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The security of a Multivariate Public-Key Cryptosystem (MPKC) is based on the hard 
mathematical problem of solving Multivariate Quadratic (MQ) equations over finite 
fields, also known as the MQ problem. An MPKC has the potential to be a post-quantum 
cryptosystem. In this paper, we identify new weaknesses in the Macaulay matrix 
identified via Wang's technique, which was initially designed for solving multivariate 
quadratic equation systems. This new weakness occurs in the case of random 
coefficients in any column vector for different variables of monomials and random 
coefficients are assigned to other monomials. The weakness is exposed through the use 
of Gaussian elimination to obtain a univariate equation. We illustrate our findings using 
a random example. 
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1. Introduction 
 

Cryptography stands as a vital element of computer and network security, guaranteeing the 
confidentiality and integrity of data while shielding it from unauthorized intrusion. Furthermore, 
there has been a heightened public demand for cryptographic systems, particularly driven by the 
extensive utilization of e-commerce in the digital economy, including Internet banking, shopping, and 
payments. Cryptographic techniques hold the utmost importance in ensuring secure communication 
within contemporary society [1,2]. Currently, these techniques rely on number theoretic problems 
like factoring large integers and solving discrete logarithms. However, the emergence of quantum 
computers threatens the security of widely used encryption methods such as RSA [3], and ECC. Shor's 
polynomial time quantum algorithm poses a threat as it can efficiently solve these problems [4].  In 
the field of quantum cryptography, a cryptographic algorithm exhibits security against attacks from 
both quantum and classical computers [5]. 

In response to the vulnerability introduced by quantum computers, researchers are actively 
investigating novel public key systems with the capacity to withstand potential attacks. Among these 
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systems, the multivariate public key cryptosystem (MPKC) has gained prominence. This system 
employs multivariate polynomials and stands as a post-quantum cryptography solution [6]. 

The fundamental structure of the MPKC consists of components: an invertible quadratic map 
denoted as	ℱ: 𝔽! → 𝔽" (the central map), and two invertible affine (or linear) maps referred to 
𝒮: 𝔽" →	𝔽" and 𝒯: 𝔽! →	𝔽!. In this system, the public key is represented as 𝒫 = 𝒮 ∘ ℱ ∘ 𝒯  with 
𝒮, ℱ and 𝒯 are the private keys [7,8]. The security of MPKC relies on solving systems of multivariate 
quadratic (MQ) polynomial equations over finite fields, known as the MQ problem, and is an NP-hard 
problem [9]. The MQ problem involves with the identification of a candidate vector x	=	(𝑥#, ⋯ , 𝑥!)  
for which the system of polynomials satisfies the condition 𝒫(x) = 0 [10,11]. The challenge to 
identify the candidate vector x, does not imply that the vector x is unique. Rather, it implies the task 
of determining a candidate vector x is NP-hard. 

As indicated in [9], the initial multivariate public key scheme was introduced by Ong, Schnorr, and 
Shamir in 1984 [12], yet its security was compromised within a year [13]. Subsequent improved 
versions faced a similar fate and were subsequently broken [14]. Fell and Diffie [15] introduced the 
first scheme utilizing multiple polynomials, but they acknowledged its insecurity for practical key 
sizes. In 1985, Imai and Matsumoto [16] presented a distinct trapdoor approach, considered the first 
modern MQ scheme. This foundational concept was further refined in 1988 [17] and led to the 
development of several related schemes. However, numerous security claims were found to be 
erroneous, leading to ongoing competition between scheme cryptographers and cryptanalysts. 
Numerous schemes were proposed, but most of them were broken within a few years, leading to the 
gradual damaging of the reputation of MQ schemes over time. 

Recent studies show that the Multivariate Quadratic (MQ) system is the foundation of all 
multivariate cryptosystems. Other well-established multivariate cryptosystems, such as C* [18], HFE 
[19-21], UOV [22], SFLASH [23], TT cryptosystem (TTM) [24], Tame-like Multivariate Cryptosystem 
(TTS) [25], TRMC [26], TRMS [27], and Rainbow [28], also depend on the MQ problem. These systems 
use trapdoor transformations, which are multivariate quadratic polynomial maps with specific 
properties enabling the computational feasibility of finding their inverse maps.  

