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This paper considers multiple inclined edge cracks under normal stress originating at 
the interface of two bonded half-planes. The crack problem is formulated into the 
singular integral equation (SIE) using a modified complex potential (MCP) with the 
conditions of continuity for traction and displacement. A semi-open quadrature 
approach is applied for the numerical solution of the SIE. The behavior of stress 
intensity factors (SIFs) for both Modes I and II at all crack tips is computed and 
demonstrated graphically. The crack configuration, the elastic constant ratios of the 
planes, the inclination angle, and the distance between cracks have significantly 
influenced Modes I and II SIFs. By analyzing the behavior of SIF near the crack tip, 
engineers may predict the lifespan of the building structures.  
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1.Introduction 
 

Cracks or flaws may affect material durability, thereby jeopardizing the lifespan of building 
structures. Engineers can predict the propagation of cracks under different loading conditions by 
understanding the stress intensity factor (SIF), which is vital for analyzing the strength and durability 
of materials. It helps to determine whether a detected crack will remain stable or whether material 
poses a significant risk of catastrophic failure, such as structural damage and human death. 
Therefore, evaluating SIF is necessary for examining materials containing cracks. A number of 
researchers have conducted several studies on the behavior of SIF on many types of single and 
multiple cracks under different forms of stress. 

An anisotropic material with an oblique edge crack subjected to shear stress was formulated by 
Beom and Cui [1] using the linear transformation method. Mode III of SIF for the oblique edge crack 
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was calculated numerically. Hello et al., [2] presented the explicit formulas for every coefficient in 
the Laurent and power series of a single finite crack on an infinite plane due to the remote stress of 
Modes I and II. The analysis of a single inclined crack on a finite plane under biaxial tensile loads was 
discussed by Li et al., [3], and SIF was calculated using the distributed dislocation approach together 
with the Gauss-Chebyshev quadrature formula. Yu et al., [4] proposed a circular arc crack in the 
thermoelectric plane under electrical and thermal loads. Meanwhile, Hasebe [5] investigated a half-
plane weakens by a vertical crack by applying a polygonal mapping function that was formulated 
through Schwarz-Christoffel’s transformation. Subbaiah and Bollineni [6] used numerical modeling 
and a 2D axisymmetric finite element framework to analyze the SIF for an inclined edge crack that 
occurs on a cylinder pressure vessel while also performing the fracture analysis. In addition, the 
mechanical analysis of a kinked crack was studied by Liu and Wei [7] using conformal mapping and 
the complex variable function approach. Singh and Das [8] examined a partially insulated crack in a 
composite structure consisting of a pair of functionally graded strips of a random orientation that 
undergo thermomechanical loading. An inclined crack in thermoelectric bonded planes under remote 
stress was presented by Nordin et al., [9]. Recently, Husin et al., [10] considered a single-edge crack 
in two bonded half-planes undergoing shear stress. 

Furthermore, Jin and Keer [11] investigated multiple edge cracks on a semi-infinite plane 
subjected to constant stress using the distributed dislocation method. Hypersingular integral 
equations were applied to formulate multiple curved [12], inclined, and circular arc crack [13] 
problems. Multiple edge cracks and arbitrarily hole problems that are transversely isotropic and have 
piezoelectric properties caused by in-plane electrical and out-plane shear loads were explored by 
Wang et al., [14] using the numerical conformal mapping approach and the complex variable method. 
Choi [15] carried out parametric studies to address the problem of multiple parallel, edge-interfacial 
cracks caused by antiplane deformation, while Mode III SIF was taken into account. Moreover, an 
analysis is conducted by Stepanova and Roslyakov [16] to derive and examine the multiparametric 
representation of the stress distribution for multiple parallel cracks of finite lengths in an infinite 
plate due to mixed loading conditions. An automated numerical model of a finite plane with multiple 
kinked and straight cracks under uniform tensile stress was developed by Zhang et al., [17] using the 
distributed dislocation technique (DDT). Based on DDT, Moradi and Monfared [18] studied the 
multiple curved cracks in an orthotropic functionally graded material (FGM) layer that was bonded 
to a different orthotropic layer. They computed the SIFs for Modes I and II as well as the energy of 
strain transfer rates. 

However, there is limited research on multiple inclined edge cracks in two bonded half-planes. 
This paper presents the multiple edge cracks that originate at the interface of two bonded half-
planes, (i) towards the upper half of the planes and (ii) towards the upper and lower planes subjected 
to normal stress. The behavior of SIFs for Modes I and II on the inclination angle, the distance 
between cracks, and the elastic constant ratios of the planes is graphically described. 
 
2. Mathematical Formulation 
 

The complex variable function method is derived using the complex potential functions 
Φ(𝜁𝜁),Ψ(𝜁𝜁) with 𝜙𝜙′(𝜁𝜁),𝜓𝜓′(𝜁𝜁) corresponding to resultant force functions (𝑋𝑋,𝑌𝑌), 
displacements (𝑢𝑢, 𝑣𝑣), and stresses (𝜎𝜎𝑥𝑥,𝜎𝜎𝑦𝑦,𝜎𝜎𝑥𝑥𝑦𝑦) as follows [19]: 
 
𝜎𝜎𝑥𝑥 + 𝜎𝜎𝑦𝑦 = 4𝑅𝑅𝑅𝑅𝜙𝜙′(𝜁𝜁)                                                                                (1) 
 
𝜎𝜎𝑦𝑦 − 𝜎𝜎𝑥𝑥 + 2𝑖𝑖𝜎𝜎𝑥𝑥𝑦𝑦 = 2[𝜁𝜁Φ̅′(𝜁𝜁) + Ψ(𝜁𝜁)]                                                                (2) 
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−𝑌𝑌 + 𝑖𝑖𝑋𝑋 = 𝜙𝜙(𝜁𝜁) + 𝜉𝜉𝜙𝜙′(𝜁𝜁)������� + 𝜓𝜓(𝜁𝜁)������                                                                      (3) 
 
2𝐺𝐺(𝑢𝑢 + 𝑖𝑖𝑣𝑣) = 𝜅𝜅𝜙𝜙(𝜁𝜁) − 𝜁𝜁𝜙𝜙′(𝜁𝜁)������� − 𝜓𝜓(𝜁𝜁)������                                                                     (4) 
 
where 𝐺𝐺 abbreviates the elastic shear modulus, 𝑣𝑣 denotes the Poison’s ratio, plane stress and strain 
problems represent by 𝜅𝜅 = (3 − 𝑣𝑣)/(1 + 𝑣𝑣) and 𝜅𝜅 = 3 − 4𝑣𝑣, accordingly. A bar placed over a 
function implies the complex conjugate of that function. Differentiating Eq. (3) with respect to 𝜁𝜁 
obtainable the following expression.  
 

