption 

(Wang et al., 2020; Alnahhal et al., 2022) and compressive strength (Jaya et 

al., 2020; Polat and Güden, 2021). This reinforces geopolymer and its 

derivative, geopolymer foam, as a green and versatile material that deserves 

intensive research. 

 

1.2 Problem Statement 

 

Despite the mentioned environmentally friendly traits of geopolymer and 

significant research performed on the material, the commercialisation of the 
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technology is still in infancy (Shamsaei et al., 2021). This is due to the 

utilization of concentrated alkaline solution in geopolymer preparation 

(Abdollahnejad et al., 2015; Assi et al., 2018). Review papers have reported 

on high concentration of alkaline solution in conventional geopolymers ranging 

between 8M to 16M (Nakum and Arora, 2022) and 8M to 14M (Ng et al., 

2018a). These alkaline solutions are selected for its ability to dissolve more 

aluminosilicate, leading to higher geopolymerisation and subsequently higher 

strength (Shilar et al., 2022; Farhan et al., 2020; John et al., 2021). This raises 

several issues: the deficit in current alkaline solution supply, the high cost in 

geopolymer preparation and the adverse effects on both human health and the 

environment due to their corrosive nature. 

 

Currently, there is a deficit supply of alkaline solution worldwide. If the common 

geopolymer prepared in concentrated alkaline solution were to replace OPC 

globally, only 7.3% could be replaced due to the deficit in current Sodium 

Hydroxide (NaOH) supply (Assi et al., 2020). Additionally, the utilisation of 

current concentrated alkaline solution incurs high cost in geopolymer 

preparation, up to 139% of OPC (McLellan et al., 2011). According to 

Abdollahnejad, 80% of this cost is caused by the alkaline solution 

(Abdollahnejad, 2015). Moreover, the utilisation of such high concentration 

alkaline solutions posed risk both to humans and the environment. Potassium 

Hydroxide (KOH) solution with concentration exceeding 1.78M already 

qualifies as corrosive to humans (Statlab, 2024). This indicates that the 

preparation of conventional geopolymers presents a potential hazard to 

workers. In the environmental aspect, while the Carbon Dioxide (CO2) 
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emission of geopolymer concrete is lower than OPC, its impact in categories 

such as ozone layer depletion, fresh water ecotoxicity, and photochemical 

oxidation surpasses OPC. These issues are caused by the production process 

of alkaline solution. This summation was made by comparing the 16M based 

geopolymer concrete to OPC (Habert et al., 2011). 

 

Fresh water is a component of the geopolymer mixture, serving as the medium 

in which the alkaline solution is mixed and produced. However, according to 

the United Nations, the world is facing an imminent water crisis, with demand 

expected to outstrip the fresh water supply by 40% by the end of 2030 (United 

Nations, 2024). The building sector solely consumes up to 20% of the annual 

global water usage. This issue forces the United Nation Environment 

Programme (UNEP) to seek and identify opportunities and best practices for 

achieving greater water resource efficiency in the construction supply chain 

(UNEP, 2024). Additionally, the cost of construction in sea islands and remote 

coastal areas increases significantly due to the transportation expense for the 

major constituents such as fresh water, which are only available at a distance 

from the construction site (Thanh et al., 2022). Together, this highlights the 

issue of fresh water scarcity, exacerbating the challenges faced by the 

construction industry, particularly in regions where fresh water is limited. The 

combination of these two issues, the utilisation of concentrated alkaline 

solutions and the scarcity of fresh water pushes the need to innovate the 

current geopolymer material prepared in concentrated alkaline solution and 

fresh water.  
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To tackle the issue of concentrated alkaline solution, geopolymer foam may be 

prepared in low molarity alkaline solution, preferably KOH below 1.78M to 

eliminate the issue of corrosiveness on humans. However, there is limited 

research on the use of low molarity alkaline solution (Qin et al., 2022). In 

relation to the scarcity of fresh water, geopolymer foam may be prepared using 

seawater instead. Approximately 97% of the Earth’s water is seawater. This 

suggests that the vast supply of seawater could serve as a substitute for fresh 

water, potentially reducing the dependency on the fresh water. While there is 

reported work on seawater based geopolymer (Sun et al., 2023), to the best of 

author’s knowledge, there is no work reported on the combination of seawater 

based geopolymer foam prepared in low molarity alkaline solution. As a result, 

there is insufficient data on the properties of such geopolymers, which include 

density, porosity, water absorption, and compressive strength. Additionally, this 

leads to lack of studies on its microstructural and elemental analysis as well. 