During the Post-Quantum Cryptography 2013 conference, Tao et al. introduced a novel 
encryption scheme known as SimpleMatrix encryption scheme [29]. This cryptographic scheme not 
only demonstrates efficiency but also exhibits resilience against well-known attacks targeting 
multivariate cryptosystems. However, the SimpleMatrix scheme has an issue of decryption failures 
with non-negligible probability. Various papers, including [30,31], have proposed solutions to 
minimize the probability of decryption failures occurring, but a comprehensive solution is still lacking. 
Moreover, the approach outlined in [32] results in increased key and ciphertext sizes for the 
SimpleMatrix scheme. Subsequently, the previous study of [33] enhanced the Simple Matrix scheme 
by introducing new techniques and improvements. Continuing this, another version of SimpleMatrix 
encryption scheme is proposed in a previous study [34] to eliminate the decryption failure.  

In summary, the emergence of quantum computers poses a challenge to cryptographic 
techniques, prompting the exploration of solutions like MPKC in the realm of post-quantum 
cryptography. While the SimpleMatrix encryption scheme holds promise, its decryption failure issues 
require resolution. Various proposals have been presented to mitigate these failures, although a 
comprehensive solution is yet to be achieved, and some proposed strategies increase the size of keys 
and ciphertexts.  

Contribution. The one-step Gaussian elimination method, which is based on principles from 
linear algebra, is proposed in this study. We also provide a numerical example of how to solve the 
polynomial system 𝑝#(x) = ⋯ = 𝑝"(x) = 0 which would be to find the possible solutions for x =
(𝑥#, … , 𝑥!). This study is distinct from past studies in two ways.: 
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i. The one-step Gaussian elimination method provides an alternative method for identifying 
the solutions of the candidates. 

ii. The techniques for structuring manipulation of the Macaulay matrix. 
 
The remaining sections are arranged as follows: Section 2 provides a preliminary study on 

Multivariate Quadratic Polynomials, while Section 3 presents the General Workflow of the 
Multivariate Cryptography Scheme. Section 4 describes the Novel Weakness of Macaulay Matrix 
Structures, followed by Section 5 illustrating an example of the weak Macaulay structure of the public 
system 𝒫. Finally, conclusions are drawn in Section 6.  

 
2. Preliminaries on Multivariate Quadratic Polynomials 
  

This section reviews the basic terminology and cryptographic primitives that are utilized in 
multivariate cryptography.  
 
2.1 Matrix Representation 
 

In multivariate cryptography, the matrix representation is defined as follows: 
 
Definition 1. (Multivariate Quadratic Polynomial) [34] 
Let 𝔽$  be a finite field with 𝑞 elements. We denote 𝑚 as the number of equations and 𝑛 as the number 
of variables. A system 𝒫 = (𝑝#, … , 𝑝") of multivariate quadratic polynomials is defined as 

𝑝#(𝑥#, … , 𝑥!) =77𝑡%&
(#) ∙ 𝑥%𝑥& 	+ 		7𝑡%

(#) ∙ 𝑥% + 𝑡)
(#)

!

%*#

!

&*#

!

%*#

 

𝑝+(𝑥#, … , 𝑥!) =77𝑡%&
(+) ∙ 𝑥%𝑥& 	+ 		7𝑡%

(+) ∙ 𝑥% + 𝑡)
(+)

!

%*#

!

&*#

!

%*#

 

⋮ 

𝑝"(𝑥#, … , 𝑥!) =77𝑡%&
(") ∙ 𝑥%𝑥& 	+ 		7𝑡%

(") ∙ 𝑥% + 𝑡)
(")

!

%*#

!

&*#

!

%*#

	

 
 
Definition 2.  Let 𝒫	<𝑝#(x), … , 𝑝"(x)= be a system of multivariate quadratic polynomials and 𝑝%(x) =
𝑝%(𝑥#, … , 𝑥!) for 𝑖 = 1, 2, … ,𝑚. 