𝐽𝐽 �𝜁𝜁, 𝜁𝜁 ,̅ 𝑑𝑑𝜁𝜁
�

𝑑𝑑𝜁𝜁
� = 𝑑𝑑

𝑑𝑑𝜁𝜁
(−𝑌𝑌 + 𝑖𝑖𝑋𝑋) = Φ′(𝜁𝜁) + 𝜙𝜙′(𝜁𝜁)������� + 𝑑𝑑𝜁𝜁�

𝑑𝑑𝜁𝜁
�𝜁𝜁𝜙𝜙′′(𝜁𝜁)�������� + 𝜓𝜓′(𝜁𝜁)�������� = 𝑁𝑁 + 𝑖𝑖𝑖𝑖        (5) 

 
In Eq. (5), the defined traction functions are normal (𝑁𝑁) and tangential (𝑖𝑖). 
For a crack problem in a half-plane, the modified complex potential (MCP) is utilized. MCP consists 

of two different parts: the principal and complementary, which are represented as follows.  
 
𝜙𝜙(𝜁𝜁) = 𝜙𝜙𝑝𝑝(𝜁𝜁) + 𝜙𝜙𝑐𝑐(𝜁𝜁)                                                                               (6) 
 
𝜓𝜓(𝜁𝜁) = 𝜓𝜓𝑝𝑝(𝜁𝜁) + 𝜓𝜓𝑐𝑐(𝜁𝜁)                                                                               (7) 
 

In the original infinite plane problem, the dislocation distribution function 𝑔𝑔′(𝑡𝑡) along the crack 
deduces the principal part. The complementary part removes the traction that the principal part 
exerts on the boundary between the two planes. The complex potentials for both parts are expressed 
below.  
 

𝜙𝜙′
𝑝𝑝(𝜁𝜁) = 1

2𝜋𝜋 ∫
𝑔𝑔′(𝑡𝑡)𝑑𝑑𝑡𝑡 
𝑡𝑡−𝜁𝜁𝐿𝐿                                                                                 (8) 

 

𝜓𝜓′𝑝𝑝(𝜁𝜁) = 1
2𝜋𝜋 ∫

𝑔𝑔′(𝑡𝑡)������� 𝑑𝑑𝑡𝑡���

𝑡𝑡−𝜁𝜁𝐿𝐿 − 1
2𝜋𝜋 ∫

�̅�𝑡𝑔𝑔′(𝑡𝑡)𝑑𝑑𝑡𝑡���

(𝑡𝑡−𝜁𝜁)2𝐿𝐿                                                            (9) 

 
𝜙𝜙′

𝑐𝑐(𝜁𝜁) = −𝜙𝜙′
𝑝𝑝

�����(𝜁𝜁) − 𝜓𝜓′
𝑝𝑝

�����(𝜁𝜁) − 𝜉𝜉𝜙𝜙′′
𝑝𝑝

������(𝜁𝜁)                                                             (10) 
 
𝜓𝜓′

𝑐𝑐(𝜁𝜁) = 𝜓𝜓𝑝𝑝����(𝜁𝜁) + 3𝜁𝜁𝜙𝜙′′
𝑝𝑝

������(𝜁𝜁) + 𝜉𝜉𝜓𝜓′′
𝑝𝑝

������(𝜁𝜁) + 𝜁𝜁2𝜙𝜙′′′
𝑝𝑝

������(𝜁𝜁)                                             (11) 
      

The unknown distribution function, 𝑔𝑔′(𝑡𝑡), is explained by: 
 

𝑔𝑔′(𝑡𝑡) = − 2𝐺𝐺𝐺𝐺
𝜅𝜅+1

𝑑𝑑[(𝑢𝑢(𝑡𝑡)+𝐺𝐺𝑖𝑖(𝑡𝑡))+−(𝑢𝑢(𝑡𝑡)+𝐺𝐺𝑖𝑖(𝑡𝑡))−]
𝑑𝑑𝑡𝑡

,   𝑡𝑡 𝜖𝜖 𝐿𝐿,                                                           (12) 
 
𝐿𝐿 is the configuration of crack. (+) and (−) subscripts signify the upper and lower crack’s faces 
accordingly. 

For the edge crack problem, the substitutions applied in Eqs. (8) and (9) are as follows [20].      
 

𝜙𝜙′
𝑝𝑝(𝜁𝜁) = exp(𝐺𝐺𝑖𝑖)

2𝜋𝜋 ∫ 𝑔𝑔′(𝑠𝑠)𝑑𝑑𝑠𝑠 
𝑇𝑇𝑠𝑠−𝜁𝜁

𝑎𝑎
0                                                                             (13) 

 

𝜓𝜓′
𝑝𝑝(𝜁𝜁) = exp(−𝐺𝐺𝑖𝑖)

2𝜋𝜋 ∫ 𝑔𝑔′(𝑠𝑠)�������𝑑𝑑𝑠𝑠 
𝑇𝑇𝑠𝑠−𝜁𝜁

𝑎𝑎
0 − exp(𝐺𝐺𝑖𝑖)

2𝜋𝜋 ∫ 𝑇𝑇𝑠𝑠�𝑔𝑔′(𝑠𝑠)𝑑𝑑𝑠𝑠 
(𝑇𝑇𝑠𝑠−𝜁𝜁)2

 𝑎𝑎
0                                                      (14) 
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𝑡𝑡 is replaced with 𝑖𝑖𝑠𝑠, where 𝑖𝑖𝑠𝑠 = 𝑅𝑅 + 𝑠𝑠 exp(𝑖𝑖𝑖𝑖), and 𝑑𝑑𝑡𝑡 is replaced with exp(𝑖𝑖𝑖𝑖)𝑑𝑑𝑠𝑠 in the above Eqs. 
(13) and (14). A single edge crack emerges at the interface of two bonded planes in the upper half of 
the planes. MCP is obtainable as follows [21].    
 
𝜙𝜙1(𝜁𝜁) = 𝜙𝜙1𝑝𝑝(𝜁𝜁) + 𝜙𝜙1𝑐𝑐(𝜁𝜁)                                                                            (15) 
 
𝜓𝜓1(𝜁𝜁) = 𝜓𝜓1𝑝𝑝(𝜁𝜁) + 𝜓𝜓1𝑐𝑐(𝜁𝜁)                                                                            (16) 
 

The complex potentials in the lower part are denoted by 𝜙𝜙2 and 𝜓𝜓2. The following is a 
representation of the continuity conditions for the resultant force in Eq. (3) and the displacements in 
Eq. (4), accordingly. 
 
