
Sixteen International Conference on Thermal Engineering: Theory and Applications
June 18-20, 2025 Bucharest, Romania

 1

A Multi-Layer Neural Network Approach for Solving Fractional Heat
Equations

Amina Ali1,*, Norazak Senu2,* Ali Ahmadian3

2Universiti Putra Malaysia, Department of Mathematics and Statistics, Selangor, Malaysia

1 University of Sulaimani, Department of Mathematics, College of Education, Sulaymaniyah, Iraq
3 Mediterranea University of Reggio Calabria, Decisions Lab, Reggio Calabria, Italy
3 Lebanese American University, Department of Computer Science and Mathematics, Beirut, Lebanon
3 Istanbul Okan University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey

Abstract

In this study, a new multi-layer neural network (MLNN) approach designed to solve fractional heat equations (FHEs) is
introduced. To handle the fractional derivative, the Laplace transform for approximation was applied. The results of our
approach with those obtained using the finite difference method(FDM) are compared. The findings highlight the flexibility
and computational efficiency of the proposed approach, making it a promising technique for solving FHEs.

Keywords: Fractional heat equations, Laplace transform, adam optimizer, and neural network.

Nomenclature

x space
	𝑡 time
𝑝 Network’s parameter

𝛼 Fractional order

𝛿 Learning rate

Notations
𝜕
𝜕𝑥 ,

𝜕
𝜕𝑡	

Partial derivative

1. Introduction
In recent years, fractional differential equations(FDE)
have attracted significant attention, largely thanks to the
rapid advancement of fractional calculus. This growing
field has found wide-ranging applications across
numerous disciplines, including mathematics, physics,
chemistry, biology, medicine, mechanics, control theory,
signal and image processing, environmental science,
finance, and more[1,2]. Fractional order differential
equations can be generalized to the traditional differential
equations that involve non-integer orders. They often
occur in systems with memory effects, modeled using
power-law kernels that capture nonlocal relationships in
time and space. These equations become a powerful
framework for describing memory and hereditary

properties in various materials and processes. Their strong
physical foundation has revealed a new topic of scientific
research, leading to the development of novel theoretical
insights and numerical technique [4,5].

 2. Mathematical Framework

In this study, the following FHEs are considered
solved through the proposed approach.

𝜕𝛼𝑈(𝑥, 𝑡)
𝜕𝑡! −𝑈(𝑥, 𝑡)

𝜕𝑈(𝑥, 𝑡)
𝜕𝑥 −

𝜕"𝑈(𝑥, 𝑡)
𝜕𝑥" = 𝐹(𝑥, 𝑡)						(1)	

0 ≤ 𝑥 ≤ 1,0 ≤ 𝑡 ≤ 1,0 < 𝛼 ≤ 1,	

 with 𝑈(𝑥, 0) = 𝑔#(𝑥), 𝑈(0, 𝑡) = 𝑔"(𝑡), and 𝑈(1, 𝑡) = 𝑔$(𝑡).
𝜕𝛼%(',))
+)!

 can be approximated by Laplace transform as
follows:

𝜕𝛼𝑈(𝑥, 𝑡)
𝜕𝑡! ≈ 𝛼

𝜕𝑈(𝑥, 𝑡)
𝜕𝑡 + (1 − 𝛼)[𝑈(𝑥, 𝑡) − 𝑈(𝑥, 0)].	

A trial solution 𝑈8(𝑋, 𝑝) is formulated to satisfy the initial
boundary value conditions [7], with the goal of solving
equation (1)+

𝑈8(𝑋, 𝑝) = 𝑄(𝑥, 𝑡) + 𝑥(1 − 𝑥)𝑡𝑁(𝑋, 𝑝),	
𝑄(𝑥, 𝑡) = (1 − 𝑥)𝑔"(𝑡) + 𝑥𝑔$(𝑡) + 𝑔#(𝑥) − (1 − 𝑥)𝑔#(0)	

																−𝑥𝑔#(1)	
 The following expression is used to define the loss

function:

𝐿(𝑋, 𝑝) =
1
2>?

𝜕!𝑈(𝑥, 𝑡)
𝜕𝑡! −𝑈

𝜕𝑈
𝜕𝑥 −

𝜕"𝑈
𝜕𝑥" − 𝐹

(𝑥, 𝑡)@
"

	
,

-.#

(2)	

2

Here, M denotes the total number of discretized points in
both x and t. The Adam optimizer is employed to minimize
equation (2). Finally, the model parameters are revised
using the following equations:

𝑚/ = 	𝜁₁𝑚/01 +	(1	 − 	𝜁₁) +1
+2
	,

𝑣/ 	= 	𝜁₂𝑣/01 	+	(1	 − 	𝜁₂)(
𝜕𝐿
𝜕𝑝)²,	

𝑚F/ 	= 3"

(1	0	5₁)
,	

𝑣G/ 	= 	 7"

(1	0	52)
,	

𝑝/81 	= 	𝑝/ 	− 	𝛿	 39"

:		(7;"8<)		
	.	

2.1 MLNN Model Construction

The neural network architecture employed in this study is
most accurately described as a multi-layer neural network
(MLNN). As illustrated in Fig. 1, the network is composed
of an input layer, four hidden layers, and an output layer.
Each hidden layer contains kkk neurons. To maintain
clarity in notation, each neuron is labeled using a
superscript that indicates its corresponding layer. This
convention also extends to the network’s weights and
biases.The weights are denoted by 𝑤//

[-], where l ranges
from 1 to 4, representing the connections between
layers.The input to the network is represented by the
vector 𝑋 = (𝑥, 𝑡)? , and the output, written as 𝑁(𝑥, 𝑡, 𝑝),
comes from the final node 𝑁[@], , which corresponds to the
number of unknowns in the FHEs. The sigmoid activation
function is used for all hidden layer neurons and is defined
as: 𝜙(𝑧) = 1

1+𝑒−𝑧
 .