(a) The lexicographical ordering of monomials is a defined arrangement based on the order 
in which the monomials (excluding the coefficient) would be positioned as words in an 
alphabet with letters 𝑥#, 𝑥+, … , 𝑥!  [35]. 

(b) The chosen lexicographical ordering of monomials is a well-defined arrangement in which 
the priority of solving a variable is applied to monomials listed from two variables to one 
variable. 

 
Throughout this research, the public system of polynomials will undergo transformation into the 

Macaulay matrix following Definition 2(b), and the resulting matrix will be solved using Gaussian 
elimination.  

The priority of solving a variable is demonstrated by the chosen lexicographical ordering of 
monomials. For illustrative purposes, let us consider the elimination of 𝑥, as the initial step. It is 
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feasible to derive a univariate polynomial in terms of 𝑥, ensuring that its degree does not exceed 𝑑. 
The univariate polynomial over the finite field is then solved. Thus, the potential value(s) of 𝑥, are 
discovered. To achieve this objective, we will proceed by substituting 𝑥, resulting in the polynomials 
with a reduced number of variables. 
 
Definition 3. (Multivariate Quadratic Problem) [34] 
Consider a system 𝒫<𝑝#(x), … , 𝑝"(x)= of 𝑚 multivariate quadratic polynomials in 𝑛 variables over a 
finite field 𝔽$ with 𝑞 elements. The objective is to find a vector x = (𝑥#, … , 𝑥!) that satisfies the 
condition 

𝑝#(x) = ⋯ = 𝑝"(x) = 0. 
 
Theorem 1. [34] Let 𝔽 = 𝔽$  be a finite field with 𝑞 elements and degree 𝑑 less than 𝑞. Then, there 

existB𝑛 + 𝑑 − 1𝑑 D  monomials of degree 𝑑 in 𝔽(𝑥#, … , 𝑥!). Then, the number of monomials of degree 

less than or equal to 𝑑 in 𝔽(𝑥#, … , 𝑥!)  is given by B𝑛 + 𝑑𝑑 D . 

 
Proof.     
1.  The number of monomials of degree 𝑑 is obtained by choosing 𝑑 out of 𝑛 element of 𝑥#, … , 𝑥! 
with repetition. 
2.  The elements in the polynomial of degree less than or equal 𝑑 are elements from the set 
{𝑥#, … , 𝑥!, 1}  with repetition.  

 
Theorem 2.   The number of monomials with degrees less than or equal to 𝑑 in 𝔽$  with 𝑞 elements is 

given by B𝑛 + 𝑑𝑑 D. The number of monomials with degree 𝑑 with distinct variables is given by B𝑛𝑑D. 

 
Proof.    
1.   The total number of monomials with degree less than or equal to 𝑑 is determined by 𝑛 elements 
from the set {𝑥#, . . , 𝑥!, 1}, with repetition.   
2.   The total number of monomials with degree less than or equal to 𝑑 is determined by 𝑛 elements 
from the set {𝑥#, … , 𝑥!, 1}, without repetition. 

 
A system of MQ polynomial equations is solved through the transformation of the polynomials 

into a Macaulay matrix, denoted as matrix 𝑀, which is constructed from equations 
<𝑝#(x), … , 𝑝"(x)= = 0 (Definition 3) and subsequently reduced using the Gaussian elimination 
procedure. The number of column vectors in the Macaulay matrix 𝑀 is equivalent to the number of 

monomials with a degree less than or equal to 𝑑, which is B𝑛 + 𝑑𝑑 D. 

Following is the definition of the Macaulay matrix 𝑀 of degree 𝑑 corresponding to 𝒫(x) =
𝑝#(x), … , 𝑝"(x). 
 
Definition 4. (Macaulay Matrix) The coefficient vectors of the polynomial 𝑝%(x) where 𝑖 = 1, 2, … ,𝑚 

are arranged as the rows of the Macaulay matrix, 𝑀 ∈	𝔽"×! of degree 𝑑, and 𝑒 = B𝑛 + 𝑑𝑑 D is the 

number of monomials. The matrix 𝑀 is defined as 



Journal of Advanced Research in Applied Sciences and Engineering Technology 
Volume 49, Issue 2 (2025) 149-159 

153 
 

𝑀 =	K

𝑝#(x)
𝑝+(x)
⋮

𝑝"(x)

L = 	 K

𝑐#(#) 𝑐#(+) … 𝑐#(.)
𝑐+(#) 𝑐+(+) ⋯ 𝑐+(.)
⋮ ⋮ ⋱ ⋮

𝑐"(#) 𝑐"(+) ⋯ 𝑐"(.)