�𝜙𝜙1(𝜁𝜁) + 𝜁𝜁𝜙𝜙′1(𝜁𝜁)��������+ 𝜓𝜓1(𝜁𝜁)���������

+
= �𝜙𝜙2(𝜁𝜁) + 𝜁𝜁𝜙𝜙′2(𝜁𝜁)�������� + 𝜓𝜓2(𝜁𝜁)���������

−
,  𝑖𝑖𝑠𝑠 𝜖𝜖 𝐿𝐿                              (17) 

 
𝐺𝐺2�𝜅𝜅1𝜙𝜙1(𝜁𝜁) − 𝜁𝜁𝜙𝜙′1(𝜁𝜁)�������� − 𝜓𝜓1(𝜁𝜁)���������

+
= 𝐺𝐺1�𝜅𝜅2𝜙𝜙2(𝜁𝜁) − 𝜁𝜁𝜙𝜙′2(𝜁𝜁)�������� − 𝜓𝜓2(𝜁𝜁)���������

−
, 𝑖𝑖𝑠𝑠 𝜖𝜖 𝐿𝐿.                       (18) 

 
By substituting Eqs. (15) and (16) into Eqs. (17) and (18), the following expressions yield: 

 
𝜙𝜙1𝑐𝑐(𝜁𝜁) = 𝛿𝛿1�𝜁𝜁𝜙𝜙′1𝑝𝑝������(𝜁𝜁) + 𝜓𝜓′1𝑝𝑝������(𝜁𝜁)�                                                                    (19) 
 
𝜓𝜓1𝑐𝑐(𝜁𝜁) = 𝛿𝛿2𝜁𝜁𝜙𝜙1𝑝𝑝�����(𝜁𝜁) − 𝛿𝛿1 �𝜁𝜁𝜙𝜙′

1𝑝𝑝
������(𝜁𝜁) + 𝜁𝜁2𝜙𝜙′′

1𝑝𝑝
�������(𝜁𝜁) + 𝜁𝜁𝜓𝜓′

1𝑝𝑝
������(𝜁𝜁)�                                      (20) 

 
𝜙𝜙2(𝜁𝜁)  = (1 + 𝛿𝛿2)𝜙𝜙1𝑝𝑝(𝜁𝜁)                                                                            (21) 
 

𝜓𝜓2(𝜁𝜁)  = (1 + 𝛿𝛿1)𝜓𝜓1𝑝𝑝(𝜁𝜁) + (𝛿𝛿1 − 𝛿𝛿2) �𝜁𝜁𝜙𝜙′
1𝑝𝑝(𝜁𝜁)�                                                     (22) 

 
where 𝛿𝛿1 and 𝛿𝛿2 are the bi-elastic constants as follows. 
 
𝛿𝛿1 = 𝐺𝐺2−𝐺𝐺1

𝐺𝐺1+𝜅𝜅1𝐺𝐺2
 , 𝛿𝛿2 = 𝜅𝜅1𝐺𝐺2−𝜅𝜅2𝐺𝐺1

𝐺𝐺2+𝜅𝜅2𝐺𝐺1
                                                                           (23) 

 
The formulation of the singular integral equation (SIE) for a single edge crack in two bonded half-

planes includes a pair of components, particularly [𝑁𝑁(𝑠𝑠0) + 𝑖𝑖𝑖𝑖(𝑠𝑠0)]1𝑝𝑝 and  [𝑁𝑁(𝑠𝑠0) + 𝑖𝑖𝑖𝑖(𝑠𝑠0)]1𝑐𝑐. By 
substituting Eqs. (13) and (14) into Eq. (5), taking the limit as 𝑠𝑠 approaches 𝑠𝑠0, the traction of the 
principal component can be obtained as: 
 
[𝑁𝑁(𝑠𝑠0) + 𝑖𝑖𝑖𝑖(𝑠𝑠0)]1𝑝𝑝 = 1

𝜋𝜋 ∫
𝑔𝑔′(𝑠𝑠)𝑑𝑑𝑠𝑠
𝑠𝑠−𝑠𝑠0

+ 1
𝜋𝜋 ∫ 𝑃𝑃1(𝑠𝑠, 𝑠𝑠0)𝑔𝑔′(𝑠𝑠)𝑑𝑑𝑠𝑠 + 1

𝜋𝜋 ∫ 𝑃𝑃2(𝑠𝑠, 𝑠𝑠0)𝑔𝑔′(𝑠𝑠)�������𝑑𝑑𝑠𝑠𝑎𝑎
0

𝑎𝑎
0

𝑎𝑎
0                       (24) 

 
where: 
 

 𝑃𝑃1(𝑠𝑠, 𝑠𝑠0) = exp(𝐺𝐺𝑖𝑖)
2

� 1
𝑇𝑇𝑠𝑠−𝑇𝑇𝑠𝑠0

+ exp(−2𝑖𝑖𝑖𝑖) 1
𝑇𝑇𝑠𝑠�−𝑇𝑇�𝑠𝑠0

�  

 

𝑃𝑃2(𝑠𝑠, 𝑠𝑠0) = exp(−𝐺𝐺𝑖𝑖)
2

� 1
𝑇𝑇𝑠𝑠�−𝑇𝑇�𝑠𝑠0

− exp(−2𝑖𝑖𝑖𝑖) 𝑇𝑇𝑠𝑠−𝑇𝑇𝑠𝑠0
(𝑇𝑇𝑠𝑠�−𝑇𝑇�𝑠𝑠0)2

�.  
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Implementing Eqs. (19) and (20) into Eq. (5), associated with Eqs. (13) and (14), and taking the 
limit as 𝑠𝑠 approaches 𝑠𝑠0, the complementary component is obtained as follows: 
 
[𝑁𝑁(𝑠𝑠0) + 𝑖𝑖𝑖𝑖(𝑠𝑠0)]1𝑐𝑐 = 1

𝜋𝜋 ∫
𝑔𝑔′(𝑠𝑠)𝑑𝑑𝑠𝑠
𝑠𝑠−𝑠𝑠0

+ 1
𝜋𝜋 ∫ �𝑄𝑄1(𝑠𝑠, 𝑠𝑠0) + 𝑄𝑄2(𝑠𝑠, 𝑠𝑠0)�𝑔𝑔′(𝑠𝑠)𝑑𝑑𝑠𝑠 +𝑎𝑎

0
𝑎𝑎
0   

                                        + 1
𝜋𝜋 ∫ �𝑄𝑄3(𝑠𝑠, 𝑠𝑠0) + 𝑄𝑄4(𝑠𝑠, 𝑠𝑠0)�𝑔𝑔′(𝑠𝑠)�������𝑑𝑑𝑠𝑠 𝑎𝑎

0                                             (25) 
 
where: 
 

𝑄𝑄1(𝑠𝑠, 𝑠𝑠0) = exp(𝐺𝐺𝑖𝑖)
2

�𝛿𝛿1 �
1

𝑇𝑇𝑠𝑠�−𝑇𝑇𝑠𝑠0
+ 1

𝑇𝑇𝑠𝑠−𝑇𝑇�𝑠𝑠0
+

𝑇𝑇�𝑠𝑠0−𝑇𝑇𝑠𝑠�

(𝑇𝑇𝑠𝑠−𝑇𝑇�𝑠𝑠0)2
��   

 

𝑄𝑄2(𝑠𝑠, 𝑠𝑠0) = exp(𝐺𝐺𝑖𝑖)
2

�exp(−2𝑖𝑖𝑖𝑖) �𝛿𝛿1 �
𝑇𝑇𝑠𝑠�−3𝑇𝑇�𝑠𝑠0

(𝑇𝑇𝑠𝑠−𝑇𝑇�𝑠𝑠0)2
− 1

𝑇𝑇𝑠𝑠−𝑇𝑇�𝑠𝑠0
+

2𝑇𝑇�𝑠𝑠0(𝑇𝑇𝑠𝑠�−𝑇𝑇�𝑠𝑠0)
(𝑇𝑇𝑠𝑠−𝑇𝑇�𝑠𝑠0)3

+
2𝑇𝑇𝑠𝑠0(𝑇𝑇𝑠𝑠−𝑇𝑇𝑠𝑠� )

