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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 
fulfilment of the requirement for the Doctor of Philosophy 

EFFICIENCY ENHANCEMENT OF HYBRID PHOTOVOLTAIC-
THERMOELECTRIC GENERATOR FOR GREENHOUSE BASED ON 

TEMPERATURE DISTRIBUTION 

By 

MOHD RUZAIMI BIN MOHD ARIFFIN 

June 2024 

Chairman : Suhaidi bin Shafie, PhD 
Institute : Nanoscience and Nanotechnology 

Food security is a pressing global issue, prompting the search for sustainable 

agricultural solutions. Agricultural greenhouses present a viable option by 

providing controlled environments for crop cultivation. This research focuses 

on enhancing the efficiency of photovoltaic (PV) systems in greenhouse 

applications through the integration of thermoelectric generators (TEG). The 

main goal is to convert residual heat from PV panels into additional electricity 

using TEGs, thereby optimizing energy utilization. The study tackles critical 

challenges in greenhouse energy management, such as high energy 

consumption, excessive solar radiation, and the limitations of conventional PV 

systems. A hybrid PV-TEG system was developed to capitalize on the 

temperature difference between the heated surface of solar panels and a 

controlled cooling mechanism where circulating aquaponic water used as a 

liquid cooler to enhance power generation. The methodology involved 

designing a small-scale PV greenhouse system, analyzing the temperature 
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distribution across the PV panels, and developing a power logger for real-time 

performance monitoring. Feasibility and temperature distribution analyses 

were conducted through both experimental setups and simulations to optimize 

the positioning and orientation of TEG modules. In a PV-TEG hybrid system, 

the temperature distribution significantly affects the performance of both PV 

panels and TEG modules. Non-uniform temperature distribution can lead to 

uneven heating, creating "hot spots" that reduce the overall efficiency of the 

PV panels. Conversely, a uniform temperature distribution helps maintain 

consistent performance across the panel, minimizing thermal stress and 

enhancing efficiency and lifespan. Similarly, TEG performance is adversely 

impacted by non-uniform temperatures, as they generate power based on 

temperature differentials; cooler areas on the PV panel can lead to suboptimal 

TEG operation, reducing overall system efficiency. Achieving uniform 

temperature distribution ensures TEGs are consistently exposed to a reliable 

heat source, maximizing energy conversion capabilities. To achieve this in this 

study, the PV panels were installed at an optimal tilt angle of 3° facing South, 

maximizing solar exposure at average direct normal irradiance of 314.9 W/m2 

in Serdang, Malaysia. The hybrid system demonstrated significant energy 

efficiency improvements, with a 33% reduction in power loss due to 

temperature mismatches across TEG modules. Strategies employed included 

selecting the highest performance TEG cell models, implementing controlled 

thermal management through liquid cooling systems, optimizing TEG 

placement based on temperature analysis, and designing effective heat sinks. 

This study also introduces a novel analytical model for PV-TEG integration, 

the PV-TEG Integrated Module (PV-TEGIM), aimed at optimizing heat 
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distribution and passive cooling techniques. The power output of the PV-TEG 

hybrid system increased with solar radiation, peaking at 31.05 W at noon. The 

total electrical energy output of the hybrid system was 31% greater than that 

of a standalone 100 Wp photovoltaic panel. The findings suggest that this 

hybrid system can reduce energy consumption in greenhouse applications, 

lower greenhouse gas emissions, and provide a sustainable energy solution 

for agricultural production. Future work should focus on expanding the system 

for larger-scale applications and investigating advanced materials to enhance 

performance further. 

Keywords: Greenhouse System, PV-TEG Hybrid, Solar Photovoltaic (PV), 
Thermoelectric (TE), Thermoelectric Generator (TEG)  

SDG: GOAL 2: Zero Hunger, GOAL 7: Affordable and Clean Energy 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah Doktor Falsafah 