L, 

where every polynomial 𝑝%(𝑥#, … , 𝑥!) for 𝑖 = 1,… ,𝑚. 
 
3. General Workflow of Multivariate Cryptography Scheme [34] 
 
      A multivariate public key cryptosystem based on the MQP is constructed from an invertible 
quadratic map ℱ: 𝔽! → 𝔽" and two invertible affine (or linear) maps 𝒮: 𝔽" → 𝔽" and 𝒯: 𝔽! → 𝔽!. 
The public key is in the form of 𝒫 = 𝒮 ∘ ℱ ∘ 𝒯  where 𝒮, ℱ and 𝒯 are the private keys. 
 
3.1 Encryption Scheme (𝑚 ≥ 𝑛) 
 
Encryption: To encrypt a message x	 ∈ 	𝔽!, one simply computes 𝒫(x) = z. 

𝒫 = 𝒮 ∘ ℱ ∘ 𝒯(x) 
w	=	𝒯(x) 
y	=	ℱ(w) 
z	=	𝒯(y) 

The ciphertext of the message x is z	∈	𝔽". 
 
Decryption: The decryption of the ciphertext z	∈	𝔽/, by computes 𝒫0# = x recursively. 

y = 𝒮0#(z) 
w = ℱ0#(y) 
x = 𝒯0#(w) 

Thus, x	 ∈ 	𝔽! is the plaintext corresponding to the ciphertext z. 
 
Proof of correctness:  

𝒯0# ∘ ℱ0# ∘ 𝒮0#(z) = 𝒯0# Bℱ0#<𝒮0#(z)=D	
                          =	𝒯0#<ℱ0#(y)= 

                =	𝒯0#(w) 
   = 	x 

 
3.2 Standard Attacks 
 
Two common types of standard attacks employed against multivariate public key schemes are: 

i. Direct Attack: This kind of attack concentrates on solving the public equation 𝒫(x) = z 
as an n instance of the MQP directly. The examples of direct attack are F4 algorithm [36, 
37] and XL algorithm [38,39]. 

ii. Structural Attack: A structural attack requires the unique structure of the central map of 
a multivariate cryptography scheme to endeavour to recover the private key. For 
example, Linearization equation attack, MinRank attack and Differential attack. 

 
 
4. Novel Weakness Macaulay Matrix Structures 
 

In this section, we present our main results. 
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4.1 Utilizing Wang’s Workflow 
 

The following Algorithm 1 is a partial work-flow of Wang’s methodology in [38]. 
 
Algorithm 1: Solving the Multivariate Quadratic polynomials 
Input: The coefficients of public system 𝓟, a finite field 𝔽𝒒, 𝒎 quadratic polynomials 𝓟 =
<𝒑𝟏(x), … , 𝒑𝒎(x)= and 𝒏 variables of (𝒙𝟏, … , 𝒙𝒏). 
Output: The solution to the system of equations represented by 𝒑𝟏(x) = ⋯ = 𝒑𝒎(x) = 𝟎 in 𝔽𝒒. 

1. Linearize: In the chosen-lexicographical ordering sequence (as defined in Definition 2 b)) 
the monomials of polynomial 𝓟 are arranged, starting from monomials involving variables 
𝒙𝒊𝒙𝒋 and the single variables 𝒙𝒊. The elimination process proceeds with the monomials 
containing single variables 𝒙𝒊 being eliminated last. 

2. Organize: Generate the Macaulay matrix 𝑴 using Definition 4 as the basis. 
3. Solve: Apply Gaussian elimination to the matrix 𝑴 representing the system of polynomials. 

During this process, assume that the last non-zero row corresponds to a univariate 
polynomial equation involving a variable 𝒙𝒏.	 After this elimination phase, determine the 
root of the obtained univariate equation within the underlying finite field. 