(𝑇𝑇𝑠𝑠−𝑇𝑇�𝑠𝑠0)3
� + 𝛿𝛿2 �

1
𝑇𝑇𝑠𝑠−𝑇𝑇�𝑠𝑠0

� ��  

 

𝑄𝑄3(𝑠𝑠, 𝑠𝑠0) = exp(−𝐺𝐺𝑖𝑖)
2

�𝛿𝛿1 �
1

𝑇𝑇𝑠𝑠−𝑇𝑇�𝑠𝑠0
+ 1

𝑇𝑇𝑠𝑠�−𝑇𝑇𝑠𝑠0
+

𝑇𝑇𝑠𝑠0−𝑇𝑇𝑠𝑠
(𝑇𝑇𝑠𝑠�−𝑇𝑇𝑠𝑠0)2

+��  

 

𝑄𝑄4(𝑠𝑠, 𝑠𝑠0) = exp(−𝐺𝐺𝑖𝑖)
2

�exp(−2𝑖𝑖𝑖𝑖) �𝛿𝛿1 �
𝑇𝑇𝑠𝑠0−𝑇𝑇�𝑠𝑠0

(𝑇𝑇𝑠𝑠−𝑇𝑇�𝑠𝑠0)2
− 1

𝑇𝑇𝑠𝑠−𝑇𝑇�𝑠𝑠0
���.  

 
Combining both components yield 

 
[𝑁𝑁(𝑠𝑠0) + 𝑖𝑖𝑖𝑖(𝑠𝑠0)] = 1

𝜋𝜋 ∫
𝑔𝑔′(𝑠𝑠)𝑑𝑑𝑠𝑠
𝑠𝑠−𝑠𝑠0

+ 1
𝜋𝜋 ∫ 𝜇𝜇1(𝑠𝑠, 𝑠𝑠0)𝑔𝑔′(𝑠𝑠)𝑑𝑑𝑠𝑠 + 1

𝜋𝜋 ∫ 𝜇𝜇2(𝑠𝑠, 𝑠𝑠0)𝑔𝑔′(𝑠𝑠)�������𝑑𝑑𝑠𝑠 𝑎𝑎
0

𝑎𝑎
0

𝑎𝑎
0                (26) 

 
where: 
 
𝜇𝜇1(𝑠𝑠, 𝑠𝑠0) = 𝑃𝑃1(𝑠𝑠, 𝑠𝑠0) + 𝑄𝑄1(𝑠𝑠, 𝑠𝑠0) + 𝑄𝑄2(𝑠𝑠, 𝑠𝑠0) 
 
𝜇𝜇2(𝑠𝑠, 𝑠𝑠0) = 𝑃𝑃2(𝑠𝑠, 𝑠𝑠0) + 𝑄𝑄3(𝑠𝑠, 𝑠𝑠0) + 𝑄𝑄4(𝑠𝑠, 𝑠𝑠0).  
 

For the multiple edge cracks, the formulation of SIE is established from two groups of 𝑁𝑁 + 𝑖𝑖𝑖𝑖 and 
comprised of four components, which are [𝑁𝑁(𝑠𝑠10) + 𝑖𝑖𝑖𝑖(𝑠𝑠10)]11,  [𝑁𝑁(𝑠𝑠10) + 𝑖𝑖𝑖𝑖(𝑠𝑠10)]12, [𝑁𝑁(𝑠𝑠20) +
𝑖𝑖𝑖𝑖(𝑠𝑠20)]22 and [𝑁𝑁(𝑠𝑠20) + 𝑖𝑖𝑖𝑖(𝑠𝑠20)]21. �𝑁𝑁�𝑠𝑠𝑗𝑗0� + 𝑖𝑖𝑖𝑖(𝑠𝑠𝑗𝑗0)�

𝑗𝑗𝑝𝑝
 and �𝑁𝑁�𝑠𝑠𝑗𝑗0� + 𝑖𝑖𝑖𝑖(𝑠𝑠𝑗𝑗0)�

𝑗𝑗𝑐𝑐
 represent the 

traction of principal and complementary parts, respectively when the observation point is applied at 
𝑠𝑠𝑗𝑗0 for crack-𝐿𝐿𝑗𝑗 for 𝑗𝑗 = 1, 2. The SIEs for crack-𝐿𝐿1 in the upper part of two bonded half-planes yield 
 
[𝑁𝑁(𝑠𝑠10) + 𝑖𝑖𝑖𝑖(𝑠𝑠10)]1 = [𝑁𝑁(𝑠𝑠10) + 𝑖𝑖𝑖𝑖(𝑠𝑠10)]11 + [𝑁𝑁(𝑠𝑠10) + 𝑖𝑖𝑖𝑖(𝑠𝑠10)]12  
                                       =  1

𝜋𝜋 ∫
𝑔𝑔1′(𝑠𝑠1)𝑑𝑑𝑠𝑠1
𝑠𝑠1−𝑠𝑠10𝐿𝐿1

+ 1
𝜋𝜋 ∫ 𝜇𝜇1(𝑠𝑠1, 𝑠𝑠10)𝑔𝑔1

′(𝑠𝑠1)𝑑𝑑𝑠𝑠1𝐿𝐿1
+ 1

𝜋𝜋 ∫ 𝜇𝜇2(𝑠𝑠1, 𝑠𝑠10)𝑔𝑔1′(𝑠𝑠1)��������� 𝑑𝑑𝑠𝑠1𝐿𝐿1
   

+ 1
𝜋𝜋 ∫

𝑔𝑔2′(𝑠𝑠2)𝑑𝑑𝑠𝑠2
𝑠𝑠2−𝑠𝑠10

+𝐿𝐿2
1
𝜋𝜋 ∫ 𝜇𝜇1(𝑠𝑠2, 𝑠𝑠10)𝑔𝑔2

′(𝑠𝑠2)𝑑𝑑𝑠𝑠2 +𝐿𝐿2
  

 1
𝜋𝜋 ∫ 𝜇𝜇2(𝑠𝑠2, 𝑠𝑠10)𝑔𝑔2′(𝑠𝑠2)��������� 𝑑𝑑𝑠𝑠2.𝐿𝐿2

                                                      (27)                                                                                                                                                           
 
and the SIEs for crack-𝐿𝐿2 in the upper part of two bonded half-planes yield 
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[𝑁𝑁(𝑠𝑠20) + 𝑖𝑖𝑖𝑖(𝑠𝑠20)]2 = [𝑁𝑁(𝑠𝑠20) + 𝑖𝑖𝑖𝑖(𝑠𝑠20)]22 + [𝑁𝑁(𝑠𝑠20) + 𝑖𝑖𝑖𝑖(𝑠𝑠20)]21 
                                                                   = 1

