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Abstract 
 

In this study, a new multi-layer neural network (MLNN) approach designed to solve fractional heat equations (FHEs) is 
introduced. To handle the fractional derivative, the Laplace transform for approximation was applied. The results of our 
approach with those obtained using the finite difference method(FDM) are compared. The findings highlight the flexibility 
and computational efficiency of the proposed approach, making it a promising technique for solving FHEs. 
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1. Introduction 
In recent years, fractional differential equations(FDE) 
have attracted significant attention, largely thanks to the 
rapid advancement of fractional calculus. This growing 
field has found wide-ranging applications across 
numerous disciplines, including mathematics, physics, 
chemistry, biology, medicine, mechanics, control theory, 
signal and image processing, environmental science, 
finance, and more[1,2].  Fractional order differential 
equations can be generalized to the traditional differential 
equations that involve non-integer orders. They often 
occur in systems with memory effects, modeled using 
power-law kernels that capture nonlocal relationships in 
time and space. These equations become a powerful 
framework for describing memory and hereditary 

properties in various materials and processes. Their strong 
physical foundation has revealed a new topic of scientific 
research, leading to the development of novel theoretical 
insights and numerical technique [4,5]. 

 2. Mathematical Framework 
 

In this study, the following FHEs are considered 
solved through the proposed approach. 
 
𝜕𝛼𝑈(𝑥, 𝑡)
𝜕𝑡! −𝑈(𝑥, 𝑡)

𝜕𝑈(𝑥, 𝑡)
𝜕𝑥 −

𝜕"𝑈(𝑥, 𝑡)
𝜕𝑥" = 𝐹(𝑥, 𝑡)						(1)	

0 ≤ 𝑥 ≤ 1,0 ≤ 𝑡 ≤ 1,0 < 𝛼 ≤ 1,	
 

 with 𝑈(𝑥, 0) = 𝑔#(𝑥), 𝑈(0, 𝑡) = 𝑔"(𝑡), and 𝑈(1, 𝑡) = 𝑔$(𝑡). 
𝜕𝛼%(',))
+)!

 can be approximated by Laplace transform as 
follows: 
 

𝜕𝛼𝑈(𝑥, 𝑡)
𝜕𝑡! ≈ 𝛼

𝜕𝑈(𝑥, 𝑡)
𝜕𝑡 + (1 − 𝛼)[𝑈(𝑥, 𝑡) − 𝑈(𝑥, 0)].	

 
A trial solution 𝑈8(𝑋, 𝑝) is formulated to satisfy the initial 
boundary value conditions [7], with the goal of solving 
equation (1)+ 
 

𝑈8(𝑋, 𝑝) = 𝑄(𝑥, 𝑡) + 𝑥(1 − 𝑥)𝑡𝑁(𝑋, 𝑝),	
𝑄(𝑥, 𝑡) = (1 − 𝑥)𝑔"(𝑡) + 𝑥𝑔$(𝑡) + 𝑔#(𝑥) − (1 − 𝑥)𝑔#(0)	

																−𝑥𝑔#(1)	
 The following expression is used to define the loss 

function: 
 

𝐿(𝑋, 𝑝) =
1
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Here, M denotes the total number of discretized points in 
both x and t. The Adam optimizer is employed to minimize 
equation (2). Finally, the model parameters are revised 
using the following equations: 
 

𝑚/ = 	𝜁₁𝑚/01 +	(1	 − 	𝜁₁) +1
+2
	, 

𝑣/ 	= 	𝜁₂𝑣/01 	+	(1	 − 	𝜁₂)(
𝜕𝐿
𝜕𝑝)²,	

𝑚F/ 	= 3"

(1	0	5₁)
,	

𝑣G/ 	= 	 7"

(1	0	52)
,	

𝑝/81 	= 	𝑝/ 	− 	𝛿	 39"

:		(7;"8<)		
	.	

 
2.1 MLNN Model Construction 
 
The neural network architecture employed in this study is 
most accurately described as a multi-layer neural network 
(MLNN). As illustrated in Fig. 1, the network is composed 
of an input layer, four hidden layers, and an output layer. 
Each hidden layer contains kkk neurons. To maintain 
clarity in notation, each neuron is labeled using a 
superscript that indicates its corresponding layer. This 
convention also extends to the network’s weights and 
biases.The weights are denoted by 𝑤//

[-], where l ranges 
from 1 to 4, representing the connections between 
layers.The input to the network is represented by the 
vector 𝑋 = (𝑥, 𝑡)? , and the output, written as 𝑁(𝑥, 𝑡, 𝑝), 
comes from the final node 𝑁[@], , which corresponds to the 
number of unknowns in the FHEs. The sigmoid activation 
function is used for all hidden layer neurons and is defined 
as:  𝜙(𝑧) = 1

1+𝑒−𝑧
 . 