Fig 1. The designed MLNN structure

3. Numerical Results
In this section, the effectiveness of MLNNs in solving

FHEs is demonstrated through illustrative examples. The
neural network is trained over 10000 iterations using a
discretized grid of 121 mesh points within the domain
[0,1] × [0,1].

3.1 Example

 Consider the following FHEs, as presented by [6]:

𝜕𝛼𝑈(𝑥, 𝑡)
𝜕𝑡! −𝑈(𝑥, 𝑡) 𝜕𝑈(𝑥, 𝑡)𝜕𝑥 − 𝜕

2𝑈(𝑥, 𝑡)
𝜕𝑥 = 0,			

0 ≤ 𝑥 ≤ 1,0 ≤ 𝑡 ≤ 1,0 < 𝛼 ≤ 1,	

 𝑈(𝑥, 0) = 2 − 𝑥, 𝑈(0, 𝑡) = "
#8)

, and 𝑈(1, 𝑡) = #
#8)

.
 The exact solution for 𝛼 = 1 is 𝑈(𝑥, 𝑡) = "0'

#8)
.

Table 1: Numerical results obtained using different values of 𝛼 .
 MLNN

 (𝑥, 𝑡) Exact 𝛼 = 0.1 𝛼 = 0.8 𝛼 = 1
(0,0) 2 2 2 2

(0.1, 0.1) 1.72727 1.67767 1.72727 1.72726
(0.2, 0.2) 1.49999 1.44184 1.49999 1.49998
(0.3, 0.3) 1.30769 1.30767 1.30768 1.307621
(0.4, 0.4) 1.14285 1.25923 1.14285 1.14282
(0.5, 0.5) 1.000000 0.98421 0.99999 0.99996
(0.6, 0.6) 0.87500 0.87355 0.87499 0.87495
(0.7, 0.7) 0.76470 0.77261 0.76469 0.76466
(0.8, 0.8) 0.66666 0.67811 0.66665 0.66662
(0.9, 0.9) 0.57894 0.58792 0.57894 0.57892

(1,1) 0.5 0.5 0.5 0.5
CPU

Time(s)
 80.86 67.80 76.31

Table 2: Comparison of absolute errors between MLNN and

FDM at 𝛼 = 1.

(𝑥, 𝑡)	 MLNN FDM
(0.1,0.1) 2.74 × 10−6 3.80× 10−3
(0.2,0.2) 9.89 × 10−6 7.18× 10−3
(0.3,0.3) 1.91 × 10−5 8.33× 10−3
(0.4,0.4) 2.90 × 10−5 7.89× 10−3
(0.5,0.5) 3.79 × 10−5 6.63× 10−3
(0.6 , 0.6) 4.35 × 10−5 5.09× 10−3
(0.7,0.7) 4.46 × 10−5 3.55× 10−3
(0.8, 0.8) 3.87 × 10−5 	2.17 × 100$
(0.9, 0.9) 2.45 × 10−5 9.87× 10−3

Fig. 2. MLNN solution at 𝛼 = 1

3

Fig. 3. Exact solution

Fig. 4. Absolute error at 𝛼 = 1

Fig. 5. Convergence of loss function

Table 1 presents the results obtained for different values
of α. The results indicate that the accuracy of the MLNN
model improves as α approaches 1. Moreover, the CPU
time remains consistently low across all tested values of
α. Table 2 provides a comparison of the absolute errors
between the MLNN and the FDM at α=1. The results
demonstrate that the MLNN consistently outperforms the
FDM in terms of accuracy. Fig. 2 illustrates the MLNN-
generated solutions for α=1, while Fig. 3 presents the
corresponding exact solutions. The strong agreement
between the two indicates that the MLNN model effectively
approximates the exact solution. Fig. 4 presents the
absolute errors at α=1, while Fig. 5 shows how the loss
function changes over 10,000 iterations. The graph
reveals a sharp decrease in the loss at the beginning,
which then slowly levels off close to zero as the iterations
progress. This pattern indicates that the model
successfully converges during training.

4. Conclusion

This study presents a new algorithm that applies MLNNs
to solve FHEs. The results show notable improvements
over exact solutions. To train the network efficiently, the
method uses Adam optimization. The algorithm is built
around two key components: accurately approximating
fractional derivatives and carefully designing the MLNN
structure. Moreover, most network parameters were fine-
tuned, which helped reduce the loss function to nearly zero
by the end of each training cycle. When compared to
traditional techniques like the FDM, the MLNN approach
achieved higher accuracy, demonstrating its robustness
and effectiveness.

References

[1] Li C and Cai M. Theory and numerical approximations
of fractional integrals and derivatives. SIAM, 2019.

[2] Li C and Zeng F Numerical methods for fractional
calculus, volume 24. CRC Press, 2015.

[3] Yu J and Feng Y. Group classification of time fractional
black-scholes equation with time-dependent
coefficients. Fractional Calculus and Applied
Analysis, 27(5):2335–2358, 2024.

[4] Yu J and Feng Y. On the generalized time fractional
reaction–diffusion equation: Lie symmetries, exact
solutions and conservation laws. Chaos, Solitons &
Fractals, 182:114855, 2024.

[5] Faheem M, Khan A, and Raza A. A high resolution
hermite wavelet technique for solving space–time-
fractional partial differential equations. Mathematics
and Computers in Simulation, 194:588–609, 2022.

[6] Lagaris IE, Likas A and Fotiadis DI. Artificial neural
networks for solving ordinary andpartial differential
equations IEEETrans. Neural Networks 9 : 987–1000,
1998.