𝜋𝜋 ∫
𝑔𝑔2′(𝑠𝑠2)𝑑𝑑𝑠𝑠2
𝑠𝑠2−𝑠𝑠20𝐿𝐿2

+ 1
𝜋𝜋 ∫ 𝜇𝜇1(𝑠𝑠2, 𝑠𝑠20)𝑔𝑔2

′(𝑠𝑠2)𝑑𝑑𝑠𝑠2𝐿𝐿2
  

                                                                      + 1
𝜋𝜋 ∫ 𝜇𝜇2(𝑠𝑠2, 𝑠𝑠20)𝑔𝑔2′(𝑠𝑠2)��������� 𝑑𝑑𝑠𝑠2𝐿𝐿2

+ 1
𝜋𝜋 ∫

𝑔𝑔1′(𝑠𝑠1)𝑑𝑑𝑠𝑠1
𝑠𝑠1−𝑠𝑠20𝐿𝐿1

 

                            1
𝜋𝜋 ∫ 𝜇𝜇1(𝑠𝑠1, 𝑠𝑠20)𝑔𝑔1

′(𝑠𝑠1)𝑑𝑑𝑠𝑠1𝐿𝐿1
+  

       1
𝜋𝜋 ∫ 𝜇𝜇2(𝑠𝑠1, 𝑠𝑠20)𝑔𝑔1′(𝑠𝑠1)��������� 𝑑𝑑𝑠𝑠1.𝐿𝐿1

                                                 (28)                                                                                                                                                                    
 

For the multiple edge cracks that originate at the interface of two bonded planes towards the 
upper and lower parts of the planes, four traction components, �𝑁𝑁�𝑠𝑠𝑗𝑗0� + 𝑖𝑖𝑖𝑖(𝑠𝑠𝑗𝑗0)�

𝑗𝑗𝑗𝑗
 for 𝑗𝑗 = 1, 2,

𝑘𝑘 = 1, 2 that comprise two groups of 𝑁𝑁 + 𝑖𝑖𝑖𝑖 effects are defined. Those first two components  
[𝑁𝑁(𝑠𝑠10) + 𝑖𝑖𝑖𝑖(𝑠𝑠10)]11 and  [𝑁𝑁(𝑠𝑠20) + 𝑖𝑖𝑖𝑖(𝑠𝑠20)]21 will be attained as the observation point is located 
at 𝑠𝑠10𝜖𝜖𝐿𝐿1 and 𝑠𝑠20𝜖𝜖𝐿𝐿2, accordingly that influenced by 𝑔𝑔1′(𝑠𝑠1) at 𝑠𝑠1𝜖𝜖𝐿𝐿1. The second two components 
[𝑁𝑁(𝑠𝑠10) + 𝑖𝑖𝑖𝑖(𝑠𝑠10)]12 and [𝑁𝑁(𝑠𝑠20) + 𝑖𝑖𝑖𝑖(𝑠𝑠20)]22 will be attained as the observation point is located 
at 𝑠𝑠10𝜖𝜖𝐿𝐿1 and 𝑠𝑠20𝜖𝜖𝐿𝐿2, accordingly that influenced by 𝑔𝑔2′(𝑠𝑠2) at 𝑠𝑠2𝜖𝜖𝐿𝐿2. Here, two bi-elastic 
parameters are established, as follows: 
 
𝜆𝜆1 = 𝐺𝐺1−𝐺𝐺2

𝐺𝐺2+𝜅𝜅2𝐺𝐺1
 , 𝜆𝜆2 = 𝜅𝜅2𝐺𝐺1−𝜅𝜅1𝐺𝐺2

𝐺𝐺1+𝜅𝜅1𝐺𝐺2
                                                                     (29) 

 
By changing the subscript 1 to 2 and 2 to 1 in 𝛿𝛿1 and 𝛿𝛿2. The SIEs for crack-𝐿𝐿1 in the upper part 

of two bonded half-planes yield 
 
[𝑁𝑁(𝑠𝑠10) + 𝑖𝑖𝑖𝑖(𝑠𝑠10)]1 = [𝑁𝑁(𝑠𝑠10) + 𝑖𝑖𝑖𝑖(𝑠𝑠10)]11 + [𝑁𝑁(𝑠𝑠10) + 𝑖𝑖𝑖𝑖(𝑠𝑠10)]12  
                                       = 1

𝜋𝜋 ∫
𝑔𝑔1′(𝑠𝑠1)𝑑𝑑𝑠𝑠1
𝑠𝑠1−𝑠𝑠10𝐿𝐿1

+ 1
𝜋𝜋 ∫ 𝜇𝜇1(𝑠𝑠1, 𝑠𝑠10)𝑔𝑔1

′(𝑠𝑠1)𝑑𝑑𝑠𝑠1𝐿𝐿1
   

+ 1
𝜋𝜋 ∫ 𝜇𝜇2(𝑠𝑠1, 𝑠𝑠10)𝑔𝑔1′(𝑠𝑠1)��������� 𝑑𝑑𝑠𝑠1 + 1

𝜋𝜋 ∫
𝑔𝑔2′(𝑠𝑠2)𝑑𝑑𝑠𝑠2
𝑠𝑠2−𝑠𝑠10

+𝐿𝐿2𝐿𝐿1
  

1
𝜋𝜋 ∫ 𝑀𝑀1(𝑠𝑠2, 𝑠𝑠10)𝑔𝑔2

′(𝑠𝑠2)𝑑𝑑𝑠𝑠2𝐿𝐿2
+ 1

𝜋𝜋 ∫ 𝑀𝑀2(𝑠𝑠2, 𝑠𝑠10)𝑔𝑔2′(𝑠𝑠2)��������� 𝑑𝑑𝑠𝑠2.𝐿𝐿2
                      (30) 

 
The SIEs for crack-𝐿𝐿2 in the lower part of two bonded half-planes yield 
 
[𝑁𝑁(𝑠𝑠20) + 𝑖𝑖𝑖𝑖(𝑠𝑠20)]2 = [𝑁𝑁(𝑠𝑠20) + 𝑖𝑖𝑖𝑖(𝑠𝑠20)]22 + [𝑁𝑁(𝑠𝑠20) + 𝑖𝑖𝑖𝑖(𝑠𝑠20)]21  
                                       = (1 + 𝜆𝜆2) 1

𝜋𝜋 ∫
𝑔𝑔2′(𝑠𝑠2)𝑑𝑑𝑠𝑠2
𝑠𝑠2−𝑠𝑠20𝐿𝐿2

+ 1
𝜋𝜋 ∫ 𝐵𝐵1(𝑠𝑠2, 𝑠𝑠20)𝑔𝑔2

′(𝑠𝑠2)𝑑𝑑𝑠𝑠2𝐿𝐿2
   

                                           + 1
𝜋𝜋 ∫ 𝐵𝐵2(𝑠𝑠2, 𝑠𝑠20)𝑔𝑔2′(𝑠𝑠2)��������� 𝑑𝑑𝑠𝑠2 + (1 + 𝛿𝛿2) 1

𝜋𝜋 ∫
𝑔𝑔1′(𝑠𝑠1)𝑑𝑑𝑠𝑠1
𝑠𝑠1−𝑠𝑠20𝐿𝐿1𝐿𝐿2

  

