

Journal of Advanced Research in Applied Sciences and Engineering Technology 50, Issue 1 (2025) 238-249

238

Journal of Advanced Research in Applied
Sciences and Engineering Technology

Journal homepage:
https://semarakilmu.com.my/journals/index.php/applied_sciences_eng_tech/index

ISSN: 2462-1943

An Enhancement of Multi-Factor Weighted Approach Technique in
Prioritizing Test Cases by Comparing Similarity Distance

Alaa Alrhman Mohammed Raweh Al-Shaibani1, Johanna Ahmad1,*, Rohayanti Hassan1, Salmi
Baharom2, Dwinta Suci Antari3

1

2

3

Department of Software Engineering, Faculty of Computing, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
Faculty of Computer Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
Universitas Internasional Batam, Kota Batam, Kepulauan Riau 29426, Indonesia

ARTICLE INFO ABSTRACT

Article history:
Received 22 June 2023
Received in revised form 17 October 2023
Accepted 24 July 2024
Available online 10 August 2024

Software testing is one of the most critical phases in the software development life
cycle model (SDLC), where the quality of a software product is evaluated. Test case
prioritization (TCP) is used to prioritize and schedule test case execution to conduct
higher-priority test cases to optimize the software testing process. Traditionally,
techniques rely on source code or a specification for the tested system. Therefore,
numerous factors and techniques have been used to optimize the prioritization
process. One of the factors is distance. String Distance aims to find the degree of
similarity between the test cases, which helps prioritize the test case according to the
dissimilar value. The higher the dissimilarity value, the higher the probability of
detecting new faults. Previous research has used Jaccard Distance to measure the
distance to prioritize test cases with the same priority value. In the meantime, the
Manhattan Distance is used in this research as it provides a better measure of distance.
Our aim of this research is to compare and evaluate both Jaccard and Manhattan
Distance algorithms in terms of their effectiveness to formulate the enhancement of
the previous multi-factor weighted Approach. The research experiment has shown the
process of calculating the Distance matrix for the sample Java Programs and
subsequent evaluation using the mutation testing approach and APFD calculation. The
results of The Average Percentage of Fault Detected (APFD) of the Test case
prioritization by the Manhattan Distance matrix have obtained a higher value,
validating its hypothesized effectiveness.

Keywords:

Mutation testing; Test case
prioritization; Distance; Software
testing; Jester mutation tool

1. Introduction

Software Testing is one of the most important steps in the Software Development Life Cycle
(SDLC). Over the years, various testing techniques and strategies have been proposed to improve the
efficacy of defecting faults during testing processes that are limited by resources, cost, and timeliness
[1]. One of the techniques used to address the concerns during the testing process is test case
prioritization (TCP). Many tests case prioritization (TCP) techniques occur to prioritize test cases

* Corresponding author.
E-mail address: johanna@utm.my

https://doi.org/10.37934/araset.50.1.238249

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 50, Issue 1 (2025) 238-249

239

based on the number of covered methods, previous version execution history, requirement
dependencies, location-based testing, and the order in which test cases are executed, depending on
their importance.

The number of TCP approaches prioritize the execution of test cases based on their importance,
implying that they are inadequate at discovering software flaws [6]. According to [2], the complexity,
redundancy, frequency, permutation, fault matrix, and distance are the factors that significantly
affect the TCP techniques' efficacy and efficiency. As a result, a weighted strategy was offered as an
effective predictor for determining the best test case sequencing and priority based on the weightage
of each test case calculated throughout the prioritization process [2]. Due to time constraints, only
Jaccard Distance has been employed in the MFWA technique to prioritize the test cases that received
the same weightage after considering all (MFWA) factors.

Moreover, the issue of handling the same priority value was not handled efficiently in many
studies as they are executed in the same order in which they occur, or they might be executed
randomly, which subsequently introduces a new problem when many test cases are given the same
priority value. This research aims to enhance the MFWA technique for test case prioritization by
applying the Manhattan and Jaccard distance to formulate and imply the enhancement. The
proposed algorithms are evaluated to determine their effectiveness in test case prioritization. This
research aims to enhance the MFWA technique by comparing similar distance prioritization
algorithms, such as Manhattan distance and Jaccard distance, to identify the best techniques for
distance-based prioritization applications and a new Distance algorithm, which can increase software
testing efficacy and performance by discovering defects.