4. Repeat: Perform substitution of the value obtained in Step 3 into the system 𝓟 to simplify 
the equations. Proceed with the iterative process to solve for the remaining variables. 

 
      As a result, when employing Algorithm 1, the monomials are arranged in accordance with 
Definition 2 b), which causes the single variable to be eliminated last. This arrangement can reduce 
the iteration of the Gauss elimination process to obtain the last non-zero row of the univariate 
equation. 
 
4.2 Wang’s Strategy for Solving the Macaulay Matrix 
 
      Our analysis of the Macaulay matrix’s structure follows Wang’s method [38], which rearranges 
the monomials with two variables, {𝑥%𝑥&} as 𝑖, 𝑗 = 1, 2, … , 𝑛 to benefit Gaussian elimination. The 
method assigned the power of a variable should be eliminated last according to the monomials’ 
specified order. Instead of making random arrangements of the system, using Wang’s approach, 
consumes less time to solve the system. This study is extension from [40] which applies Wang’s 
strategy. 
 
4.3 Exposing Macaulay Matrix Weak Structures 
 
      Breaking the MQ polynomial involves obtaining potential values for the plaintext from the 
provided public system 𝒫 and the ciphertext 𝒛. This task is an NP-hard problem [9]. 
      Suppose Wang’s technique [38] outputs the following Macaulay matrix structure. Set any column 
vector of B𝑛𝑑D with random coefficients for two different variables of degree 2 (i.e. monomial {𝑥%𝑥&}) 

and denote the column vectors of B𝑛 + 𝑑𝑑 D − B𝑛𝑑D as R where each entry represents a random 

coefficient less than 𝑞, then the Macaulay matrix 𝑀 can be redefined as follows: 
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𝑥#𝑥+ 𝑥#𝑥, ⋯ 𝑥%𝑥& 𝑥#+ 𝑥# ⋯ 𝑥!+ 𝑥! 1 

𝑀 = K

∗ ∗ ⋯ ∗
∗ ∗ ⋯ ∗
⋮ ⋮ ⋱ ⋮
∗ ∗ ⋯ ∗

]

𝑅 𝑅 ⋯ 𝑅 𝑅 𝑅
𝑅 𝑅 ⋯ 𝑅 𝑅 𝑅
⋮ ⋮ ⋱ ⋮ ⋮ ⋮
𝑅 𝑅 ⋯ 𝑅 𝑅 𝑅

_L 

                                  
                                                             𝑥7𝑥8  
      Our analysis focuses on the structure of {𝑥7𝑥8} where 𝑘 = 1, 2, 3, … , 𝑖 and 𝑙 = 1, 2, 3, … , 𝑗, which 
can be represented as follows: 
 
(i)  𝑥#𝑥+ 𝑥#𝑥, ⋯ 𝑥%𝑥&      Or   (ii)   𝑥#𝑥+ 𝑥#𝑥, ⋯ 𝑥!0%𝑥!0& ⋯ 𝑥%𝑥&  

      K

𝑅 0 ⋯ 0
𝑅 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
𝑅 0 ⋯ 0

L                     K

0 0 ⋯ 𝑅 				⋯ 0
0 0 ⋯ 𝑅 					⋯ 0
⋮ ⋮ ⋱ ⋮ 					⋱ ⋮
0 0 ⋯ 𝑅 					⋯ 0

L 

 
Or   (iii)  𝑥#𝑥+ 𝑥#𝑥, ⋯ 𝑥%𝑥&  

               K

0 0 ⋯ 𝑅
0 0 ⋯ 𝑅
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑅

L 

 
There is a possibility that the last row corresponds to a univariate equation during the process of 

row elimination. In the context of this study, we explored the column vector consisting of two 
different variables with degree two {𝑥%𝑥&} following certain procedures and strategies. This proposed 
procedure follows Algorithm 1 to solve the system of equations. 

Through our analysis, we successfully obtained the last non-zero row of the univariate equation 
using the one-step Gaussian elimination process. We put forward a strategy to solve the 
accompanying MQP and consequently resulting the unique solution of plaintext. 
 
