

UNIVERSITI PUTRA MALAYSIA

ENZYMATIC TRANSESTERIFICATION OF PALM OLEIN AND COD LIVER OIL BY IMMOBILIZED RHIZOMUCOR MIEHEI AND PSEUDOMONAS CEPACIA LIPASES

CHEW XUI SIM PAULINE

FSMB 2001 38

ENZYMATIC TRANSESTERIFICATION OF PALM OLEIN AND COD LIVER OIL BY IMMOBILIZED RHIZOMUCOR MIEHEI AND PSEUDOMONAS CEPACIA LIPASES

By

CHEW XUI SIM PAULINE

Thesis Submitted in Fulfilment of the Requirement for the Degree of Master of Science in the Faculty Science and Biotechnology Universiti Putra Malaysia

July 2001

Specially Dedicated

То.....

Dad (Chew Boon Tai)

Mom (Wong Ah Sep)

Younger Sister (Chew Hui Yee)

Youngest Sister (Chew Lip Yin)

And All My Dear Friends in Christ

For their love and support.....

Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

ENZYMATIC TRANSESTERIFICATION OF PALM OLEIN AND COD LIVER OIL BY IMMOBILIZED RHIZOMUCOR MIEHEI AND PSEUDOMONAS CEPACIA LIPASES

By

CHEW XUI SIM PAULINE

July 2001

Chairman: Professor Hasanah Mohd. Ghazali Ph.D.

Faculty: Food Science and Biotechnology

Enzymatic transesterification of palm olein (POo) and cod liver oil (CLO) in a solvent free system was studied using immobilized enzymes, with the aim of enriching POo with essential fatty acids/polyunsaturated fatty acids (PUFA) from CLO. The effects of enzyme loading, different ratio of POo and CLO blends, and the enzyme's regiospecificity on the triglyceride (TG) profile and fatty acid composition were evaluated. Reverse-phase high performance liquid chromatography (HPLC) and alkaline titration evaluated the catalytic performance of the lipase in terms of degree of transesterification and hydrolysis, respectively. The fatty acid (FA) composition of glycerides was studied using gas chromatography (GC). The 1,3-specific and non-specific lipases used were *Rhizomucor miehei* lipase (Lipozyme IM60) and *Pseudomonas cepacia* lipase, respectively. Results obtained show that the degree of transesterification and hydrolysis increased with an increase of *R. miehei* lipase concentration. The fatty

acid composition based on relative concentrations of the mixtures before and after reaction showed no significant changes. The substrates were then fractionated into 6 fractions from HPLC runs based on retention time. Analysis of FA composition of these fractions show that PUFA of CLO were found mainly in Fractions 2, 5 and 6. Various possible TG structures found in Fraction 2 onwards were predicted based on the FA types detected by GC and equivalent carbon number (ECN). Different ratio of POo:CLO blends did not significantly change the degree of transesterification, hydrolysis and %TG remaining as well as FA composition of the blends. Incorporation of eicosanoic acid (Ei) in Fraction 5 to form Ei-containing TG was almost double its concentration in the P. cepacia lipase-reacted mixture. It was also found that both lipases are able to incorporate docosaenoic acid (Do) to form Do-containing TG in F6. In both cases, the palmitic acid was incorporated into TG that possesses higher ECN. Thermal studies using differential scanning calorimetry (DSC) showed that the increase of OOL, OOO and PPP were found to be correlated with the melting temperature of a newly formed exotherm C in cooling thermogram when the enzyme concentration increased. It was found that P. cepacia produced mixtures with higher degree of saturation.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

TRANSESTERIFIKASI CAMPURAN MINYAK OLEIN KELAPA SAWIT DAN MINYAK IKAN KOD DENGAN LIPASE TERSEKAT-GERAK DARIPADA RHIZOMUCOR MIEHEI DAN PSEUDOMONAS CEPACIA

Oleh

CHEW XUI SIM PAULINE

Julai 2001

Pengerusi : Profesor Hasanah Mohd. Ghazali, Ph.D.