2. Methodology

This research’s methodology framework consists of four phases:

i. Literature Review
ii. Problem Definition

iii. Experiment and evaluation
iv. Result Dissemination.

Figure 1 illustrates the research framework.

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 50, Issue 1 (2025) 238-249

240

Fig. 1. Research Methodology

3. Experimental Setup

In this experiment, several mutants were generated for the user programs. 20 mutants were

introduced for the Circular Queue program, and 28 mutants were generated for the Bank program.
Mutation testing, as defined, is a technique of software testing that includes altering a program's
source code in small parts [3]. According to [18], mutation testing simulates genuine problems by
seeding many errors into the original code through a sequence of mutation operators. Hence, each
modified program is referred to as a mutant. Mutation testing has been used and applied by many
researchers as it provides a high evaluation of the efficiency of the test suite for detecting faults
[2,5,17]. This study believes a test case kills the mutant when it behaves differently in a mutant
program from the original one.

The Jester tool has been used to automate the mutation testing process; it is a JUnit test tester
that modifies the program code in several ways and verifies whether the tests fail due to each
mutation. It can also detect code executed but not tested during the tests.

3.1 Subject Program

This research used the same code programs and test cases as in [1] previous research MFWA.

Using the same program and test cases would ensure a more reliable comparison of the TCP of both
string distance measures, as both utilize the same programs and test cases. Table 1 illustrates the
programs and their code structure.

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 50, Issue 1 (2025) 238-249

241

Table 1
Experiment used programs
Subject Program Lines of Codes Number of classes Number of Methods Number of Test cases
Circular Queue 69 1 3 32
Bank 257 1 7 40

3.2 Experimental Design

The flowchart in Figure 2 illustrates the experimental design used in this study. The chart was

developed following a comprehensive examination of the above experiments. The design of the
experiment is represented in 2-layer architecture.

The first layer is the Presentation layer, which marks the beginning of the experiment as it
contains the input components, Java programs and the test suites, followed by the second
Application layer, which processes the input components. Finally, the output component's results
were reviewed and saved continuously.

The Jaccard Distance and Manhattan Distance for each method class of the programs were
manually calculated In the Application layer. Then, mutants were generated by installing Jester
mutation testing in the program. The techniques' effectiveness was then evaluated using the Average
Percentage of Faults Detected (AFPD).

Fig. 2. Experimental Design

Jester provides the option to define the required mutations inside a configuration folder for

mutation testing. The mutant generator is responsible for producing either standard or customized

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 50, Issue 1 (2025) 238-249

242

mutants. The tool runs the mutants against the test suite and appropriately calculates the mutant's
test score. Table 2 shows the mutant operators selected for the Jester tool and inserted into the
program for evaluating mutations.

Table 2
Experiment Mutant Operators
No. Mutation operators
1 Change numerical constants (Mutate 0 to 1, 1 to 2)
2 Mutate true to false and vice versa
3 Mutate if (condition) to if (false && condition)
4 Mutate if (condition) to if(true || condition)
5 Mutate ++ to – and vice versa
6 Mutate != to == and vice versa

4. Related Work
4.1 Software Testing

The software development life cycle (SDLC) comprises processes for developing any software

product through different development phases. One of these essential phases is testing, ensuring the
software product is defects-free and ready to be released and used. Testing determines whether or
not a specific system meets its original requirements [14]. Software testing is also performed to
ensure the software is reliable, compatible, efficient, and resilient. Testing is costly, but ignoring this
phase is even more costly. It is an important part of Software Quality Assurance, and many companies
spend up to 40% to 50% of their development time and cost on product testing [8]. Software defects
may be expensive or even fatal, as errors in software can result in monetary and human losses. As a
result, testing is crucial to prevent software defects from occurring [10]. Testing does not ensure that
the system being tested is error-free. It can be used to demonstrate the presence of errors but not
to demonstrate their absence [12]. It can only detect flaws or errors that are already known. It does
not indicate any problems that have yet to be discovered [15].

