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 ABSTRACT 

 
Known studies in neurosciences have discovered that locomotion or motor tasks in 
humans involve the central nervous system (CNS) to manage activation signals for 
several groups of muscles. The CNS produces coordinated activation patterns, known 
as muscle synergy, that reduce the number of control signals by combining them into 
sets of activation signals. Muscle synergy is possible to be observed via 
electromyography (EMG) and can be extracted from the EMG data through 
factorization. As several factorization methods can be used to extract muscle synergies, 
non-negative matrix factorization (NMF) was suggested best for active tasks. While the 
concept of muscle synergy has been adapted in various disciplines such as healthcare, 
engineering and computer graphics, this narrative review discusses how muscle 
synergy has benefited them. Application involving muscle synergies is presented that 
focuses on muscular rehabilitation, human-robot control, prostheses assistive devices 
and graphical animation. Finally, future research is conjectured about technical 
challenges and prospects of muscle synergy. 
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1. Introduction 
 

Generating a movement involves a great amount of work for the central nervous system (CNS). 
The CNS must handle thousands of coordinated signals for hundreds of motor units within the 
skeletal muscles. To achieve the intended movement, the CNS has to specify a great number of 
output variables and must also consider various biomechanical constraints during movement 
execution, including muscle strength, muscle stiffness and neuromotor reflex gains [1]. There exist 
works that are replicating the CNS to control the human movements during fatigue [2-4]. Hence, 
muscle signals for movement in a small child can be very different compared to an adult due to the 
difference in the biomechanical design of their limbs. As the body develops and learns new difficult 
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skills with different kinetic, kinematic or energetic requirements, the CNS would need to acquire new 
muscle coordination patterns. 

Many research has suggested that the human locomotion or motor task is the result of synergized 
contraction of several collections of muscles, where the CNS produces persistent, synchronized 
movements in interaction with the rest of the body [5-8]. Since the range of muscles contributing to 
a movement widely varies depending on the task constraints of the movement, neuroscientists 
suggested that the CNS act as the motor control in charge of determining the timing and activation 
levels of the involved set of muscles to work in synergy [9]. The muscle synergy concept was 
acknowledged as the mechanism utilized in the CNS to reduce the number of control signals by 
building and combining sets of activation signals [5]. As the concept of muscle synergy is already well 
known in neurosciences, other disciplines have opened up to adapting the theory such as healthcare, 
engineering and computer graphics. 

To shed more light on the adaptation of muscle synergy theory, this review aims to explore the 
use case of muscle synergy in various fields. In our opinion, it is interesting to explore how muscle 
synergy is being benefited in various fields especially other than neurosciences. In this review, we 
provide a concise discussion of the theoretical model of muscle synergies and summarize the 
computational techniques employed for the estimation and extraction. A comprehensive overview 
of applications utilizing muscle synergies is presented, with particular emphasis on muscular 
rehabilitation, human-robot interaction and computer animation. Finally, we address the technical 
challenges and explore the future research direction in the field of muscle synergies. 

 
2. Muscle Synergies: Theoretical Background 

 
Over the past decades, various modular mechanisms have been theorized as means of controlling 

muscles for movement; e.g. spinal force fields [10], neuromotor synergies [11] and unit burst 
generators [12]. However, muscle synergy theory has become more evident by newer computational 
approaches and experimental evidence. There are strong evidences that shows muscle synergy as a 
physiological model implemented by the CNS to adaptively reduce the signal processing of motor 
output by generating optimized muscle signal patterns [1,13,14]. The low dimensional units of 
synergized muscle can be observed at the spine or muscles using electromyography (EMG) during 
movements [14]. Additionally, the synergy muscle’s low dimensionality allows the CNS to be flexible 
in generating various signal patterns on a huge capacity with some synergy patterns being task-
specific, whilst some patterns are linked with several other motor tasks [14]. Working mutually with 
sensory feedback, the CNS is able to regulate the generation of muscle synergies to adjust motor 
output based on the external environment depicted in Figure 1. 
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Fig. 1. A depiction example of muscle synergy concept in human 
that comprises of number of motor primitives, motor modules 
and sensory feedback to modulate the recruitment of muscle 
synergies [15] 