Fakulti : Sains Makanan dan Bioteknologi

Transesterifikasi secara enzimatik ke atas campuran minyak olein kelapa sawit (POo) dan minyak ikan kod (CLO) di dalam sistem tanpa pelarut organik telah dijalankan dengan menggunakan lipase tersekat-gerak supaya POo dapat diperkayakan dengan asid lemak perlu (PUFA). Kesan-kesan kepekatan enzim, pecahan antara POo dan CLO, dan regiospesifisiti lipase terhadap profil trigliserida dan komposisi asid lemak (FA) telah dikaji. Keupayaan pemangkinan enzim ditentukan dengan melihat perubahan kepekatan dan komposisi trigliserida (TG) (tindakbalas transesterifikasi) dengan fasa berbalik kromatografi cecair berprestasi tinggi (HPLC) dan tindakbalas hidrolisis oleh kaedah titratan alkali. Komposisi asid lemak gliserida ditentukan dengan kromatografi gas (GC). Enzim 1,3-spesifik and bukan spesifik yang digunakan adalah lipase daripada *Rhizomucor miehei* and *Pseudomanas cepacia* masing-masing. Tindakbalas transesterifikasi and hidrolisis bertambah apabila kepekatan lipase *R. miehei*

Komposisi FA berdasarkan kepekatan relatif dalam campuran bertambah. sebelum dan selepas tindakbalas menunjukkan tiada perubahan yang signifikan. Substrak-substrak kemudiannya dibahagikan kepada 6 fraksi melalui HPLC berdasarkan masa retensi masing-masing. Analisis daripada komposisi FA menunjukkan bahawa PUFA daripada CLO terdapat di fraksi-fraksi ke-2, 5 dan 6. Pelbagai jenis TG yang mungkin dijumpai daripada fraksi ke-2 dan fraksi seterusnya telah dijangka berdasarkan jenis-jenis FA terjumpa daripada GC and nombor karbon yang bersamaan (ECN). Pecahan antara POo:CLO yang berbeza tidak menunjukkan perubahan signifikan dari segi aktiviti-aktiviti transesterifikasi dan hidrolisis, %TG tertinggal serta komposisi FA. Kepekatan asid eikosanoid dalam bahagian ke-5 hampir berganda dua kali dalam tindakbalas yang dilakukan dengan lipase P. cepacia. Adalah didapati bahawa kedua-dua lipase berupaya menambahkan kepekatan asid dokosaenoid (Do) untuk membentuk TG yang mengandungi Do dalam fraksi ke-6. Dalam kedua-dua kes ini, asid palmitik (P) juga dipindahkan kepada TG yang mengandungi ECN yang lebih tinggi. Kajian terma dengan menggunakan 'differential scanning calorimetry' menunjukkan bahawa peningkatan kepekatan OOL, OOO dan PPP mempunyai hubungan dengan suhu peleburan satu eksoterma C yang baru terbentuk dalam profil penyejukan apabila kepekatan enzim bertambah. Adalah didapati P. cepacia berupaya menghasilkan produk yang mempunyai darjah ketepuan yang lebih tinggi.

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude and thanks to my supervisor, Professor Dr. Hasanah Mohd. Ghazali for her guidance, suggestions and encouragement to make this project a success.

I also would like to express my heartfelt appreciation and thanks to Dr. Lai Oi Ming, one of my committee members who has encouraged me in many ways with endless patience and advice. My gratitude also go to Prof. Dr. Yaakob B. Che Man and Dr. Kamariah Long. Their support, comments and encouragement have helped me to persevere on this project.

Special thanks and appreciation to all the laboratory staffs and technicians, especially Mr. Tan and Mr. Chan who have been helping me on HPLC and GC. Also, to all my fellow graduates and undergraduates, I thank them for their concern and moral support. Great appreciation to my housemates and church members too who have been praying for me and support me in many ways, especially Ms. Fong, Ms. Phang and Ms. Lee. Deepest appreciation and gratitude are also expressed to my family for their endless understanding, care, support and love throughout my studies in UPM.

Last but not least, I thank God for his mercy and grace to guide me through this master project with many lessons learned.