4.2 Test Case Prioritization

According to [13], test case prioritization (TCP) aims to identify an ordering of test cases that

optimizes the value of a fitness function corresponding to a certain testing objective, such as the
number of found defects or code coverage. Increased fault detection rates may offer early feedback
on the system under test, enabling faster debugging and enhancing the possibility that, if testing is
halted prematurely, only the test cases with the highest fault detection capabilities were performed
within the available testing time [5]. In this light, prioritizing test cases is a safer approach regarding
defect discovery since it does not delete test cases but permutes them [13]. Test case prioritization
is normally applied to differentiate the properties of each test case; if two test cases are similar, one
will receive a lower priority during the prioritization process [9]. In the meantime, there are different
techniques for prioritization. They typically select test cases according to their structural coverage
information, such as statement coverage, branch coverage, and method coverage [19].

4.3 String Distance Algorithms

Different techniques have been introduced for prioritization. These techniques typically select

test cases according to their structural coverage information, such as statement coverage, branch

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 50, Issue 1 (2025) 238-249

243

coverage, and method coverage [19]. Distance is one of the potential factors discovered by previous
research that can improve the effectiveness of the testing phase [7]. Several existing test case
prioritization techniques used string distance algorithms to determine the degree of similarity
between test cases and reorder the test cases in the test suite according to their similarity value.
Compared to prioritization techniques, studies indicate that using distance prioritization algorithms
provides higher efficiency in detecting faults [4,7,9]. However, there is a comparable difference
between different string distance algorithms, as previous researchers showed. The research concern
is analysing the efficiency and effectiveness of Jaccard Distance and Manhattan Distance Algorithms.

The findings by [13] indicated Manhattan distances as the best choice of test case prioritization
based on string distances for the strongest mutants. Each character in a string is compared against
another string's character in a character-based string metric. For instance, In the Manhattan distance,
a string of length n can be considered an n-dimensional space vector of characters, and each of those
characters has an ASCII code (or any other numerical coding). According to [13], the higher the value
calculation of the Manhattan distance, the greater the difference between the test cases. Therefore,
this test case would be executed first.

Moreover, [1] proposed using distance to provide a unique weight for each test case to solve the
issue of finding the same priority value in the same test cases. The Jaccard Distance, also known as
the Jaccard Similarity Coefficient, was used in place of it in the study. The Jaccard Distance has been
used to assess the similarity and dissimilarity to measure the coverage of program entities between
two test cases [11].

5. Result and Discussion

This study compared and evaluated the efficiency of applying Manhattan and Jaccard distances

in prioritized test cases receiving the same value or weight. Both programs were used to formulate
the enhancement of the MFWA distance factor. Two programs were used in this experiment: the
Circular Queue program and The Bank program.

5.1 Distance Algorithms Value Calculation

First, the values of the program’s methods were calculated, referring to the complexity value of

each method. These values were then used to calculate the test case values of both programs as the
preparation step of obtaining distance using Manhattan and Jaccard distance algorithms. For
instance, in this preparation step, Circular Queue methods add (), remove (), and front () were given
values 3,2,1, respectively, add () can be considered more complex and receives the highest
complexity value among the methods. Then, the methods were replaced or substituted on the test
cases with their values to get the total value of the test cases. For example, test case 3 in Figure 3 will
be after the substitution (3,3,3,2,3,3,3,1) to get the value of the test case. All the method values will
be added up as (3+3+3+2+3+3+3+1= 21).

Fig. 3. Example of test case of Circular Queue Program

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 50, Issue 1 (2025) 238-249

244

5.2 Manhattan Distance Calculation

The Manhattan distance calculation was obtained using its string distance Eq. (1) [13] on the

following formula:

∑ |𝑥𝑖	 − 	𝑦𝑖!
"	$	% | (1)

After each method on the test cases was replaced with its values, the researcher developed a

string consisting of a series of numbers. These strings were used to calculate the Manhattan distance
between the test cases to end up with the Manhattan distance matrix, which involves the distance
values from any test case. In other words, the distance value between any test case and all other test
cases has been calculated.

Calculating the string distance between the test cases produced a 32*32 matrix for Manhattan
Distance for the Circular Queue program since it has 32 test cases. Furthermore, the matrix allows
the measurement of the distance between any of the program test cases, so it can be referred to this
matrix in any case where test cases having the same value or weight to determine which test case
should be executed first, in this case, the test case that has higher distance value from last ordered
test case is selected. For example, based on Table 3, which is part of the Manhattan Distance Matrix
of the Circular Queue program, if the test case is ordered as TC2, TC3, TC6, TC4, and TC1, TC5 has the
same weight, one test case need to be selected to be executed after TC4, so in this case, the
Manhattan Distance value should be checked for both test cases from TC4, using the distance matrix
that has been produced, it can be found that Distance values are 3 and 37 for TC1, TC5 respectively
which means that TC5 will be executed first and followed by TC1 which have lower distance value.
The same technique has also been used for the Bank program, which has 40 test cases. Hence, the
researcher produced a 40*40 matrix to calculate the Manhattan Distance value between the test
cases.