5. Illustrative Example of The Weak Macaulay Structure 
       

For the purpose of illustration, a public system 𝒫 of the multivariate quadratic polynomials of the 
size 𝔽#9 is given as an example with random coefficients. 
 
Example. Suppose the message vector x = (𝑥#, 𝑥+, 𝑥,) = (4, 7, 5) is encrypted into the ciphertext 
z = (16, 11, 11, 7, 11, 13) using the general work-flow of multivariate cryptography scheme as 
discussed in section 3 above. Then, we are given the ciphertext vector z and the public system 𝒫(x): 
 

𝒫(x) =

⎩
⎪⎪
⎨

⎪⎪
⎧16𝑥#𝑥+ + 0𝑥#𝑥, + 0𝑥+𝑥, + 1𝑥#

+ + 8𝑥# + 10𝑥++ + 8𝑥+ + 16𝑥,+ + 14𝑥,
9𝑥#𝑥+ + 0𝑥#𝑥, + 0𝑥+𝑥, + 10𝑥#+ + 5𝑥# + 16𝑥++ + 5𝑥+ + 6𝑥,+ + 11𝑥,
0𝑥#𝑥+ + 0𝑥#𝑥, + 0𝑥+𝑥, + 3𝑥#+ + 11𝑥# + 11𝑥++ + 16𝑥+ + 7𝑥,+ + 9𝑥,
4𝑥#𝑥+ + 0𝑥#𝑥, + 0𝑥+𝑥, + 12𝑥#+ + 6𝑥# + 12𝑥++ + 2𝑥+ + 9𝑥,+ + 5𝑥,
8𝑥#𝑥+ + 0𝑥#𝑥, + 0𝑥+𝑥, + 7𝑥#+ + 14𝑥# + 3𝑥++ + 5𝑥+ + 11𝑥,+ + 16𝑥,
10𝑥#𝑥+ + 0𝑥#𝑥, + 0𝑥+𝑥, + 14𝑥#+ + 10𝑥# + 2𝑥++ + 9𝑥+ + 16𝑥,+ + 6𝑥,

 

       
We conduct the following strategies. 
Step 1:  Transforming the system 𝒫(x) into the form of 
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𝒫(x) = 	

⎩
⎪⎪
⎨

⎪⎪
⎧𝑝# = 16𝑥#𝑥+ + 0𝑥#𝑥, + 0𝑥+𝑥, + 1𝑥#+ + 8𝑥# + 10𝑥++ + 8𝑥+ + 16𝑥,+ + 14𝑥, + 1 = 0
𝑝+ = 9𝑥#𝑥+ + 0𝑥#𝑥, + 0𝑥+𝑥, + 10𝑥#+ + 5𝑥# + 16𝑥++ + 5𝑥+ + 6𝑥,+ + 11𝑥, + 	6	 = 0
𝑝, = 	0𝑥#𝑥+ + 0𝑥#𝑥, + 0𝑥+𝑥, + 3𝑥#+ + 11𝑥# + 11𝑥++ + 16𝑥+ + 7𝑥,+ + 9𝑥, + 	6 = 0
𝑝: = 4𝑥#𝑥+ + 0𝑥#𝑥, + 0𝑥+𝑥, + 12𝑥#+ + 6𝑥# + 12𝑥++ + 2𝑥+ + 9𝑥,+ + 5𝑥, + 10	 = 0
𝑝; = 8𝑥#𝑥+ + 0𝑥#𝑥, + 0𝑥+𝑥, + 7𝑥#+ + 14𝑥# + 3𝑥++ + 5𝑥+ + 11𝑥,+ + 16𝑥, + 6 = 0
𝑝< = 10𝑥#𝑥+ + 0𝑥#𝑥, + 0𝑥+𝑥, + 14𝑥#+ + 10𝑥# + 2𝑥++ + 9𝑥+ + 16𝑥,+ + 6𝑥, + 4 = 0

 

 
Step 2: From the Wang’s technique [33], we produce a Macaulay matrix 𝑀 of the system 𝒫. 
 