 
The conventional approach to extracting the muscle activation patterns is by distinguishing 

recurrent EMG patterns from several muscles during movement. In synergy extraction, a large 
number of muscle activities for a motor task are decomposed into a smaller amount of activation 
signal patterns with associated weights, known as muscle synergy vectors (W) and temporal 
activation patterns (C) [1]. Extraction of muscle synergies is possible by factorizing the data acquired 
from EMG signals, which proceeds to the calculation of muscle synergy vectors; a time-independent 
matrix that contains the weights contribution of each muscle to a specific synergy and temporal 
activation patterns; a time-dependent waveform that denotes the modulating excitation signal of the 
specific synergy. A vector containing the muscle activation patterns E(t) is constructed by 
concatenating the EMG data for the total exercise and generating a model based on the linear 
combination of synergies:  

 

𝐸(𝑡) = ∑ 𝑊𝑖𝐶𝑖(𝑡 − 𝑡𝑖)
𝑁
𝑖=1              (1) 

 
Where 𝐸(𝑡) is defined as a vector of time-dependent muscles activation recorded at a certain 

time or time interval (𝑡 − 𝑡𝑖), N is the number of synergies selected, Wi is a vector of time-
independent muscle modules that weight the synergy and 𝐶𝑖 is the motor primitives, which is a time-
dependent coefficient vector. The principal component analysis (PCA), independent component 
analysis (ICA), factor analysis (FA) and non-negative matrix factorization (NMF) are the most used 
factorization methods for extracting the muscles' synergistic effects using second or higher order 
statistics to calculate the muscle synergies.  

 
2.1 Principal Component Analysis (PCA) 

 
The basis of the PCA method is to compress the dimensions of a dataset, while maintaining as 

much variability as possible, to generate new uncorrelated variables. This method works well with 
Gaussian distributed datasets; thus, it is great at extracting the best data variances that represent 
muscle synergy while using singular value decomposition to minimize the basis factor, which returns 
the eigenvectors of the data’s covariance matrix (muscle synergy weights) [16]. The PCA-based 
algorithm had been used to extract kinematic synergies in several studies involving hand grasping 
[17,18]. However, the limitation of the PCA is it is lack of non-negative constraints [69]. 
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2.2 Independent Component Analysis (ICA) 
 
Unlike the PCA extraction method, which compresses multiple pieces of information into a single 

dataset, ICA is a method of extracting individual information from a mixture of datasets [19]. ICA 
works best with non-Gaussian distributed datasets and involves data that is uncorrelated and 
independent. Therefore, ICA is often used in biomedical signal processing to remove noise and 
movement artifacts before proceeding to signal analysis [20]. For muscle synergy, mixtures of EMG 
signals can be separated using ICA where the basis vectors can be distinguished (i.e. muscle synergy 
weights) [21]. However, the limitation of the ICA is, it may result in overfitting when applied to small 
datasets which can produce components that are not physiologically relevant [70].  

 
2.3 Factor Analysis (FA) 

 
Factor analysis allows the determination of basic vectors of a matrix. Similar to PCA, FA can be 

used to extract muscle synergy weights by utilizing the decomposition of eigenvalues to produce 
eigenvectors of the covariance matrix. The significant muscle synergies are distinguished by their 
eigenvalues >1 and all eigenvalues of the synergies < 1 are deemed as noise [22]. Factor analysis 
allowed muscles with similar EMG linear envelopes to be clustered together in an objective approach. 
However, similar as ICA, FA requires large datasets to ensure that it can achieves the high level of 
accuracy [71].  

 
2.4 Nonnegative Matrix Factorization (NNMF)  

 
NNMF is the most common method of extracting muscle synergy since its optimization 

algorithm’s linear decomposition properties minimize the reconstruction error [23]. As the name 
indicates, NNMF restrains muscle synergies to always be positive or zero, then utilizes second-order 
statistics to pick out vectors that are closest in defining the data’s variance. The method utilizes the 
multiplicative update algorithm based on gradient descent algorithm [24], Euclidean distance 
objective function [25] and alternating least squares algorithm [26], all of which have evolution and 
convergence properties that can be applied to both Gaussian and non-Gaussian datasets [27]. NMF 
is preferred over other methods due to its simplicity in identifying the synergy vectors and activation 
signals. Its nonnegative properties allow easier interpretation of the synergy structure and are 
physiologically more meaningful, especially in clinical environments where qualitative 
interpretability is preferred. NMF has been proposed as the best for identifying muscle synergies 
during active tasks [28]. However, NNMF is known in its difficulty in modelling temporal dynamics 
[72]. The summary of the advantages and limitations for PCA, ICA, FA and NNMF can be seen in Table 
1.  
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Table 1 

Advantages and limitations of PCA, ICA, FA and NNMF 
Factorization 
Methods 

Advantages Limitations 

Principle 
component 
analysis (PCA) 

It is great at extracting the best data variances that represent 
muscle synergy while using singular value decomposition to 
minimize the basis factor, which returns the eigenvectors of 
the data’s covariance matrix (muscle synergy weights) [16]. 