                                           + 1
𝜋𝜋 ∫ 𝐵𝐵3(𝑠𝑠1, 𝑠𝑠20)𝑔𝑔1

′(𝑠𝑠1)𝑑𝑑𝑠𝑠1𝐿𝐿1
+ 1

𝜋𝜋 ∫ 𝐵𝐵4(𝑠𝑠1, 𝑠𝑠20)𝑔𝑔1′(𝑠𝑠1)��������� 𝑑𝑑𝑠𝑠1𝐿𝐿1
                        (31)                                                                                                                                                     

 
where: 
 

𝑀𝑀1(𝑠𝑠2, 𝑠𝑠10) = exp(𝐺𝐺𝑖𝑖)
2

�𝜆𝜆1 �
1

𝑇𝑇�𝑠𝑠2−𝑇𝑇𝑠𝑠10
+ 1

𝑇𝑇𝑠𝑠2−𝑇𝑇�𝑠𝑠10
+

𝑇𝑇�𝑠𝑠10−𝑇𝑇�𝑠𝑠2
(𝑇𝑇𝑠𝑠2−𝑇𝑇�𝑠𝑠10)2

��   

                          + exp(𝐺𝐺𝑖𝑖)
2

�exp(−2𝑖𝑖𝑖𝑖) �𝜆𝜆1 �−
1

𝑇𝑇𝑠𝑠2−𝑇𝑇�𝑠𝑠10
+

𝑇𝑇�𝑠𝑠2−3𝑇𝑇�𝑠𝑠10
�𝑇𝑇𝑠𝑠2−𝑇𝑇�𝑠𝑠10�

2 +
2𝑇𝑇𝑠𝑠10�𝑇𝑇𝑠𝑠2−𝑇𝑇�𝑠𝑠2�

�𝑇𝑇𝑠𝑠2−𝑇𝑇�𝑠𝑠10�
3  

2𝑇𝑇�𝑠𝑠10(𝑇𝑇�𝑠𝑠2−𝑇𝑇�𝑠𝑠10)
(𝑇𝑇𝑠𝑠2−𝑇𝑇�𝑠𝑠10)3

� +

𝜆𝜆2 �
1

𝑇𝑇𝑠𝑠2−𝑇𝑇�𝑠𝑠10
� ��     
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𝑀𝑀2(𝑠𝑠2, 𝑠𝑠10) = exp(−𝐺𝐺𝑖𝑖)
2

�𝜆𝜆1 �
1

𝑇𝑇�𝑠𝑠2−𝑇𝑇𝑠𝑠10
+

𝑇𝑇𝑠𝑠10−𝑇𝑇𝑠𝑠2
(𝑇𝑇�𝑠𝑠2−𝑇𝑇𝑠𝑠10)2

+ 1
𝑇𝑇𝑠𝑠2−𝑇𝑇�𝑠𝑠10

��  

                          + exp(−𝐺𝐺𝑖𝑖)
2

�exp(−2𝑖𝑖𝑖𝑖) �𝜆𝜆1 �
𝑇𝑇𝑠𝑠10−𝑇𝑇�𝑠𝑠10

(𝑇𝑇𝑠𝑠2−𝑇𝑇�𝑠𝑠10)2
− 1

𝑇𝑇𝑠𝑠2−𝑇𝑇�𝑠𝑠10
���, 

and 
 

𝐵𝐵1(𝑠𝑠2, 𝑠𝑠20) = exp(𝐺𝐺𝑖𝑖)
2

�−(1 + 𝜆𝜆2) 1
𝑇𝑇𝑠𝑠2−𝑇𝑇𝑠𝑠20

+ (1 + 𝜆𝜆1) 1
𝑇𝑇�𝑠𝑠2−𝑇𝑇�𝑠𝑠20

exp(−2𝑖𝑖𝑖𝑖)�  

 

𝐵𝐵2(𝑠𝑠2, 𝑠𝑠20) = exp(−𝐺𝐺𝑖𝑖)
2

�(1 + 𝜆𝜆2) 1
𝑇𝑇�𝑠𝑠2−𝑇𝑇�𝑠𝑠20

+ exp(−2𝑖𝑖𝑖𝑖) �(1 + 𝜆𝜆2) 𝑇𝑇𝑠𝑠20
(𝑇𝑇�𝑠𝑠2−𝑇𝑇�𝑠𝑠20)2

− (1 + 𝜆𝜆1) 𝑇𝑇𝑠𝑠2
(𝑇𝑇�𝑠𝑠2−𝑇𝑇�𝑠𝑠20)2

+

(𝜆𝜆1 − 𝜆𝜆2) � 1
𝑇𝑇�𝑠𝑠2−𝑇𝑇�𝑠𝑠20

+
𝑇𝑇�𝑠𝑠20

(𝑇𝑇�𝑠𝑠2−𝑇𝑇�𝑠𝑠20)2
���  

 

𝐵𝐵3(𝑠𝑠1, 𝑠𝑠20) = exp(𝐺𝐺𝑖𝑖)
2

�−(1 + 𝛿𝛿2) 1
𝑇𝑇𝑠𝑠1−𝑇𝑇𝑠𝑠20

+ (1 + 𝛿𝛿1) 1
𝑇𝑇�𝑠𝑠1−𝑇𝑇�𝑠𝑠20

exp(−2𝑖𝑖𝑖𝑖)�  

 

𝐵𝐵4(𝑠𝑠1, 𝑠𝑠20) = exp(−𝐺𝐺𝑖𝑖)
2

�(1 + 𝛿𝛿2) 1
𝑇𝑇�𝑠𝑠1−𝑇𝑇�𝑠𝑠20

+ exp(−2𝑖𝑖𝑖𝑖) �(1 + 𝛿𝛿2) 𝑇𝑇𝑠𝑠20
(𝑇𝑇�𝑠𝑠1−𝑇𝑇�𝑠𝑠20)2

− (1 + 𝛿𝛿1) 𝑇𝑇𝑠𝑠1
(𝑇𝑇�𝑠𝑠1−𝑇𝑇�𝑠𝑠20)2

+

(𝛿𝛿1 − 𝛿𝛿2) � 1
𝑇𝑇�𝑠𝑠1−𝑇𝑇�𝑠𝑠20

+
𝑇𝑇�𝑠𝑠20

(𝑇𝑇�𝑠𝑠1−𝑇𝑇�𝑠𝑠20)2
���.  