TABLE OF CONTENTS

		Page
DE	EDICATION	
AE	BSTRACT	2 3 5
AE	BSTRAK	5
AC	CKNOWLEDGEMENTS	7
AF	PROVAL SHEETS	8
DE	ECLARATION FORM	10
LI	ST OF TABLES	13
LI	ST OF FIGURES	15
LI	ST OF ABBREVIATIONS/NOTATIONS/GLOSSARY OF TERMS	21
CI	IAPTER	
Ι	INTRODUCTION	24
П	LITERATURE REVIEW	29
	Palm Oil	29
	Palm Oil and Its Olein Fraction	29
	Food Application of Palm Oil	33
	Fish Oil	34
_	Nature and Chemical Distribution of Fatty Acids of fish oil	35
	Fish Oil As A Source of EFA	38
	Applications of Fish Oil	39
	Essential Fatty Acids and Human Health	41
	Nutritional Benefits and Physiological Effects of EFA	43
	EFA Requirement in Human	45
	Factors that Affect Stability and Deterioration of Fats and Oils	47
	Lipases	51
	Classification of Lipases	.52
	Immobilization of Lipases	56
	Interesterification	58
	Advantages of Enzymatic Interesterification	59
	Fat Modifications Through Enzymatic Interesterification	59
	Polyunsaturated Fatty Acid-Related Enzymatic	
	Interesterification	61
Ш	MATERIALS AND METHODS	69
	Materials	69
	Methods	70
	Lipase Immobilization	70
	Determination of Hydrolytic Activity	70
	Transesterification Reaction	71
	Effect of Enzyme Loading	72
	Effect of Different POo:CLO Ratios	72
	Effect of Different Lipases	72

	Removal of FFA	73
	Analysis and Fractionation of Reaction Mixture	74
	Separation of Reaction Mixture by Thin Layer Chromatography	76
	Determination of Fatty Acid Composition	77
	Thermal Properties by Differential Scanning Calorimetry	
	Analysis	78
IV	RESULTS AND DISCUSSION	79
	Triglyceride Profiles of Reaction Substrates	79
	Effect of Enzyme Loading on Transesterification Activity	82
	Effect of Enzyme Loading on Fatty Acid Composition	89
	Effect of Different Substrate (POo:CLO) Ratio on	
	Transesterification Activity	92
	Effect of Different Substrate (POo:CLO) Ratio on Fatty Acid	
	Composition	92
	Fatty Acid Composition Fractionated Mixtures	95
	Predicted Triglyceride Structure in Fractionated Mixtures	114
	Effect of Lipases' Regiospecificity on Transesterification activity	117
	Effect of Lipases' Regiospecificity on Fatty Acid Composition	120
	Effect of Lipases' Regiospecificity on Fatty Acid Composition of	
	MG, DG and TG	121
	Effect of Lipases' Regiospecificity on Fatty Acid Composition of	
	HPLC-Fractionated POo:CLO Mixture	124
	Thermal Analysis by Differential Scanning Calorimetry	136
v	SUMMARY, CONCLUSIONS AND RECOMMENDATIONS	146
	Summary and Conclusions	146
	Recommendations	150
RE	FERENCES	152
APPENDICES		166
BIODATA OF THE AUTHOR		175

LIST OF TABLES

Table		Page
1.	Fatty acid composition of some common edible oils and fats (in term of degree of unsaturation).	30
2.	Characteristics and composition of Malaysian RBD palm oil, normal RBD PO and superolein.	32
3.	Fatty acid composition (%) of olein (Tan and Oh, 1981b)	33
4.	Some major marine oils of commerce, with approximate iodine values, weight percentages of saturated acids, of $20:1 + 22:1$, and of EPA + DHA.	36
5.	Distribution of DHA in TG of FO and marine invertebrate and in marine mammals' fats.	38
6.	Fatty acid composition (%) of Atlantic Cod Liver Oil (CLO) (Patterson, 1989) and CLO obtained from Peter Moller A.S. (Oslo, Norway) (Yamane et al., 1993)	39
7.	Optimum levels of omega fatty acids for structured lipids.	46
8.	FA composition of palm olein and cod liver oil determined based on peak area (%).	90
9.	Relative FA concentration based on area with various enzyme load on POo:CLO (8:2) mixtures at 40°C at 200 rpm after 6 hours reaction.	91
10.	Relative FA concentration based on area (%) of POo:CLO mixtures at 9:1, 8:2 and 7:3 (w/w) ratios using 10% (w/w) R . <i>miehei</i> lipase at 40°C and 200 rpm after 6 hours of reaction.	94
11.	The presence of FFA, MG, DG and TG component in each fraction after transesterification.	103
12.	Changes in O:P ratio in F3 when the R. miehei lipase was increased.	107
13.	Possible TG structure in POo and CLO in F2 to F6 based on ECN.	115