PENAMBAHBAIKAN KEBERKESANAN KUASA SOLAR BAGI PENJANA 
HIBRID FOTOVOLTAIK - TERMOELEKTRIK BAGI RUMAH HIJAU 

BERDASARAKAN AGIHAN SUHU 

Oleh 

MOHD RUZAIMI BIN MOHD ARIFFIN 

Jun 2024 

Pengerusi : Suhaidi bin Shafie, PhD 

Institut : Nanosains dan Nanoteknologi 

Keterjaminan makanan adalah isu global yang serius, oleh itu mencari 

penyelesaian pertanian mampan adalah sangat penting. Rumah hijau 

pertanian adalah satu pilihan yang baik kerana ia boleh menyediakan 

persekitaran terkawal untuk tanaman. Kajian ini fokus kepada meningkatkan 

kecekapan sistem fotovoltaik (PV) dalam rumah hijau dengan 

menggabungkan penjana termoelektrik (TEG). Matlamat utama adalah untuk 

menukar haba berlebihan daripada panel PV kepada elektrik tambahan 

menggunakan TEG, menjadikan penggunaan tenaga lebih optimum. Kajian ini 

menangani cabaran pengurusan tenaga rumah hijau, termasuk penggunaan 

tenaga yang tinggi, sinaran suria berlebihan, dan batasan sistem PV 

konvensional. Sistem hibrid PV-TEG direka untuk memanfaatkan perbezaan 

suhu antara permukaan panel solar yang panas dengan mekanisme 

penyejukan terkawal, khususnya air baja akuaponik yang beredar sebagai 

penyejuk cecair bagi meningkatkan penjanaan kuasa. Metodologi kajian 
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termasuk mereka bentuk sistem rumah hijau PV berskala kecil, menganalisis 

agihan suhu pada panel PV, dan membangunkan peranti perekod kuasa bagi 

pemantauan prestasi secara masa nyata. Analisis kebolehlaksanaan dan 

agihan suhu dijalankan melalui ujian eksperimen dan simulasi untuk 

mengoptimumkan kedudukan dan orientasi modul TEG. Dalam sistem hibrid 

PV-TEG, agihan suhu memberi kesan besar kepada prestasi panel PV dan 

modul TEG. Taburan suhu yang tidak sekata boleh menyebabkan pemanasan 

tidak rata, mencipta titik panas yang mengurangkan kecekapan keseluruhan 

panel PV. Sebaliknya, taburan suhu sekata membantu mengekalkan prestasi 

yang konsisten di seluruh panel, mengurangkan tekanan haba dan 

meningkatkan kecekapan serta jangka hayat. Prestasi TEG juga terjejas jika 

suhu tidak sekata kerana TEG menghasilkan kuasa berdasarkan perbezaan 

suhu. Jika ada bahagian panel PV yang lebih sejuk, TEG di kawasan tersebut 

tak dapat berfungsi dengan optimum, mengurangkan kecekapan sistem 

secara keseluruhan. Dengan mencapai agihan suhu yang sekata, TEG 

mendapat sumber haba yang konsisten, memaksimumkan keupayaan 

penukaran tenaga. Untuk mencapai matlamat ini, panel PV dipasang pada 

sudut condong optimum 3° menghadap ke arah Selatan, memaksimumkan 

pendedahan cahaya matahari dengan purata radiasi normal tahunan matahari 

sebanyak 314.9 W/m² di Serdang, Malaysia. Sistem hibrid ini menunjukkan 

peningkatan besar dalam kecekapan tenaga, dengan pengurangan 33% 

dalam kehilangan kuasa disebabkan ketidakpadanan suhu di antara modul 

TEG. Strategi yang digunakan termasuk memilih model sel TEG berprestasi 

tinggi, mengaplikasikan pengurusan haba terkawal melalui sistem penyejukan 

cecair, mengoptimumkan kedudukan TEG berdasarkan analisis suhu, dan 
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merekabentuk heatsink yang berkesan. Kajian ini juga memperkenalkan 

model analisis baru untuk integrasi PV-TEG, iaitu Modul Integrasi PV-TEG 

(PV-TEGIM), yang memberi fokus kepada pengoptimuman agihan haba dan 

teknik penyejukan pasif. Keputusan menunjukkan output kuasa sistem hibrid 

PV-TEG meningkat dengan sinaran suria, mencapai maksimum 31.05 W pada 

tengah hari. Jumlah tenaga elektrik sistem hibrid ini adalah 31% lebih tinggi 

berbanding panel fotovoltaik 100 Wp sahaja. Hasil kajian menunjukkan sistem 

hibrid ini boleh mengurangkan penggunaan tenaga dalam aplikasi rumah 

hijau, mengurangkan pelepasan gas rumah kaca, dan menawarkan 

penyelesaian tenaga yang mampan untuk pengeluaran pertanian. Cadangan 

masa depan termasuk memperluas sistem ini untuk aplikasi berskala lebih 

besar dan meneroka bahan-bahan maju untuk meningkatkan prestasi. 