Lack of non-negative constraints 
[69]. 

Independent 
component 
analysis (ICA) 

Able to extract individual information from a mixture of 
datasets [19]. 

May results in overfitting when 
applied to small datasets which 
can produce components that 
are not physiologically relevant 
[70]. 

Factor analysis 
(FA) 

Factor analysis allowed muscles with similar EMG linear 
envelopes to be clustered together in an objective approach. 

FA requires large datasets to 
ensure that it can achieves the 
high level of accuracy [71] 

Nonnegative 
matrix 
factorization 
(NNMF) 

NMF is preferred over other methods due to its simplicity in 
identifying the synergy vectors and activation signals. Its 
nonnegative properties allow easier interpretation of the 
synergy structure and are physiologically more meaningful, 
especially in clinical environments where qualitative 
interpretability is preferred. 

NNMF is known in its difficulty 
in modelling temporal dynamics 
[72]. 
 

 
3. Muscle Synergy Applications  

 
Muscle synergy has been applied in various applications such as rehabilitation, human robot 

control, wearable assistive device control and recently, in computer animation. In rehabilitation 
application, muscle synergy analysis has been utilized in many neurorehabilitation applications 
where the EMG decompositions were used as biomarkers for functional rehabilitation training 
[19,20]. The neurorehabilitation training employs the quality of muscle synergies to visualize the 
potential effects of rehabilitation methods.  

For neurological or muscular disorders, muscle synergy was used to study the compensational 
effects of different muscles. By analysing muscle synergy during fatigue, a study discovered that the 
trunk muscles are able to compensate for fatigue or atypical coupling in the arm for improved control 
[21]. These studies suggested that the CNS compensates by reassigning new sets of muscle control 
signals in patients with a neurological or muscular disorder.  

Several studies have investigated physiological processes which cause motor symptoms and the 
dopaminergic therapy effects on muscle synergies in Parkinson’s Disease patients [22,23]. These 
studies observed that the use of L-Dopa for motor symptoms has a low effect on muscle synergies 
during balance and movement, which suggests a physiological pathology involvement of non-
dopaminergic pathways. Muscle synergy analysis from these studies provides important data on the 
physiology of specific motor symptoms such as balance, walking and upper limb movements of 
Parkinson’s Disease patients.  

Several studies have used muscle synergies analysis to improve rehabilitation strategies. 
Irastorza-Landa et al., [24] proposed a reliable biomarker of motor function using the synergy 
recruitment index for chronic stroke patients. The study demonstrated that targeting proprioceptive 
therapies to their functional synergy recruitment index can enhance effective rehabilitation. Scalona 
et al., [6] suggested that the consistency of real muscle synergy is similar to the virtual reality 
throwing tasks [7]. The study implies that virtual reality provides an alternative to conventional 
therapy which creates a viable method in rehabilitation programs related to muscle control recovery.  
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In human-robot control, muscle synergy has been applied for remote operation. For remote 
operations, a teleoperation robotic system is used in conditions where it would be difficult or 
dangerous for humans to perform, such as handling radioactive material in nuclear decommissioning 
or handling dangerous substances in laboratories. However, control for intricate motion is difficult to 
achieve, thus manual control is often preferred. There are a variety of human-robot interfaces for 
robotic teleoperation systems that utilizes control sticks, knobs and robotic end effectors that mimic 
a hand [26]. A robotic hand can offer the dexterity and manipulation capability to its user remotely. 
However, these machines can be unwieldy where it requires unnatural arm or hand motion. 
However, compared to human hands, the motion of the traditional robotic hand is limited by the 
number of joints it has and the type of motion the controller can produce. Hence, muscle synergies 
have been implemented in the field of robotics to deliver more intuitive control and allow the 
controllers to better adapt to the movement of a real human hand. 