14. Comparison on degree of transesterification, degree of hydrolysis and % TG remaining in POo:CLO (8:2) mixtures reacted with 2% *R. miehei* and *P. cepacia* lipase for 6 hours reaction at 40°C and 200 rpm.
15. Comparison of the relative major TG concentration in POo:CLO (8:2) mixtures when reacted with 2% (w/w) *R. miehei* and *P. cepacia* lipases.
120
16. Comparison in relative concentration of FA based on peak area in POo:CLO (8:2) mixtures after 6 hours transesterification

using 2%(w/w) R. miehei and P. cepacia lipases.

LIST OF FIGURES

Figure		Page
1.	Elongation and desaturation of essential fatty acids (EFA): (a) linoleic and (b) linolenic. PGE_1 , PGE_2 and PGE_3 represent prostanglandins E_1 , E_2 and E_3 , respectively.	42
2.	Potential health benefits of EFA by fish oil consumption. Omega-6 fatty acids serve as the precursors to a family of metabolic regulations known as eicosanoids. The production of eicosanoids, in turn, appear to be regulated by omega-3 and omega-6 fatty acids that appear to affect physiological processes in ways.	44
3.	TG profiles of (i) cod liver oil and (ii) palm olein	80
4.	TG profile of POo:CLO (8:2) mixtures after reacting with (i) 0%, (ii) 2% and (iii) 4% (w/w)of <i>R. miehei</i> lipase for 6 hours reaction at 40°C and 200 rpm. (\uparrow) indicates the increase in TG concentration.	83
5.	TG profile of POo:CLO (8:2) mixtures after reacting with (i) 6%, (ii) 8% and (iii) 10% of <i>R. miehei</i> lipase for 6 hours reaction at 40°C and 200 rpm. (\uparrow) indicates the increase in TG concentration.	84
6.	Degree of transesterification (•), degree of hydrolysis (%FFA) (□) and %TG remaining (Δ) of 8:2 (w/w) PO:CLO mixtures at various enzyme load. The reaction has been carried out at 40°C at 200 rpm for 6 hours.	88
7.	Degree of transesterification, degree of hydrolysis and % TG remaining (%) of 9:1, 8:2 and 7:3 (w/w) POO:CLO mixtures. The reactions were carried out at 40°C and 200 rpm for 6 hours.	93
8.	TG profile of <i>R. miehei</i> lipase-catalyzed of POo:CLO (8:2) mixtures (i) before and after transesterification with (ii) 2% (w/w) lipase. The reaction was done at 40°C after 6 hours reaction, which were then fractionated as shown above. F1 to F6 represent Fractions 1 to 6, respectively. Lipase-reacted mixtures with 4, 6, 8 and 10% <i>R. miehei</i> lipase concentration also were fractionated in the same manner.	96