Table 3
Manhattan Distance Matrix Sample

No. TC1 TC2 TC3 TC4 TC5 TC6
TC1 0 55 20 3 40 17
TC2 55 0 39 52 27 44
TC3 20 39 0 17 22 5
TC4 3 52 17 0 37 14
TC5 40 27 22 37 0 23
TC6 17 44 5 14 23 0

5.3 Jaccard Distance Calculation

The Jaccard distance calculation was obtained using its string distance Eq. (2) [11] on the

following:

Jaccard Distance (𝜌& , 𝜌' , 𝜌& , 𝜌') = 1	 −	 |)!∩)"|

|)!∪)"|
= 	1 − |)!∩)"|

|)!∪)"|
	 (2)

As shown in the Eq. (2), two main elements must be calculated: the intersection between test

cases and the union. So, to find the intersection, there is a need to identify the number of similar
elements between the test cases by comparing each element on one test case string and the
corresponding element on the other. In this light, the value of 1 was given if both elements were

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 50, Issue 1 (2025) 238-249

245

similar; otherwise, the value given is 0. After completing this comparison process, all the values from
comparing the string elements are added to find the total number of intersections between the test
cases. Moreover, in the case of having unequal string length, any different value of the longer string
can be put to complete the comparison as it will end up having 0 as there is no intersection between
those elements. The union can be obtained using two different ways, whether to use the count of
the longest test case string between the two compared test cases or first to make all test cases have
the same length as the longest test case between all test cases by filling the string with any value that
will not affect the process of getting the intersection value. This experiment used the second method
to ensure consistency, as the Jaccard distance value between all test cases was calculated. It was
used for both programs to produce a similar matrix as the one produced for the Manhattan distance
calculation. The Jaccard distance value was calculated using the equation after calculating the
intersection and the union values between each and all test cases for Circular Queue and bank
programs.

After calculating the Jaccard distance for both programs, the researcher obtained a 32*32
distance matrix for the Circular Queue program for the 32 test cases and a 40*40 matrix for the Bank
program for the 40 test cases. These two matrixes keep all the distance values between the test
cases, making checking the distance between any test cases easier and more efficient. In any case, it
is found that test cases with the same value or weight could be used to determine which test case
should be executed first based on the Jaccard distance value in the four similarity categories.

If two or more test cases have the same value or weight, the more dissimilar test case should
receive higher priority and be executed first. In other words, the test case with a distance value closer
to zero from the last ordered test case must be executed first. Using the same example used on
Manhattan distance calculations, if the test cases are ordered as TC2, TC3, TC6, TC4, and TC1, TC5
have the same weight, in this case, when referring to the matrix Table 4, it can be found that TC5 will
be executed first as its value is 0.93 that less and much closer to 0 than TC1 value which is 1.

Table 4
Jaccard Distance Matrix Sample
No. TC1 TC2 TC3 TC4 TC5 TC6
TC1 1 1 1 1 1
TC2 1 0.78 0.96 0.7 0.91
TC3 1 0.78 0.88 0.67 0.5
TC4 1 0.96 0.88 0.93 0.86
TC5 1 0.7 0.67 0.93 0.6
TC6 1 0.91 0.5 0.86 0.6

5.4 Mutation Testing

Mutation testing was designed to assure the quality of a software testing suite, as it should not

leave many lines of code uncovered. Thus, test cases should identify and distinguish the inserted
mutations from the original code. In this experiment, mutation testing was carried out using Jester
as it automates the testing process more feasibly and efficiently than manual mutation testing, which
is considered difficult because of its combination. There were several steps in this phase, from
downloading the tool from its official website and choosing the mutation operators for generating
the mutants inserted into the programs used to test execution. The selection of mutation operators
is critical in mutation testing since ineffective mutants will fail to cause test cases to fail, defeating
the goal of mutation testing. Therefore, in this research, the choice of operators was according to
Table 2, which shows the operators and the operands of the mutation. The mutations selected for

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 50, Issue 1 (2025) 238-249

246

the used programs depended on the nature of the program as they vary in structure. Moreover, these
operators that provide extreme changes are very effective as they are more likely to generate faults
and defects, which were found to be a perfect match for this research experiment.