 
 
 

 
 
 
Fig 1. The designed MLNN structure 

3. Numerical Results  
In this section, the effectiveness of MLNNs in solving 

FHEs is demonstrated through illustrative examples. The 
neural network is trained over 10000 iterations using a 
discretized grid of 121 mesh points within the domain 
[0,1] × [0,1].  

 
3.1 Example 
 
 Consider the following FHEs, as presented by  [6]:  
 

𝜕𝛼𝑈(𝑥, 𝑡)
𝜕𝑡! −𝑈(𝑥, 𝑡) 𝜕𝑈(𝑥, 𝑡)𝜕𝑥 − 𝜕

2𝑈(𝑥, 𝑡)
𝜕𝑥 = 0,			

0 ≤ 𝑥 ≤ 1,0 ≤ 𝑡 ≤ 1,0 < 𝛼 ≤ 1,	
 

 𝑈(𝑥, 0) = 2 − 𝑥, 𝑈(0, 𝑡) = "
#8)

, and 𝑈(1, 𝑡) = #
#8)

. 
 The exact solution for 𝛼 = 1 is 𝑈(𝑥, 𝑡) = "0'

#8)
.  

Table  1: Numerical results obtained using different values of 𝛼 . 
                  MLNN 

 (𝑥, 𝑡)  Exact 𝛼 = 0.1 𝛼 = 0.8 𝛼 = 1 
(0,0) 2 2 2 2 

(0.1, 0.1) 1.72727 1.67767 1.72727 1.72726 
(0.2, 0.2) 1.49999 1.44184 1.49999 1.49998 
(0.3, 0.3) 1.30769 1.30767 1.30768 1.307621 
(0.4, 0.4) 1.14285 1.25923 1.14285 1.14282 
(0.5, 0.5) 1.000000 0.98421 0.99999 0.99996 
(0.6, 0.6) 0.87500 0.87355 0.87499 0.87495 
(0.7, 0.7) 0.76470 0.77261 0.76469 0.76466 
(0.8, 0.8) 0.66666 0.67811 0.66665 0.66662 
(0.9, 0.9) 0.57894 0.58792 0.57894 0.57892 

(1,1) 0.5 0.5 0.5 0.5 
CPU 

Time(s) 
 80.86 67.80 76.31 

 
Table  2: Comparison of absolute errors between MLNN and 

FDM at 𝛼 = 1. 
 

(𝑥, 𝑡)	 MLNN FDM 
(0.1,0.1) 2.74 × 10−6  3.80× 10−3 
(0.2,0.2) 9.89 × 10−6 7.18× 10−3 
(0.3,0.3) 1.91 × 10−5  8.33× 10−3 
(0.4,0.4) 2.90 × 10−5  7.89× 10−3 
(0.5,0.5) 3.79 × 10−5  6.63× 10−3 
(0.6 , 0.6) 4.35 × 10−5  5.09× 10−3 
(0.7,0.7) 4.46 × 10−5  3.55× 10−3 
(0.8, 0.8) 3.87 × 10−5 	2.17 × 100$ 
(0.9, 0.9) 2.45 × 10−5  9.87× 10−3 

 
 

Fig. 2.  MLNN solution at 𝛼 = 1 
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Fig. 3. Exact solution 

 
Fig. 4. Absolute error at 𝛼 = 1 

 
 

 
Fig. 5. Convergence of loss function 

 
Table 1 presents the results obtained for different values 
of α. The results indicate that the accuracy of the MLNN 
model improves as  α approaches 1. Moreover, the CPU 
time remains consistently low across all tested values of  
α. Table 2 provides a comparison of the absolute errors 
between the MLNN and the FDM at α=1. The results 
demonstrate that the MLNN consistently outperforms the 
FDM in terms of accuracy. Fig. 2 illustrates the MLNN-
generated solutions for α=1, while Fig. 3 presents the 
corresponding exact solutions. The strong agreement 
between the two indicates that the MLNN model effectively 
approximates the exact solution. Fig. 4 presents the 
absolute errors at α=1, while Fig.  5 shows how the loss 
function changes over 10,000 iterations. The graph 
reveals a sharp decrease in the loss at the beginning, 
which then slowly levels off close to zero as the iterations 
progress. This pattern indicates that the model 
successfully converges during training. 

4. Conclusion 

This study presents a new algorithm that applies MLNNs 
to solve FHEs. The results show notable improvements 
over exact solutions. To train the network efficiently, the 
method uses Adam optimization. The algorithm is built 
around two key components: accurately approximating 
fractional derivatives and carefully designing the MLNN 
structure. Moreover, most network parameters were fine-
tuned, which helped reduce the loss function to nearly zero 
by the end of each training cycle. When compared to 
traditional techniques like the FDM, the MLNN approach 
achieved higher accuracy, demonstrating its robustness 
and effectiveness. 
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