9A.	HPLC analysis of F1 using (i) 0% (control), (ii) 2%, (iii) 4%, (iv) 6%, (v) 8% and (vi) 10% (w/w) <i>R. miehei</i> lipase in POo:CLO (8:2) mixtures after 6 hours transesterification.	97
9B.	HPLC analysis of F2 using (i) 0% (control), (ii) 2%, (iii) 4%, (iv) 6%, (v) 8% and (vi) 10% (w/w) <i>R. miehei</i> lipase in POo:CLO (8:2) mixtures after 6 hours transesterification.	98
9C.	HPLC analysis of F3 using (i) 0% (control), (ii) 2%, (iii) 4%, (iv) 6%, (v) 8% and (vi) 10% (w/w) <i>R. miehei</i> lipase in POo:CLO (8:2) mixtures after 6 hours transesterification.	99
9D.	HPLC analysis of F4 using (i) 0% (control), (ii) 2%, (iii) 4%, (iv) 6%, (v) 8% and (vi) 10% (w/w) <i>R. miehei</i> lipase in POo:CLO (8:2) mixtures after 6 hours transesterification.	100
9E.	HPLC analysis of F5 using (i) 0% (control), (ii) 2%, (iii) 4%, (iv) 6%, (v) 8% and (vi) 10% (w/w) <i>R. miehei</i> lipase in POo:CLO (8:2) mixtures after 6 hours transesterification.	101
9F.	HPLC analysis of F6 using (i) 0% (control), (ii) 2%, (iii) 4%, (iv) 6%, (v) 8% and (vi) 10% (w/w) R . miehei lipase in POo:CLO (8:2) mixtures after 6 hours transesterification.	102
10A.	Fatty Acid composition of F1 using (i) 0% (control), (ii) 2%, (iii) 4%, (iv) 6%, (v) 8% and (vi) 10% (w/w) <i>R. miehei</i> lipase in POo:CLO (8:2) mixtures after 6 hours transesterification.	104
10 B .	Fatty Acid composition of F2 using (i) 0% (control), (ii) 2%, (iii) 4%, (iv) 6%, (v) 8% and (vi) 10% (w/w) <i>R. miehei</i> lipase in POo:CLO (8:2) mixtures after 6 hours transesterification.	106
10 C .	Fatty Acid composition of F3 using (i) 0% (control), (ii) 2%, (iii) 4%, (iv) 6%, (v) 8% and (vi) 10% (w/w) <i>R. miehei</i> lipase in POo:CLO (8:2) mixtures after 6 hours transesterification.	108
10D.	Fatty Acid composition of F4 using (i) 0% (control), (ii) 2%, (iii) 4%, (iv) 6%, (v) 8% and (vi) 10% (w/w) <i>R. miehei</i> lipase in POo:CLO (8:2) mixtures after 6 hours transesterification.	110
10E.	Fatty Acid composition of F5 using (i) 0% (control), (ii) 2%, (iii) 4%, (iv) 6%, (v) 8% and (vi) 10% (w/w) <i>R. miehei</i> lipase in POo:CLO (8:2) mixtures after 6 hours transesterification.	111

10F.	Fatty Acid composition of F6 using (i) 0% (control), (ii) 2%, (iii) 4%, (iv) 6%, (v) 8% and (vi) 10% (w/w) <i>R. miehei</i> lipase in POo:CLO (8:2) mixtures after 6 hours transesterification.	112
11.	TG profile of <i>P. cepacia</i> lipase-catalyzed of POo:CLO (8:2) mixtures (i) before and after transesterification with (ii) 2% (w/w) equivalent immobilized lipase. The reaction was done at 40°C after 6 hour reaction, which were then fractionated as shown above. F1 to F6 represent Fractions 1 and 6, respectively.	119
12A.	Fatty acid composition of (i) monoglycerides, (ii) 1,2- diglycerides and (iii) 1,3-diglycerides of POo:CLO (8:2) mixtures obtained from TLC where (a) represents the control and (b) represents transesterification using 2% (w/w) R . <i>miehei</i> lipase for 6 hours reaction at 40°C.	123
12B.	Fatty acid composition of POo:CLO (8:2) mixture (a) unreacted tryglycerides and (b) reacted triglycerides with 2% (w/w) <i>R. miehei</i> lipase. The fraction was obtained from TLC.	125
13A.	Fatty acid composition of (i) monoglycerides, (ii) 1,2- diglycerides and (iii) 1,3-diglycerides of POo:CLO (8:2) mixture where (a) represents the control and (b) represents transesterification using 2% (w/w) equivalent <i>P. cepacia</i> lipase for 6 hours reaction at 40°C.	126
13B.	Fatty acid composition of POo:CLO (8:2) mixture (a) unreacted tryglycerides and (b) reacted triglycerides with 2% (w/w) equivalent <i>P. cepacia</i> lipase. The fraction was obtained from TLC.	127
14A.	HPLC analysis of (i) F1, (ii) F2 and (iii) F3 using (a) represents control and (b) 2% (w/w) equivalent immobilized <i>Pseudomonas cepacia</i> lipase in POo:CLO (8:2) mixtures after 6 hours transesterification at 40°C.	128
14B.	HPLC analysis of (i) F4, (ii) F5 and (iii) F6 using (a) represents control and (b) 2% (w/w) equivalent immobilized <i>P. cepacia</i> lipase in POo:CLO (8:2) mixtures after 6 hours transesterification at 40°C.	129
15A.	Fatty acid composition of (i) F1, (ii) F2 and (iii) F3 of POo:CLO (8:2) mixtures where (a) represents control and (b) represents transesterification using 2% (w/w) equivalent immobilized <i>P. cepacia</i> lipase for 6 hours reaction at 40°C.	130