 
At the particular tip of the crack, the dislocation distribution is singular, let: 

 

𝑔𝑔𝑗𝑗′�𝑠𝑠𝑗𝑗� = �
𝑠𝑠𝑗𝑗

�𝑎𝑎𝑗𝑗−𝑠𝑠𝑗𝑗�
𝐺𝐺𝑗𝑗�𝑠𝑠𝑗𝑗�,   𝑗𝑗 = 1, 2                     (32) 

 
Then, the SIE is numerically solved using semi-open quadrature rules accounting for both singular 

and regular integrals, respectively, as follows [22]: 
 

∫ 𝐺𝐺(𝑠𝑠)
𝑠𝑠−𝑠𝑠𝑘𝑘

�� 𝑠𝑠
𝑎𝑎−𝑠𝑠

� 𝑑𝑑𝑠𝑠𝑎𝑎
0 = ∑ 𝑊𝑊𝑗𝑗𝐺𝐺(𝑠𝑠𝑗𝑗)

𝑠𝑠𝑗𝑗−𝑠𝑠𝑘𝑘
𝑀𝑀
𝑗𝑗=1                      (33) 

 

∫ 𝐾𝐾(𝑠𝑠, 𝑠𝑠𝑗𝑗)�� 𝑠𝑠
𝑎𝑎−𝑠𝑠

� 𝑑𝑑𝑠𝑠𝑎𝑎
0 = ∑ 𝑊𝑊𝑗𝑗𝐾𝐾(𝑠𝑠𝑗𝑗 , 𝑠𝑠𝑗𝑗)𝑀𝑀

𝑗𝑗=1                     (34) 

 
where: 
 

𝑊𝑊𝑗𝑗 =
𝑖𝑖𝑎𝑎
𝑀𝑀
𝑠𝑠𝑖𝑖𝑠𝑠2

𝑗𝑗𝑎𝑎
2𝑀𝑀

    (𝑗𝑗 = 1, 2, … ,𝑀𝑀 − 1), 
 

𝑠𝑠𝑗𝑗 = 𝑖𝑖 𝑠𝑠𝑖𝑖𝑠𝑠2
𝑗𝑗𝑎𝑎

2𝑀𝑀
    (𝑗𝑗 = 1, 2, … ,𝑀𝑀), 

 

𝑠𝑠𝑗𝑗 = 𝑖𝑖 𝑠𝑠𝑖𝑖𝑠𝑠2
(𝑘𝑘 − 0.5)𝑎𝑎

2𝑀𝑀
  (𝑘𝑘 = 1, 2, … ,𝑀𝑀). 
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3. Numerical Examples and Discussions 
 

Stress intensity factors (SIFs) at the tip of crack 𝐴𝐴𝑗𝑗 for 𝑗𝑗 = 1, 2 can be computed by: 
 

𝐾𝐾𝐴𝐴𝑗𝑗 = (𝐾𝐾1 − 𝑖𝑖𝐾𝐾2)𝐴𝐴𝑗𝑗 
       = −√2𝑎𝑎 lim

𝑠𝑠𝑗𝑗→𝑎𝑎𝑗𝑗
�𝑖𝑖𝑗𝑗 − 𝑠𝑠𝑗𝑗 𝑔𝑔𝑗𝑗′(𝑠𝑠𝑗𝑗) 

       = −�2𝑎𝑎𝑖𝑖𝑗𝑗  𝐺𝐺𝑗𝑗�𝑖𝑖𝑗𝑗�                       (35) 
 

Hence, it signifies. 
 
𝐾𝐾1 = 𝐹𝐹1𝐴𝐴𝑗𝑗𝑝𝑝�𝑎𝑎𝑖𝑖𝑗𝑗 ,                    𝐹𝐹1𝐴𝐴𝑗𝑗 = −√2𝐺𝐺𝑗𝑗�𝑖𝑖𝑗𝑗�,      
𝐾𝐾2 = −𝐹𝐹2𝐴𝐴𝑗𝑗𝑝𝑝�𝑎𝑎𝑖𝑖𝑗𝑗 ,                 𝐹𝐹2𝐴𝐴𝑗𝑗 = −√2𝐺𝐺𝑗𝑗�𝑖𝑖𝑗𝑗�,                   (36)  
 
where 𝐹𝐹𝐴𝐴𝑗𝑗 = (𝐹𝐹1𝐴𝐴𝑗𝑗 − 𝑖𝑖𝐹𝐹2𝐴𝐴𝑗𝑗), 𝐹𝐹1 and 𝐹𝐹2 indicate Modes I and II of the nondimensional SIFs. 
 
3.1 Example 1 
 

Consider multiple edge cracks emerging at the interface of two bonded half-planes towards the 
upper part of the planes due to normal stress, illustrated in Figure 1. 𝑅𝑅 is the crack’s length, 𝑅𝑅2 
signifies the distance between cracks, 𝑖𝑖1 and 𝑖𝑖2 denote the inclined angles, and 𝐴𝐴1, 𝐴𝐴2 are the crack’s 
tip of crack 1 and 2 accordingly. When 𝐺𝐺2 = 0, Eq. (26) reduces our problem to a half-plane 
containing an edge crack. From Table 1, it is found that the maximum percentage difference between 
the calculated results with Chen and Hasebe [20] is 0.085%. This validates our computation findings. 
 

Table 1 
Nondimensional SIFs at crack’s tips for a single inclined edge crack in a half-plane under normal stress when 
inclined angle, 𝑖𝑖(°) varies 
𝑖𝑖 (°) 5 10 15 20 25 30 35 40 45 
𝐹𝐹1(𝑖𝑖)∗ 0.0881 0.1494 0.2298 0.3057 0.3824 0.4631 0.5438 0.6250 0.7048 
𝐹𝐹1(𝑖𝑖)∗∗ 0.0881 0.1495 0.2297 0.3058 0.3825 0.4633 0.5439 0.6252 0.7054 
𝐹𝐹2(𝑖𝑖)∗ 0.1901 0.1849 0.2276 0.2709 0.3079 0.3358 0.3553 0.3648 0.3645 
𝐹𝐹2(𝑖𝑖)∗∗ 0.1901 0.1851 0.2277 0.2709 0.3080 0.3359 0.3554 0.3646 0.3648 
𝑖𝑖 (°) 50 55 60 65 70 75 80 85 90 
𝐹𝐹1(𝑖𝑖)∗ 0.7816 0.8529 0.9204 0.9788 1.0286 1.0686 1.0978 1.1156 1.1216 
𝐹𝐹1(𝑖𝑖)∗∗ 0.7814 0.8532 0.9208 0.9790 1.0289 1.0686 1.0985 1.1157 1.1219 
𝐹𝐹2(𝑖𝑖)∗ 0.3544 0.3350 0.3057 0.2687 0.2243 0.1738 0.1186 0.0601 0.0000 
𝐹𝐹2(𝑖𝑖)∗∗ 0.3547 0.3352 0.3060 0.2687 0.2244 0.1734 0.1186 0.0601 0.0000 
∗ Present study 
∗∗ Chen and Hasebe [20] 
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Fig. 1. Multiple inclined edge cracks in the upper half 
of two bonded half-planes 

 
Figures 2 and 3 illustrate the nondimensional Modes I and II SIFs, addressing the problem in Figure 

1.  Figure 2(a) shows 𝐹𝐹1𝐴𝐴1  increases uniformly as 𝑖𝑖2 increases. When 𝑖𝑖2 > 90°, as 𝐺𝐺2/𝐺𝐺1 increases, 
𝐹𝐹1𝐴𝐴1  increases. However, 𝐹𝐹2𝐴𝐴1  decreases as 𝐺𝐺2/𝐺𝐺1 increases. 𝐹𝐹1𝐴𝐴2  decreases but increases 
when 𝑖𝑖2 < 80° and 𝑖𝑖2 > 80° respectively as shown in Figure 2(b). It is found when 𝑖𝑖2 > 60°, 𝐹𝐹1𝐴𝐴2  
increases as 𝐺𝐺2/𝐺𝐺1 increases. 𝐹𝐹2𝐴𝐴2  decreases when 𝑖𝑖2 < 50° but increases when 𝑖𝑖2 > 50°. 
When 𝑖𝑖2 > 90°, as 𝐺𝐺2/𝐺𝐺1 increases, 𝐹𝐹2𝐴𝐴2 increases.  
 