Kata Kunci: Hibrid PV-TEG, Penjana Termoelektrik (TEG), Solar PV, Sistem 
Rumah Hijau Fotovoltaik (PV), Termoelektrik (TE),  

SDG: MATLAMAT 2: Sifar Kebuluran, MATLAMAT 7: Tenaga Bersih dan 
Berpatutan 
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CHAPTER 1 

 

INTRODUCTION 

 

This section provides a summary of the research setting, objectives, aims, 

approach, and innovation. It outlines the background of the study, 

encompassing energy consumption, demand, and global targets for carbon 

emissions. Furthermore, it delves into the advantages of sustainable energy, 

specifically emphasizing solar power as the primary focus of investigation. 

Furthermore, the chapter provides a brief explanation of the principles 

underlying photovoltaic systems, thermoelectric generators, and hybrid 

photovoltaic-thermoelectric systems. 

 

1.1 Background and Motivation 

 

Since the industrial revolution, fossil fuels including natural gas, coal, and oil 

have been a major source of energy generation. This is mainly because they 

have a far higher power density than renewable energy sources. As a result, 

fossil fuels have several downsides, including environmental degradation and 

unpredictable pricing and restricted supply. Figure 1 shows that renewable 

energy sources (RES) generated an estimated 29.9% of global electricity in 

2022, increased by 9% since from 21.3% in 2012 [1]. Wind, biopower, solar, 

and geothermal are all renewable sources of energy that can be easily 

supplied. Because of this, current research efforts have been devoted to 

developing and upgrading solar energy systems and other renewable energy 
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systems. Thermal energy and electrical energy are the two most common 

methods of converting solar energy. In addition to photovoltaic (PV) 

converters, thermoelectric generators (TEG) also provide a reliable method of 

converting solar thermal energy into electrical energy. Low operating and 

maintenance costs and no hazardous gas emissions characterize 

thermoelectric devices. They can be scaled up and down easily, and they don't 

pollute the environment when they're in use. It is thus possible to increase solar 

PV system efficiency at the same time as decreasing the amount of waste heat 

that is emitted from it. 

 

Figure 1.1: Percentage of renewable energy sources in the world's 
electrical supply by the end of 2022 
(Source: Renewables 2023 - Global Status Report) 
 

The efficient utilization and conversion of solar energy into electricity is the 

focus of a considerable deal of research due to increased environmental 

awareness and concern. Concentrated PV (CPV) systems are plagued by a 

decrease in conversion efficiency due to the rise in cell temperature and the 

associated waste heat [2]. The utilization of thermoelectric modules to recycle 

waste heat from solar PV cells has been a major driving force behind the 
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development of combined Photovoltaic-Thermoelectric Generator (PV-TEG) 

systems. PV cells can be used alone, however, when they are combined with 

TEG modules, they create a more sophisticated system. PV cells and TEG 

modules are adversely affected by rising temperatures in an integrated PV-

TEG system. Higher concentration results in a higher temperature gradient, 

which enhances the TEG module’s efficiency, but it also reduces the PV cell’s 

efficiency and longevity. Research in recent years has focused on the use of 

phase change materials (PCM) and nanotechnology in an integrated PV-TEG 

system to improve heat transfer and efficiency [3]. As a result of the intricate 

relationships and trade-offs introduced by PV cell and TEG module integration, 

system optimization is critical. 

The overall efficiency of a PV roof system can be improved by integrating TEG 

devices and PV solar cells. However, the additional costs of this integration 

must be considered when determining if it is economically feasible [4]. The 

cost of the integrated system is increased by the additional equipment, such 

as TEG devices and reflectors. Consequently, it is vital to study the economic 

viability of PV-TEG systems as a first step. The integration of TEG modules 

into PV-TEG systems has resulted in a significant increase in efficiency. The 

combined use of PV converters and TEGs for power generation in integrated 

PV-TEG systems provides a solution to the problem of wide-spectrum solar 

radiation consumption [5]. As a result, PV-TEG systems are currently receiving 

more attention and research efforts aimed at improving their reliability and 

efficiency [6, 7]. Integrated PV-TEG system performance improvement has 

been studied experimentally and computationally in the current study. 
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Presented were the characteristics and models of solar PV converters, along 

with the operating principles of TEG devices. An in-depth discussion of several 

modeling methodologies for the integrated PV-TEG system ware discussed. 

The effect of temperature distribution and relationship with the optimization of 

solar angle has also been explored. It was also discussed how PV cells can 

be integrated with TEG devices and what the future may hold. 