15B.	Fatty acid composition of (i) F4, (ii) F5 and (iii) F6 of POo:CLO (8:2) mixtures where (a) represents control and (b) represents transesterification using 2% (w/w) equivalent immobilized <i>P. cepacia</i> lipase for 6 hours reaction at 40°C.	131
16.	Melting profiles of POo:CLO (8:2) mixtures after reaction with (i) 0%, (ii) 2%, (iii) 4%, (iv) 6%, (v) 8% and (vi) 10% (w/w) <i>R. miehei</i> lipase for 6 hours at 40°C.	137
17.	Cooling profiles of POo:CLO (8:2) mixtures after reaction with (i) 0%, (ii) 2%, (iii) 4%, (iv) 6%, (v) 8% and (vi) 10% (w/w) <i>R. miehei</i> lipase for 6 hours at 40°C.	139
18.	Concentration of (i) OOL, (ii) OOO and (iii) PPP (%) versus temperature of exotherm C (°C) in POo:CLO (8:2) mixtures when <i>R. miehei</i> lipase concentration increased between 0 and 10% (w/w). Reaction was carried out at 40°C and 200 rpm for 6 hours.	141
19.	Melting profiles of immobilized <i>P. cepacia</i> lipase-catalyzed of POo:CLO (8:2) mixtures (i) before and after transesterification with (ii) 2% (w/w) lipase. Reaction was done for 6 hours at 40° C.	143
20.	Cooling profiles of immobilized <i>P. cepacia</i> lipase-catalyzed of POo:CLO (8:2) mixtures (i) before and after transesterification with (ii) 2% (w/w) lipase. Reaction was done for 6 hours at 40° C.	144
21.	(i) Fatty acid methyl ester standard using GC, (ii) fatty acid composition of palm olein and (iii) fatty acid composition of cod liver oil.	167
22.	Melting profile (top) and cooling profile (bottom) of palm olein after removal of free fatty acids.	168
23.	Melting profile (top) and cooling profile (bottom) of cod liver oil after removal of free fatty acids.	169
24.	Separation of glycerides on TLC plate where sample represents a lipase-reacted sample, FFA represents free fatty acid, MG represents monoglycerides, 1,2-DG and 1,3-DG represent 1,2-diglycerides and 1,3-diglycerides respectively, and TG represents triglycerides.	170

- 25. Separation of glycerides on unreacted POo:CLO (8:2) mixture at where L0 represents the unreacted mixture, and F1 to F6 represent the six fractions which have been separated from the unreacted mixture. (TLC was scanned using 1200 SP scanner).
- 26. Separation of glycerides on unreacted POo:CLO (8:2) mixture at which was reacted using 2% *R. miehei* lipase where L2 represents the lipase-reacted mixture, and F1 to F6 represent the six fractions which have been separated from the lipase-reacted mixture. (TLC was scanned using 1200 SP scanner).
- 27. Separation of glycerides on unreacted POo:CLO (8:2) mixture which was reacted using 4% *R. miehei* lipase where L4 represents the lipase-reacted mixture, and F1 to F6 represent the six fractions which have been separated from the lipase-reacted mixture. (TLC was scanned using 1200 SP scanner).
- 28. Separation of glycerides on unreacted POo:CLO (8:2) mixture which was reacted using 6% *R. miehei* lipase where L6 represents the lipase-reacted mixture, and F1 to F6 represent the six fractions which have been separated from the lipase-reacted mixture. (TLC was scanned using 1200 SP scanner).
- 29. Separation of glycerides on unreacted POo:CLO (8:2) mixture which was reacted using 8% *R. miehei* lipase where L8 represents the lipase-reacted mixture, and F1 to F6 represent the six fractions which have been separated from the lipase-reacted mixture. (TLC was scanned using 1200 SP scanner).
- 30. Separation of glycerides on unreacted POo:CLO (8:2) mixture which was reacted using 10% *R. miehei* lipase where L10 represents the lipase-reacted mixture, and F1 to F6 represent the six fractions which have been separated from the lipase-reacted mixture. (TLC was scanned using 1200 SP scanner).
- 31. Separation of glycerides on unreacted POo:CLO (8:2) mixture where PS0 represents the unreacted mixture, and F1 to F6 represent the six fractions which have been separated from the unreacted mixture. (TLC was scanned using 1200 SP scanner).