5.5 Calculating the APFD Value of Manhattan Distance

Various measurement techniques were used to measure the effectiveness of the TCP methods of

test case prioritization. Researchers have used different measuring methods to evaluate the
effectiveness of the TCP. Of these methods, Average Percentage Fault Detected (APFD) was used and
calculated using Eq. (3).

𝐴𝑃𝐹𝐷 = 1 − ,-%	.	,-/,-#

!	1	2
 + %

/3
 (3)

Where:
𝑇𝐹 = is the position of the first test in the test suite T that 𝑖 exposes fault i.
𝑚= is the total no. of faults exposed in the system or module under T.
𝑛= is the total no. of test cases in T.

The Fault matrix generated by Manhattan Distance for both programs can be found in Appendix

E and F. APFD was computed for the Circular Queue program as follows:

n = 32, m = 20
APFD = 1 − 	445	

4/	×	/7
 + %	

/×4/
 = 0.4890625

Whereas the calculation of APFD for the Bank program is calculated as follows:

n = 40, m = 28
APFD = 1 − 58

97×/:
 + %

/×97
 = 0.944642857

6. Calculating APFD value of Jaccard Distance

Eq. (3) was used for both programs to calculate the APFD of the Jaccard Distance, starting from

the Circular Queue program calculation as follows

n = 32, m = 20
APFD = 1 − 	4;/

4/×/7
 + 	%

/×4/
 = 0.459375

For the Circular Queue program, the APFD prioritized fault matrix using Jaccard distance values

was 0.45, which means the APFD of the prioritized fault matrix using Manhattan distance values was
higher at 0.48. This difference in the APFD of both algorithms resulted from the different priority
ranks of test cases. This also resulted from the different ways that each distance algorithm has been
discussed earlier. Table 5 shows ten test cases with the highest priority value for both metrics to
illustrate this point. Note that the distance value was only applied to the test cases that received the
same weight; ‘/’ indicates that the distance value was not used on the test case.

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 50, Issue 1 (2025) 238-249

247

Table 5
Priority List for Circular Queue Program
Rank Manhattan Distance priority list Jaccard Distance priority list

Test case no. Manhattan Distance value Test case no. Jaccard Distance value
1 TC 20 \ TC 20 \
2 TC 27 \ TC 27 \
3 TC 26 12 TC 23 0.16
4 TC 23 9 TC 26 0.3
5 TC 2 5 TC 12 0.5
6 TC 12 4 TC 2 0.8
7 TC 7 \ TC 7 \
8 TC 15 39 TC 15 0.8
9 TC 21 39 TC 21 0.8
10 TC 3 \ TC 3 \

It can be observed that apart from the test cases with “/” on the distance value, the distance

values were only used in cases where the researcher obtained the same weight or complicity value
and 8th and 9th rank with the same distance values for both algorithms. In the meantime, all other
ranks did not have the same test cases since their relative values were different.

The APFD calculation of the Bank program was computed as follows:

n = 40, m = 28
APFD = 1 − 58

97×/:
 + %	

/×97
 = 0.944642857

For the Bank program, the value of APFD using both distance algorithms’ fault matrix tables

resulted in the same value of 0.94. The study obtained almost the same APFD value as all first ten
test cases and the same priority rank, as shown in Table 6. On the other hand, for the other test case
where the same Manhattan and Jaccard distance was applied during the prioritizing process, it could
be observed that some test cases obtained different priority ranks.