Muscle synergy has been the focus for myoelectric control for robotic application [27-31]. The 
low dimensionality of muscle synergy can be exploited into robotic control systems to accomplish 
human-like movements. Control method by Camardella et al., [27] revealed that their synergy-based 
approach minimized performance loss across various working conditions, where force tasks were 
accomplished through a virtual online cursor. Similarly, by utilising muscle synergy, Selvaggio and 
Notomista [28] were able to control a swarm of robots intuitively and naturally. Kim et al., [29] 
investigated how a robotic hand can be controlled from a human motion via electromyography 
(EMG) in a teleoperation system. The study implemented a multi-factor model to extract EMG 
synergy and mapped it to a robot hand. The study established that the method produced high 
postural accuracy and enabled dexterous manipulation of the robot hand remotely. A similar study 
assessed the feasibility of multi-DOF robotic control using a synergy-based approach for application 
in a realistic and clinically oriented framework [30]. The study stands out from previous work due to 
its higher number of muscles involved, which typically use only one agonistic and antagonistic muscle 
pair. It was shown that users can intuitively and easily control the myoelectric interface simply by 
using muscle contractions. 

It is known that wearable assistive devices intend to augment the user’s body either to increase 
limb performance, assist weak limbs or substitute missing limbs. Exoskeletons are wearable assistive 
devices acting in parallel to the body structures [32]. However, intrinsic difficulties with these devices 
such as mix actuator dynamics, muscle fatigue and actuator redundancy make it difficult to control. 
Muscle synergy has been implemented in designing hybrid robotic exoskeletons, which integrate 
neuromuscular stimulations with the exoskeletons to provide controlled movement of the device 
[33,34]. Controlling exoskeletons via muscle synergy can ensure that the exoskeleton receives an 
ideal input signal so that the actuators can safely provide optimal force to the wearer’s body. Since 
an active exoskeleton requires actuators such as pneumatic artificial muscle (PAM) or electric motors, 
the control process of the actuation force can be precisely directed via synergy control. Such adaptive 
controllers have been utilized by using the synergy of agonistic muscle pairs to control the upper limb 
movement of a pneumatic exoskeleton and assisted leg movements in different gait phases [35,36]. 
Muscle synergy controller for exoskeleton can provide good trajectory tracking as well as 
compensating actuator redundancy and muscle fatigue [37].  

On the other hand, prostheses are wearable devices designed to restore normal body functions 
by replacing the missing body part [38,39]. Since muscle synergy provides a simpler interpretation of 
multiple muscle signals, it has the benefits of precisely controlling prostheses since it gives a better 
sense of the whole muscle motor control. Compared to a teleoperated robotic hand that mimics 
existing limbs, a prosthesis substitutes the missing body parts. Hence, the prosthesis controller needs 
to adapt muscle signals generated from the adjoining body parts. A study by Wilhelms [41] developed 
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a controller that combines artificial vision and proprioceptive information in transradial prosthesis 
control, which resulted in a better myoelectric interface when controlling the prosthesis movements. 
The controller allows the prosthesis hand grasping motion to mimic the user’s postural and hand 
stiffness in real-time. In addition, Scalona et al., [6] assessed controllers for a synergy-inspired 
prosthetic hand and found that a differential electromyography-to-position mapping technique 
ensured the highest coherence of prosthesis with hand movements. The design of active prostheses 
with integrated muscle synergies in the controller may allow for better prostheses control. 

Computer animation is part of the computer graphics area. Computer animation in a typical 
computer graphics application involves characters and objects interacting with each other in a virtual 
environment where the character’s animation is done by either kinematic-based or physics-based 
methods. Although kinematic-based animation databases have improved over the years, this method 
lacks the capability to generate realistic and natural responsive animation due to the restricted 
contents of the motion database. Alternatively, physics-based character animation has the advantage 
of generating realistic responses. This method involves a physics simulation process, which 
consequently results in physically accurate interaction without using additional motion data [41]. 
Physics-based animation can simulate realistic phenomena, such as character collapsing (e.g. ragdoll) 
[42,43], draping cloth [44] and flowing fluids [45,46]. However, physics-based characters are 
underactuated or lack controllability because the character is controlled indirectly through external 
contacts and forces acting on the character. Under actuation creates an issue that affects visual 
quality that reduces the realism of the animation. A virtual character with a musculoskeletal system 
can resolve the underactuated problem by generating muscle actuation similar to an actual human 
[7].  

Coordinated muscle activation has been adapted in many computer graphics applications as 
controllers for limb movement in character animation [18,48-52]. This application follows the same 
principle as the human-robot interaction where muscle signals are applied to a controller for the 
mechanical devices, i.e. robots and prostheses. In animation, the signal for control is delivered to the 
virtual musculoskeletal models, where the musculoskeletal model consists of segments, joints, 
masses, inertias and actuation capacities that are modelled in a convenient way to enable physical 
simulation [52]. Human gait has been accurately simulated by modelling the spinal muscle control 
involving synergized muscle signals that includes reflex-based balance controllers [53]. Such 
controllers produced different gait simulation patterns including nominal and disturbed. Directly 
controlling the motion of a musculoskeletal system in a character via muscle synergy is possible as 
demonstrated in a throwing experiment [54,55]. The muscle synergies during actual throwing motion 
were extracted following the NMF protocol, which is then matched to the musculoskeletal character. 
The results accurately reproduced animated motions using simplified muscular structure while 
preserving important characteristics of the original synergies. 