1.2 Problem Statement 

Current PV greenhouse systems face several challenges, including high 

energy consumption for heating, cooling, and lighting, which impacts overall 

efficiency. Additionally, excess solar radiation can lead to overheating, 

negatively affecting plant growth and energy use. The limited space on 

greenhouse roofs restricts the number of solar panels that can be installed, 

thereby capping energy generation. Moreover, current technology does not 

fully utilize both light and heat energy effectively, resulting in underutilize 

energy. These issues highlight the need for innovative hybrid solutions and 

optimized designs to improve energy efficiency and productivity in PV 

greenhouse systems. 

The utilization of electrical energy is essential for environmental control in 

greenhouse operations. Among the significant expenses in greenhouse 

production are the heating and cooling systems. Typically, heating is 

accomplished through the combustion of fossil fuels (diesel, fuel oil, liquid 

petroleum, gas), contributing to increased CO2 emissions. Alternatively, 
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electric heaters are employed, resulting in higher energy consumption. 

Therefore, a key challenge for agricultural greenhouses is to explore methods 

that enhance energy efficiency while simultaneously reducing overall energy 

consumption and associated CO2 emissions within the greenhouse industry 

[8]. 

 

Excessive solar radiation has a significant impact on crop production. With 

a 1% decrease in light, yield loss is anticipated to be over 1% [9]. Solar 

radiation is frequently too strong for certain crop species, especially in summer 

or in areas with high levels of irradiation. To reduce the amount of radiation 

reaching plants in a greenhouse, one way is to employ screens and coatings 

[10]. This finding suggests PV modules could be a practical way to harness the 

abundant sunlight that reaches greenhouses, transforming it into electricity 

that can power environmental control devices. Optimizing one plot of land is 

possible with the help of solar PV systems installed on rooftops or integrated 

into greenhouse structures; this makes use of the abundant surfaces available 

in greenhouses, allowing for the cultivation of crop yield products below and 

the production of self-consumed energy above. 

 

In earlier PV greenhouse systems, flexible PV modules made from 

monocrystalline silicon (mono-Si), polycrystalline silicon (poly-Si), or thin-film 

materials were commonly used. However, due to space and area limitations 

on the greenhouse roof, including specific power consumption requirements, 

these types of PV modules often reduced overall power output [11–14]. To 

address this issue, improving PV cell technology or finding alternatives has 
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become a priority. One promising solution is the integration of TEGs with 

photovoltaic cells, which has shown to enhance performance beyond what 

either technology can achieve alone. A hybrid system combining solar and 

thermal technologies offers a viable option for utilizing residual heat and 

improving efficiency. 

 

In the current progress of PV-TEG hybrid system point of view, the system 

can be configured in various ways, either with the components functioning 

independently or in direct combination. To optimize the system's performance, 

additional elements such as a PV module, a TEG, and a cooling system can 

be integrated or fabricated. When both the PV module and the TEG contribute 

to the power output, the total energy produced is the combined result of both 

components. Previous studies have shown that the efficiency of hybrid 

systems varies depending on the configuration and approach used [15]. In 

greenhouse systems, the cold side of the TEG is influenced by the lower 

internal temperature of the greenhouse, while the hot side—corresponding to 

the temperature of the photovoltaic panels—fluctuates based on the amount 

of sunlight received and the time of day. 

 

Previous research on PV-TEG hybrid systems has predominantly operated 

under the assumption of constant incident solar radiation. However, in 

actual environment conditions, solar radiation, along with temperature 

distribution, undergoes continuous fluctuations in actual applications. Uneven 

TEG cell power generation, when analyzed through Kirchhoff's Laws, 
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highlights how individual cells' lower performance affects the entire system's 

current and voltage, leading to significant energy losses. [16, 17]. 

 

1.3 Research Objectives 

 

A hybrid photovoltaic system that incorporates a thermoelectric generator 

(TEG) in an agriculture greenhouse application is the goal of this research, 

which intends to improve overall efficiency, generate more electricity, and 

harvest more energy from the sun. The thermoelectric generator's electrical 

performance can be improved by optimizing the PV panel temperature 

distribution, which is the focus of this study. To accomplish this purpose, the 

following objectives have been laid out: 

a) To build a small-scale PV greenhouse system tailored to specific crops 

and standard environmental controls at minimum loads. 

Simultaneously, enhance the energy output of PV panels by integrating 

TEG modules. This integration aims to utilize the limited backside 

surface area of PV panels, adhere to power consumption requirements, 

and align with greenhouse environmental control parameters. The goal 

is to harness both light and thermal energy from solar radiation for 

increased overall efficiency. 

b) To develop and analyze novel PV-TEG Integrated Module (PV-TEGIM) 

power output based on uniform heat of optimized angle of PV panels to 

enhance PV greenhouse roof system efficiency. 
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c) To develop a working model of a DC energy power logger that uses 

microcontroller to track and monitor the DC voltage and current of a 

TEG integrated module array circuit.  

d) To verify the results between simulation and developed hardware by 

comparing th PV-TEGIM with a conventional PV system, i.e; I-V-t, I-V-

T, η, P-Q, etc. 