Table 6
Priority List for Bank Program
Rank Manhattan Distance priority list Jaccard Distance priority list

Test case no. Manhattan Distance value Test case no. Jaccard Distance value
1 TC 1 \ TC 1 \
2 TC 8 \ TC 8 \
3 TC 16 6 TC 16 0.16
4 TC 17 6 TC 24 0.16
5 TC 24 6 TC 17 0.8
6 TC 25 \ TC 25 \
7 TC 21 \ TC 21 \
8 TC 40 \ TC 40 \
9 TC 39 14 TC 39 1
10 TC 36 14 TC 36 1

7. Conclusion

This research conducted comparative experiments between two different string distance

algorithms using two Java subject programs: Circular Queue and Bank. Higher APFD prioritizing test
case value based on the Manhattan distance was obtained in the Circular Queue program, indicating
that it is more effective. However, the experiment does suffer from limitations. The program samples

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 50, Issue 1 (2025) 238-249

248

were comparatively small with a simpler structure, as they only consisted of one class. Moreover, the
weight of the test cases was only computed using one of the six factors of the MFWA technique due
to time limitations. Further work shall focus on applying their results from distance calculation in
more complicated programs with different structures, implementing the Manhattan distance
algorithm on Multi-Factor Weighted Approach (MFWA), and evaluating its performance. However,
the result of this research shows that Manhattan Distance can obtain a higher APFD value than
Jaccard Distance as proof that Manhattan Distance can detect faults earlier.

Acknowledgement
The authors humbly acknowledge the Encouragement Grant awarded by Universiti Teknologi
Malaysia, Malaysia, with No Vot. Q.J130000.3851.19J69.

References
[1] Ahmad, Johanna. “Multi-factor Approach to Prioritise Event Sequence Test Cases.” (2018).
[2] Ahmad, Johanna, Salmi Baharom, Abdul Azim Abd Ghani, Hazura Zulzalil, and Jamilah Din. “Measuring the Efficiency

of MFWA Technique for Prioritizing Event Sequences Test Cases.” International Journal of Advanced Trends in
Computer Science and Engineering. (2019): 231–37.

[3] Askarunisa, MS A., MS L. Shanmugapriya, and DR N. Ramaraj. "Cost and coverage metrics for measuring the
effectiveness of test case prioritization techniques." INFOCOMP Journal of Computer Science 9, no. 1 (2010): 43-52.

[4] Chen, Junjie, Yanwei Bai, Dan Hao, Yingfei Xiong, Hongyu Zhang, Lu Zhang, and Bing Xie. "Test case prioritization
for compilers: A text-vector based approach." In 2016 IEEE international conference on software testing, verification
and validation (ICST), pp. 266-277. IEEE, 2016. https://doi.org/10.1109/ICST.2016.19

[5] Elbaum, Sebastian, Alexey G. Malishevsky, and Gregg Rothermel. "Test case prioritization: A family of empirical
studies." IEEE transactions on software engineering 28, no. 2 (2002): 159-182. https://doi.org/10.1109/32.988497

[6] Elbaum, Sebastian, Gregg Rothermel, and John Penix. "Techniques for improving regression testing in continuous
integration development environments." In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pp. 235-245. 2014. https://doi.org/10.1145/2635868.2635910

[7] Fang, Chunrong, Zhenyu Chen, Kun Wu, and Zhihong Zhao. "Similarity-based test case prioritization using ordered
sequences of program entities." Software Quality Journal 22 (2014): 335-361. https://doi.org/10.1007/s11219-
013-9224-0

[8] Abd Halim, Shahliza, Dayang Norhayati Abang Jawawi, and Muhammad Sahak. "Similarity distance measure and
prioritization algorithm for test case prioritization in software product line testing." Journal of Information and
Communication Technology 18, no. 1 (2019): 57-75. https://doi.org/10.32890/jict2019.18.1.4

[9] Hamilton, Thomas. "What is software testing? Definition, basics & types in Software Engineering." Guru99.
com (2021).

[10] Jiang, Bo, and Wing Kwong Chan. "Input-based adaptive randomized test case prioritization: A local beam search
approach." Journal of Systems and Software 105 (2015): 91-106. https://doi.org/10.1016/j.jss.2015.03.066

[11] Khan, Mohd Ehmer. "Different forms of software testing techniques for finding errors." International Journal of
Computer Science Issues (IJCSI) 7, no. 3 (2010): 24.

[12] Astuti, Sinta Indi, Septo Pawelas Arso, and Putri Asmita Wigati. "Analisis standar pelayanan minimal pada instalasi
rawat jalan di RSUD Kota Semarang." Jurnal Kesehatan Masyarakat 3, no. 1 (2015): 103-111.

[13] Anupriya, Ajeta. "Software Testing-Principles, Lifecycle, Limitations and Methods." International Journal of Science
and Research 3, no. 10 (2014): 1000-1002.