    
(a)                                                               (b) 

Fig. 2. Nondimensional SIFs for 𝑖𝑖2 varies with different values of 𝐺𝐺2/𝐺𝐺1 (a) SIFs at 𝐴𝐴1 (b) SIFs at 𝐴𝐴2 
 

Figure 3(a) shows that as 𝑅𝑅2/𝑅𝑅 increases, 𝐹𝐹1𝐴𝐴1 increases consistently for all values of 𝐺𝐺2/𝐺𝐺1. As 
𝐺𝐺2/𝐺𝐺1 increases, 𝐹𝐹2𝐴𝐴1decreases. 𝐹𝐹2𝐴𝐴1  decreases exponentially and remains constant when 𝑅𝑅2/𝑅𝑅 <
4 and 𝑅𝑅2/𝑅𝑅 > 4 respectively for all values of 𝐺𝐺2/𝐺𝐺1. Figure 3(b) displays 𝐹𝐹1 and 𝐹𝐹2 at crack tip 𝐴𝐴2 
increases and decreases sharply, respectively, when 𝑅𝑅2/𝑅𝑅 < 3. Furthermore, when 𝑅𝑅2/𝑅𝑅 > 3, 𝐹𝐹1 and 
𝐹𝐹2 at crack tip 𝐴𝐴2 remain constant.  
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(a)                                                                  (b) 

Fig. 3. Nondimensional SIFs for 𝑅𝑅2/𝑅𝑅 varies with different values of 𝐺𝐺2/𝐺𝐺1(a) SIFs at 𝐴𝐴1 (b) SIFs at 𝐴𝐴2 
 
3.2 Example 2 
 

Consider multiple edge cracks originating at the interface of two bonded half-planes towards the 
upper and lower parts of the planes under normal stress, as shown in Figure 4. The symbols 𝑅𝑅, 𝑅𝑅2, 
𝑖𝑖1, 𝑖𝑖2, 𝐴𝐴1, and 𝐴𝐴2 are similarly described as Example 1. 
 

 
 Fig. 4. Multiple inclined edge cracks in both the  
 upper and lower parts of two bonded half-planes 

 
Figures 5 and 6 display the nondimensional Modes I and II SIFs for the problem in Figure 4. Figure 

5(a) demonstrates that as 𝑖𝑖1 increases, 𝐹𝐹1𝐴𝐴1 decreases. When 𝑖𝑖1 > 25°, as 𝐺𝐺2/𝐺𝐺1 increases, 𝐹𝐹1𝐴𝐴1  
increases. Meanwhile, when 𝑖𝑖1 > 35°, as 𝐺𝐺2/𝐺𝐺1 increases, 𝐹𝐹2𝐴𝐴1  decreases. At crack tip 𝐴𝐴2 (see 
Figure 5(b)), 𝐹𝐹1 and 𝐹𝐹2 do not show any significant difference as 𝑖𝑖1 increases. This is due to the 
uniformity of normal and shear amplitudes. 𝐹𝐹1 and 𝐹𝐹2 at 𝐴𝐴2 approach zero when 𝐺𝐺2/𝐺𝐺1 =  2.0, 3.0.  
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 (a)                                                             (b)  

Fig. 5. Nondimensional SIFs for 𝑖𝑖2 varies with different values of 𝐺𝐺2/𝐺𝐺1 (a) SIFs at 𝐴𝐴1 (b) SIFs at 𝐴𝐴2 
 

Figure 6(a) demonstrates that as 𝑅𝑅2/𝑅𝑅 increases, 𝐹𝐹1𝐴𝐴1  shows no significant difference and remains 
constant when 𝑅𝑅2/𝑅𝑅 > 4 . This is because when the distance between cracks increases, the effect of 
stress concentration at the crack tips decreases. As 𝐺𝐺2/𝐺𝐺1 increases, 𝐹𝐹1𝐴𝐴1  increases. However, 
𝐹𝐹2𝐴𝐴1  decreases as 𝐺𝐺2/𝐺𝐺1 increases. Figure 6(b) illustrates 𝐹𝐹1𝐴𝐴2  and 𝐹𝐹2𝐴𝐴2  exponentially increases and 
decreases, respectively, when 𝑅𝑅2/𝑅𝑅 < 4 for 𝐺𝐺2/𝐺𝐺1 = 3.0. Moreover, for 𝐺𝐺2/𝐺𝐺1 = 1.0, 2.0, 𝐹𝐹1𝐴𝐴2 and 
𝐹𝐹2𝐴𝐴2  remain constant as 𝑅𝑅2/𝑅𝑅 increases. As the distance between cracks increases, the interaction 
between cracks decreases and behaves like an isolated crack. 
 

   
                                                       (a)                                                         (b)  

Fig. 6. Nondimensional SIFs for 𝑅𝑅2/𝑅𝑅 varies with different values of 𝐺𝐺2/𝐺𝐺1 (a) SIFs at 𝐴𝐴1 (b) SIFs at 𝐴𝐴2                                                                       
 

The inclination angle of the crack relative to the applied load affects the stress concentration 
factor, leading to an increase or decrease of SIF as the result of the combination effects of normal 
and shear stresses [23]. Depending on the crack's inclination angle, the ratio of elastic constants 
𝐺𝐺2/𝐺𝐺1 also influences the distribution of stress around the crack tip. As 𝐺𝐺2/𝐺𝐺1 increases, the stress 
near the crack tip increases, which can lead to higher stress concentrations and thus a higher Mode 
I SIF. A higher shear modulus indicates that a material is stiffer against shear deformation, resulting 
in higher resistance to in-plane sliding. As a result, the material resists shear stress more effectively, 
reducing the stress concentration at the crack tip and resulting in a lower Mode II SIF [24]. 

The ratio of elastic constants, 𝐺𝐺2/𝐺𝐺1 also affects the stress distribution at a crack tip, which 
corresponds to the distance between cracks. When cracks are far apart, their interactions are 
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minimal and uniform, leading to a scenario where each crack behaves more like an isolated crack 
[25]. However, specific crack conditions can indeed influence the behavior of SIFs in Mode I and Mode 
II, which causes a behavior that differs from the common behavior. This can occur because of factors 
such as crack orientation, loading conditions, and the elastic constant ratios of the planes. 
 
4. Conclusions 
 

As a conclusion, the multiple edge cracks originating at the interface of two bonded half-planes 
are formulated into SIEs, and the SIEs are numerically solved using the semi-open quadrature rule. 
The configuration of the crack, the ratios of the elastic constants of the planes, and the inclination 
angle significantly influence Modes I and II SIFs. Furthermore, when dealing with multiple cracks, the 
distance between them can also affect the SIFs due to interaction effects, depending on the load 
acting on the cracks. Analyzing the behavior of the SIF near the crack tip will help engineers develop 
more durable and safer structures and components, thereby saving human lives and minimizing 
economic losses due to structural failures. 
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