Several studies have shown that deep learning can generate muscle patterns that produce 
realistic motion for a character which is driven by muscle contraction dynamics [18,52,56]. For 
example, Lee et al., [18] have developed a scalable imitation learning algorithm that can control a 
musculoskeletal model that has 346 muscles. The study showed that the learning algorithm is able 
to predict dynamic motor skills under anatomical constraints and simulate several pathological gaits. 
However, the study’s main attention is on producing natural motion without accurately representing 
the underlying biological system. Even though generated motion using deep learning can be 
convincingly accurate, the generated muscle patterns are an estimation from a learned motion which 
may lead to unnatural or infeasible torque patterns for real humans to achieve [57]. Table 2 
summarizes the application of synergized movement involving muscles including number of subjects 
involved and method of determining synergy that has been presented. 
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Table 2  
Muscle synergy application in rehabilitation, human – robot control, wearable devices and computer 
animation 
Field Author Synergy Application Subject Synergy method 

Neuro 
Rehabilitation 

[24] Eliciting correct temporal 
recruitment patterns of common 
functional synergies. 

18 Chronic stroke patients NNMF 

[19] Evaluate longitudinal changes in the 
modular motor coordination during 
leg-cycling 

12 Stroke patients NNMF 

[20] Synergy based Functional Electrical 
Stimulation for post-stroke 
rehabilitation of upper-limb 
functions. 

6 Chronic stroke patients NNMF 

[21] Detection of fatigue compensation 
during upper limb rehabilitation 
training. 

8 Healthy Subjects Joint Angle 
Synergies 

[22] Analyse the changes of muscle 
activation during resting tremor and 
voluntary movements evoked by 
cutaneous stimulation. 

3 Parkinson's Disease 
patients 

NNMF 

[23] Investigate changes in postural 
control during upright stance using 
muscle synergies. 

10 Parkinson's Disease 
patients 

NNMF 

 [6] Evaluate muscle synergies of VR task 
with actual throwing task. 

17 Healthy Subjects NNMF 

Human-robot 
control 

[27] Synergies-to-force mapping of a 
upper limb pose 

5 Healthy Subjects NNMF 

[28] Control for human-swarm 
teleoperation to accomplish 
grasping and manipulating tasks 

1 Healthy Subject PCA 

[29] Tele-operated robot hand 
controller. 

5 Healthy Subjects Multi-factor Mode 

[30] Multi-DOF robotic control compared 
to the simple muscle-pair method. 

8 Healthy Subjects DOF-wise NNMF 

[31] Equilibrium points-based synergy for 
control of anthropomorphic legs 
with PAM. 

1 Healthy Subject Agonist-Antagonist 
muscle pairs 

[73] Used to design exoskeletons to 
assists patients with impaired motor 
controls such as stroke patients 

8 Healthy subjects ICA and NNMF 

[74] Muscle synergies are applied to the 
control of powered ankle 
exoskeletons. 

9 Healthy subjects Gait 

Wearable 
assistive device 
control 

[35] Man-Machine Synergy Control 1 healthy subject Agonist-Antagonist 
muscle pairs 

[36] Adaptive synergy-based controller 
for lower-limb exoskeleton. 

3 healthy subjects Agonist-Antagonist 
muscle pairs 

[37] Hybrid neuroprostheses synergy-
based controller 

1 Healthy Subject 
1 spinal injured subject 

PCA 

[40] Vibro tactile feedback scheme that 
transmits variables to the control of 
multifunction prosthesis. 

5 amputees subjects Tactile feedback 

[75] Isometric upper-extremity task No live subjects involved Upper-extremity 
isometric force task 
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[76] To analyse the EMG signals as an 
input signal in the prosthesis, virtual 
interface and rehabilitation 

10 healthy subjects Hierarchical 
alternating least 
square (HALS) 

Computer 
Animation 

[50] Simulation of Spinal Muscle Control 
in human gait 

No live subjects involved CPG 

[7] Motor control model based on 
muscle synergy hypothesis 

1 healthy subject CPG 

[18] Human Simulation Control 
 

No live subjects involved Deep 
Reinforcement 
Learning DRL 

[14] Control for virtual character 
throwing motion 

1 Healthy Subject NNMF 

[47] Using CPG to induce muscle 
contraction of the virtual swimmer's 
body. 