[14] Rao, D. Nageswara, M. V. Srinath, and P. Hiranmani Bala. "Reliable code coverage technique in software testing."
In 2013 International Conference on Pattern Recognition, Informatics and Mobile Engineering, pp. 157-163. IEEE,
2013. https://doi.org/10.1109/ICPRIME.2013.6496465

[15] Ledru, Yves, Alexandre Petrenko, Sergiy Boroday, and Nadine Mandran. "Prioritizing test cases with string
distances." Automated Software Engineering 19 (2012): 65-95. https://doi.org/10.1007/s10515-011-0093-0

[16] Rao, D. Nageswara, M. V. Srinath, and P. Hiranmani Bala. "Reliable code coverage technique in software testing."
In 2013 International Conference on Pattern Recognition, Informatics and Mobile Engineering, pp. 157-163. IEEE,
2013. https://doi.org/10.1109/ICPRIME.2013.6496465

[17] Sharma, Neha, and G. N. Purohit. "Test case prioritization techniques “an empirical study”." In 2014 International
Conference on High Performance Computing and Applications (ICHPCA), pp. 1-6. IEEE, 2014.
https://doi.org/10.1109/ICHPCA.2014.7045344

https://doi.org/10.1109/ICST.2016.19
https://doi.org/10.1109/32.988497
https://doi.org/10.1145/2635868.2635910
https://doi.org/10.1007/s11219-013-9224-0
https://doi.org/10.1007/s11219-013-9224-0
https://doi.org/10.32890/jict2019.18.1.4
https://doi.org/10.1016/j.jss.2015.03.066
https://doi.org/10.1109/ICPRIME.2013.6496465
https://doi.org/10.1007/s10515-011-0093-0
https://doi.org/10.1109/ICPRIME.2013.6496465
https://doi.org/10.1109/ICHPCA.2014.7045344

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 50, Issue 1 (2025) 238-249

249

[18] Zhang, Jie. "Scalability studies on selective mutation testing." In 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering, vol. 2, pp. 851-854. IEEE, 2015. https://doi.org/10.1109/ICSE.2015.276

[19] Zhou, Jianyi, and Dan Hao. "Impact of static and dynamic coverage on test-case prioritization: An empirical study."
In 2017 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW), pp. 392-
394. IEEE, 2017. https://doi.org/10.1109/ICSTW.2017.74

[20] Singh, Yogesh, Arvinder Kaur, Bharti Suri, and Shweta Singhal. "Systematic literature review on regression test
prioritization techniques." Informatica 36, no. 4 (2012).

[21] Tanwani, L., & Waghire, A. “Test Case Prioritization for Regression Testing of GUI.” International Academy of
Engineering and Medical Research (1) (2016). http://www.iaemr.com/wp-content/uploads/2016/11/test-case-
prioritization-regression-testing-gui.pdf

[22] Ulbert, Zs. "Software development processes and software quality assurance." University of Pannonia.[online]
Available at: http://moodle. autolab. uni-pannon.
hu/Mecha_tananyag/szoftverfejlesztesi_folyamatok_angol/ch12. html [Accessed 30 April 2018] (2014).

[23] Wohlin, Claes, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell, and Anders Wesslén. Experimentation
in software engineering. Vol. 236. Berlin: Springer, 2012. https://doi.org/10.1007/978-3-642-29044-2

[24] Sahak, Muhammad, S. A. Halim, Dayang Norhayati Abang Jawawi, and Mohd Adham Isa. "Evaluation of software
product line test case prioritization technique." International Journal on Advanced Science 7, no. 4-2 (2017): 1601-
1608. https://doi.org/10.18517/ijaseit.7.4-2.3403

[25] Hamlet, Richard G. "Testing programs with the aid of a compiler." IEEE transactions on software engineering 4
(1977): 279-290. https://doi.org/10.1109/TSE.1977.231145

https://doi.org/10.1109/ICSE.2015.276
https://doi.org/10.1109/ICSTW.2017.74
http://www.iaemr.com/wp-content/uploads/2016/11/test-case-prioritization-regression-testing-gui.pdf
http://www.iaemr.com/wp-content/uploads/2016/11/test-case-prioritization-regression-testing-gui.pdf
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.18517/ijaseit.7.4-2.3403
https://doi.org/10.1109/TSE.1977.231145