𝑀 =	K

𝑐#(#) 𝑐#(+) … 𝑐#(#))
𝑐+(#) 𝑐+(+) ⋯ 𝑐+(#))
⋮ ⋮ ⋱ ⋮

𝑐<(#) 𝑐<(+) ⋯ 𝑐<(#))

L 

 
 
 
 
 
 
 
 
 

 
Step 3: Execute the Gaussian elimination process and resulting in the following matrix: 
 
 
 
 

 
 
 
 
By considering the last row of the matrix 𝑀m , we have the opportunity to solve the univariate equation. 
 

11𝑥,+ + 11𝑥, + 10 = 0, 
 
leading to 𝑥, = 5 in 𝔽#9. By substitution 𝑥, = 5 into the system 𝒫(x), we will yield 
 
 
 
 
 
 
 
 
Step 4: Performing the Gaussian elimination procedure yields the subsequent matrix: 

     𝑥#𝑥+ 𝑥#𝑥, 𝑥+𝑥, 𝑥#+ 𝑥# 𝑥++ 𝑥+ 𝑥,+ 𝑥, 1 

=	

⎣
⎢
⎢
⎢
⎢
⎡
16 0 			0 1 8 10 8 16 14 1
9 0 		0 10 5 16 5 6 11 6
0 0 		0 3 11 11 16 7 9 6
4 0 		0 12 6 12 2 9 5 10
8 0 		0 7 14 3 5 11 16 6
10 0 		0 14 10 2 9 16 6 4 ⎦

⎥
⎥
⎥
⎥
⎤

 

 

       𝑥#𝑥+ 𝑥#𝑥, 𝑥+𝑥, 𝑥#+ 𝑥# 𝑥++ 𝑥+ 𝑥,+ 𝑥, 1 

𝑀m =	

⎣
⎢
⎢
⎢
⎢
⎡
16 0 			0 1 8 10 8 16 14 1
0 0 		0 15 8 13 8 3 16 2
0 0 		0 0 5 7 12 11 2 16
0 0 		0 0 0 15 14 9 10 14
0 0 		0 0 0 0 11 16 10 0
0 0 		0 0 0 0 0 11 11 10⎦

⎥
⎥
⎥
⎥
⎤

 

 

          𝑥#𝑥+ 𝑥#+ 𝑥# 𝑥++ 𝑥+ 1 

𝑀# =	

⎣
⎢
⎢
⎢
⎢
⎡
16 1 8 10 8 12
9 10 5 16 5 7
0 3 11 11 16 5
4 12 6 12 2 5
8 7 14 3 5 4
10 14 10 2 9 9 ⎦

⎥
⎥
⎥
⎥
⎤
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      From the matrix 𝑀#t , we can observe that the last non-zero row has the form of a univariate 
equation. Therefore, we can solve 11𝑥+ + 8 = 0 and obtain the solution of 𝑥+ = 7. 
 
      Iterate the process of substitution and Gaussian elimination, leading to the formation of matrices 
𝑀+ and 𝑀+t , respectively. 
 
 
 
 
 
 
 
    
      The last non-zero row of 𝑀+t , 7𝑥# + 6 = 0 gives the solution of 𝑥# = 4. As a result, we obtain the 
solution (𝑥#, 𝑥+, 𝑥,) = (4, 7, 5), which the message of the public system 𝒫(𝑥#, 𝑥+, 𝑥,) over 𝔽#9.  
 
6. Conclusions 
 
      We presented a mechanism to detect weak multivariate quadratic (MQ) structures through the 
visualization of the Macaulay matrix corresponding to the public system 𝒫(x). This strategy 
specifically applies to an overdetermined system using one-step Gaussian elimination. Furthermore, 
since MQ-based cryptosystems do not exponentially utilize many quadratic equations and variables, 
this strategy can effectively work for a system of 𝑚 quadratic equations in 𝑛 variables within 
polynomial time. This is possible due to the complexity of Gaussian elimination for a 𝑚 by 𝑛 matrix, 
which is 𝒪(𝑚𝑛+) [41]. Since this Gaussian elimination technique works for solving the multivariate 
quadratic problem, it might also be applicable for cubic multivariate schemes. 
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