Therefore, the use of statistical methods such as Response Surface 

Methodology (RSM) which facilitates statistical analysis, modelling of large 

data, optimization of responses and reduction of experimental run, would be 

great to contribute to a large dataset in the material domain at a lower material 

cost. 

 

1.3 Research Objectives 

 

The main objective is to develop a low molarity alkaline solution and seawater 

based geopolymer foam. In this study, the concentration of alkaline solution 
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used is below 1.62M, defining the term low molarity from hereon. Along with 

the main objective, the supporting objectives include: 

 
1. To design experimental works for low molarity alkaline solution and 

seawater based geopolymer foam using RSM and statistically analyse 

the experimental data.  

2. To conduct experiments on the density, porosity, water absorption and 

compressive strength of low molarity alkaline solution and seawater 

based geopolymer foam. 

3. To analyse the physical, morphology, and chemical characteristics of 

low molarity alkaline solution and seawater based geopolymer foam.  

4. To investigate the optimum range of composition for low molarity 

alkaline solution and seawater based geopolymer foam that produces 

the lowest density, highest porosity, highest water absorption and 

highest compressive strength. 

 

1.4 Research Scope and Limitation 

 

There are several scopes in this study. Firstly, the seawater used is collected 

in the foreshore area of Dataran 1 Malaysia, Melaka, Malaysia. Since the 

nominal composition of seawater varies globally (Ali et al., 2016), the 

discussion on the effect of seawater on the properties of low molarity alkaline 

solution and seawater based geopolymer foam is limited to only the seawater 

collected from this specific location. 
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Secondly, the design of the experiment is based on four factors, involving eight 

materials which are seawater/Potassium Silicate (SW/KSil), Potassium 

Hydroxide/Potassium Chloride (KOH/KCl), Sodium Lauryl Ether 

Sulphate/Benzalkonium Chloride (SLES/BAC) and Hydrogen 

Peroxide/Nanocellulose (H2O2/NC). Each of the factors are designed with their 

respective low and high levels, which scopes their range of loading. The ratio 

of SW/KSil is designed at 1 to 1.2, KOH/KCl is designed at 20%/80% to 100/0% 

of 10 wt% of KSil, SLES/BAC is designed at 0%/100% to100%/0% of 0.05 wt% 

Basic Geopolymer Slurry (BGS) and H2O2/NC is designed at 0.4 wt% of BSG. 

As a result, the concentration of KOH solution studied is between 0.32M and 

1.62M. 

 

Thirdly, the mechanical characterization of samples is focused on only the 

compressive test. Given the anticipated low strength of the material, the 

characterization is focused on physical properties such as density, porosity, 

and water absorption, which are significant for application of low strength 

geopolymer foam. 

 

In this study, there is a limitation in the porosity analysis conducted using water 

immersion method. Since there is a minimum pore size of which water can 

pass through, there may be tiny pores that are not measurable through this 

method, thereby limiting this analysis to only pores that are accessible to water. 

Assumption also has to be made, such that there are no pores that are 

inaccessible to water. 

 



© C
OPYRIG

HT U
PM

8 
 

1.5 Thesis Organization 

 

This thesis consists of five chapters. Chapter One underlines the research 

background, problem statement, research objectives, research scope and 

limitation, and thesis organisation. 

 

Chapter Two presents the literature review on the fundamentals of geopolymer 

material, encompassing the main materials used for the preparation, as well 

as the processes involved in the preparation. Additionally, the issue with using 

concentrated alkaline solution and fresh water in the preparation of 

geopolymer is highlighted here, followed by the research gap in the current 

research area, thereby paving way for this study.   

 

Chapter Three presents the properties of all the raw materials used in the 

geopolymer foam fabrication, describes the experimental design under RSM, 

explains the sample preparation set-up, and presents the methods in material 

characterization. 

 

Chapter Four presents the results and discussion of the study. It begins with a 

scoping analysis for RSM to identify suitable factors and parameters. 

Subsequently, a geopolymerization validation analysis was conducted on all 

RSM samples. This was followed by a statistical analysis of each response: 

density, porosity, water absorption, and compressive strength, supplemented 

by microscopic images. Optimization was then performed to find the 

composition that resulted in the lowest density, highest porosity, highest water 
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absorption, and highest compressive strength. Finally, superimposition was 

carried out to determine the composition that achieved the desired combination 

of responses. 

 

Chapter Five concludes the whole study and suggests recommendations for 

future research. 
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