172

173

171

171

172

174

173

32. Separation of glycerides on unreacted POo:CLO (8:2) mixture which was reacted using 2% equivalent *P. cepacia* lipase where PS2 represents the lipase-reacted mixture, and F1 to F6 represent the six fractions which have been separated from the lipase-reacted mixture. (TLC was scanned using 1200 SP scanner).

ABBREVIATIONS

Α	C20; Arachidic acid
CLO	Cod liver oil
CN	Carbon number
СРО	Crude palm oil
D or DHA	C22:6; Docosahexaenoic acid
DDD	Tridocosahexaenoylglycerol
DDO	Didocosahexaenoyloleoylglycerol
DG	Diglyceride
Do or U3	C22:1; docosaenoic acid
DOO	Dioleindocosahexaenoylglycerol
DPA	Docosapentaenoic acid
DSC	Differential Scanning Calorimetry
Ei or U1	C20:1; eicosaenoic acid
Ep or EPA	C20:5; Eicosapentaenoic acid
ECN	Equivalent carbon number
EEE	Trieicosapentaenoylglycerol
EEP	Dieicosapentaenoylpalmitoylglycerol
FA	Fatty acid
FAEE	Fatty acid ethyl ether
FAME	Fatty acid methyl ether
FFA	Free fatty acid
FO	Fish oil

GC	Gas chromatography
HOSO	High-oleic sunflower oil
HPLC	High performance liquid chromatography
HUFA	Highly unsaturated fatty acid
IFOMA	International Association of Fish Meal and Fish
	Oil Manufacturers
IV	Iodine value
L	C18:2; Linoleic acid
La	C12; Lauric acid
Μ	C14; Myristic acid
MG	Monoglyceride
MUFA	Monounsaturated fatty acid
0	C18:1; Oleic acid
OLL	Oleoyl-dilinolein
OOL	Linoleoyl-diolein
000	Triolein
Р	C16; Palmitic acid
P1 or U2	C16:1; palmitoleic acid
РО	Palm oil
РОо	Palm olein
PLP	Linoleoyl-dipalmitin
POL	Palmitoyl-oleoyl-linolein
РОО	Palmitoyl-diolein

РОР	Oleoyl-dipalmitin
PORLA	Palm Oil Registration and Licensing Authority
PORIM	Palm Oil Research Institute Malaysia
PPP	Tripalmitin
PUFA	Polyunsaturated fatty acid
RBD	Refined, bleached and deodorized
S	C18; Stearic acid
SAT	Saturated
SFA	Saturated fatty acid
SOO	Stearoyl-diolein
SOS	Oleoyl-distearin
TLC	Thin layer chromatography
TG	Triglyceride
UFA	Unsaturated fatty acid
ω	Omega

CHAPTER I

INTRODUCTION

Refined, bleached and derodorized (RBD) palm olein (POo) is the largest traded oil in the world market (PORLA, 2000a). It possesses high resistance to oxidation (due to low unsaturation and presence of tocopherol, a natural antioxidant) and gumming, has low level of free fatty acid (FFA) and smoking point, low rate of foaming, darkening and melting point, has no *trans* or iso-acid, and no unpleasant room odor due to the absence of linolenic acid (Pantzaris, 1987). In view of its superior physical characteristics and stability, POo is very popular in commercial and industrial establishments where deep-frying is a norm.

POo contains 46% saturated FA (myristic, palmitic and stearic acids), 43% monounsaturated FA (oleic, n-9) and 11% polyunsaturated fatty acid (PUFA) (linoleic, n-6) (Gunstone, 1986; Siew *et al.*, 1992, 1993). Similar to other vegetable oils, POo lacks in n-3 PUFA that is present in marine oils. Marine oils, such as fish oil (FO) and fish liver oil are rich sources of n-3 PUFA (Best, 1987). This makes them unique dietary fats since most common animal and vegetable fats are virtually devoid of n-3 PUFA especially the eicosapentaenoic acid (EPA) and docasahexaenoic acid (DHA). Even though EPA and DHA can be synthesized by elongation and desaturation of linolenic acid, ingestion of the pre-formed molecules usually is more effective, especially