No live subjects involved Central pattern 
generators CPG 

[77] To animate a realistic hand avatar 
with 20 degrees of freedoms(DOFs) 
based on the biomechanics of the 
human hand. 

No live subjects involved Kinematics 

[78] To generate muscle activation 
controls or joint torque 

1 high-functioning 
hemiparetic male induvial 
with chronic stroke-
related walking 
dysfunction 

Inverse kinematics 

 
4. Discussion 

 
The principle of muscle synergy has been adapted in various applications since the low 

dimensionality of the complex muscle system can be practically utilized. However, muscle synergies 
can be challenging to extract because it requires extracting EMG signals from different muscles in the 
body. As the human body has over 300 pairs of skeletal muscles, defining all the muscles involved in 
a motor task is very complicated [58]. Hardware is one of the limitations as EMG sensors are often 
limited in the number of sensors the hardware can handle. In addition, attachment points for surface 
EMG are limited since they are only effective in detecting superficial and large muscles that are closer 
to the skin surface [59]. While Invasive EMG can record signals of deep muscles (i.e. psoas and iliacus) 
using intramuscular wire sensors, a small movement of the wire electrode can easily introduce 
motion artifacts during contraction [60]. Therefore, it is typical that muscle synergy is extracted only 
from the dominant muscles involved in the task; i.e. for a throwing action, EMG is taken only from 
the upper limbs such as deltoids, biceps and triceps, even though other muscles of the body such as 
the hip muscles also contribute to the action. 

Machine learning is a powerful tool in developing neuromechanical control models. A recent 
study reported that learning the controller is time consuming, ranging from 12 to 36 hours of 
computation time [18]. As more technological advancement becomes accessible, computing complex 
problems would be more convenient to solve. With better computing capability, it would increase 
machine learning efficiency and could create a better tool to rapidly synthesize appropriate activation 
patterns. There are plenty of machine learning research that focus on net behavioural effects, 
however realistic motion seems to be the main focus of these research that is short of considering 
the underlying neuromechanical properties [61]. There are also human locomotion models that 
incorporate simple dynamic models and data-driven mathematical models which enlighten the 
dynamic principles of walking and running [62]. Implementing these learning models together with 



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 62, Issue 2 (2026) 231-244 

240 
 

muscle synergy motion control could provide a holistic evaluation of both motor control as well as 
learning models.  

Regarding computer animation, an animated character is preferred to be driven kinematically 
with physical properties, due to its relatively convincing visuals with lesser variables and 
computational power demand compared to muscle-based animation. However, it does not represent 
actual physiology and would benefit less in understanding muscle functions. As computational 
capacity is rapidly growing, the notion of realistically and accurately animating a character by 
activation of many muscles may be plausible. The implementation can be done in a graphical 
environment by modulating the contributions of a small set of predefined muscle variables. The 
dimension reduction properties of muscle synergies have the benefit of increasing the computational 
efficiency of the control algorithm for animating the musculoskeletal system on the characters to 
broader areas such as surgical planning and training [64], education [64,68] and also forensic use 
cases [65]. The increased interest in accurate and realistic virtual characters particularly in producing 
muscle-based character animation is because muscle-based actuation provides better estimates of 
energy expenditure [66], better character stability properties [67], provides better character control 
and allows simulation of muscle defects and fatigue.  

 
5. Conclusion 

 
Knowledge of the complex neural signals of the CNS to control muscle in motor tasks gains 

attention in various fields. The extraction of muscle synergy has been shown useful in optimizing 
rehabilitation training which improves rehabilitation strategies. Muscle synergy has shown useful as 
a controller for teleoperated and muscle-like actuated robots, as well as a controller for wearable 
assistive devices such as prostheses and exoskeletons. Muscle synergy has also been adapted as a 
controller for a virtual character’s animation, although its application is rarely to be found. This 
review delivers insight into tangible muscle synergies application in the different fields of healthcare, 
robotics and computer graphics. Although it is known that muscle synergies are applied more in 
human-robot control and wearable devices, based on the review, muscle synergy also can be applied 
in computer animation, specifically in character animation. However, the progress of the work is still 
ongoing. Therefore, this opens the opportunity for future endeavours to explore new applications 
involving muscle synergy. 
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