 

1.4 Scope and Limitation of the Study 

 

The study of PV-TEG hybrid systems in greenhouse environments covers 

several important aspects, particularly the integration of photovoltaic (PV) 

panels with thermoelectric generators (TEGs) to boost energy efficiency. This 

research focuses on assessing how waste heat from PV panels can be 

converted into additional electrical power through TEGs, enhancing energy 

output while supporting optimal microclimate conditions essential for plant 

growth. However, this research was conducted on a small scale due to the 

lower costs and manageable complexity of these systems, which may limit the 

applicability of findings to larger setups. Larger systems can face different 

challenges, such as increased infrastructure demands and more complex 

energy management issues. 

 

Additionally, the cost of integrating TEGs with PV systems can be significant, 

as the initial investment for TEG technology is often higher than that of 

conventional PV systems alone. This can deter large-scale adoption, 

particularly in budget-sensitive agricultural operations. Although TEGs can 
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improve energy output, the return on investment may not be immediately 

evident, as the efficiency gains from the added technology can be marginal 

compared to the higher setup costs. Hence, in this study, the PV-TEG 

Integrated module developed applied only on one PV panel for data collection 

and analysis. 

 

Furthermore, small-scale studies may not fully capture the fluctuating power 

consumption dynamics typical of commercial-scale greenhouses, where 

energy demands vary significantly based on factors like crop type and local 

climate conditions. The management of heat distribution from TEGs in smaller 

installations may not accurately reflect the thermal dynamics encountered in 

larger systems, potentially affecting the overall efficiency and operational 

effectiveness of the hybrid approach. Overall, while small-scale PV-TEG 

hybrid systems provide valuable insights into optimizing energy efficiency in 

greenhouses, further research is needed to address these limitations and 

validate their effectiveness in larger commercial applications. 

 

1.5 Research Novelty 

 

During the investigation of PV-TEG hybrid system technologies, the following 

innovations were identified in relation to the existing literature: 

 

Structural Innovation - In a greenhouse hydroponic system, circulating 

nutrient-enriched or fertilized water facilitates thermal energy transfer between 

the hot backside surface of the PV panel and the cold side of the TEG. The 
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process optimizes the temperature difference between the hot and cold sides 

of the TEG, improving heat extraction from the solar panel, minimizing heat 

loss, and reducing geometric constraints. Water cooling, which is more 

efficient than air cooling, has become the preferred method for cooling the 

TEG's cold side, resulting in enhanced overall performance of the hybrid 

system. 

 

Theoretical Innovation - Building and validating theoretical models for 

thermoelectric generators and photovoltaic-thermoelectric hybrid systems 

opens up new possibilities for performance prediction in both steady-state and 

dynamic conditions. These models serve as powerful tools, allowing for the 

fine-tuning of design parameters to maximize system efficiency. In PV solar 

systems, for instance, how heat is distributed across the panels is closely 

linked to the angle at which the panels are tilted, an adjustment that plays a 

crucial role in balancing temperatures and avoiding hotspots. Improper angles 

can lead to uneven heating, known as thermal hotspots, where certain parts of 

the panel become significantly hotter than others. Simulations are also 

conducted using the finite element method (FEM) approach with ANSYS 

software. Experimental study has been done to identify the optimum angle. By 

optimizing the tilt angle for a specific location (UPM Serdang), the temperature 

distribution becomes more uniform, optimizing temperature differences across 

the panel surface and TEG cells of TEG integrated module circuit. Simulations 

analysis also conducted using the finite element method (FEM) approach with 

ANSYS software. 
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Conceptual innovation – Building upon the optimization strategies 

discussed, this study proposes a new method to enhance the performance of 

PV-TEG hybrid systems by addressing the issue of uneven temperature 

distribution. By refining panel tilt angles, strategically positioning TEG 

modules, and implementing advanced thermal management techniques, the 

proposed system is designed to significantly boost energy output and 

efficiency in hybrid configurations. PV-TEG integrated module has been 

developed and applied in the PV Greenhous system roof, taking advantage of 

the fertilization water as the TEG cold side cooling medium. This project has 

the potential to significantly enhance renewable energy generation in 

applications such as greenhouses, where both solar energy and heat 

management are critical for sustainability and productivity. 

 

1.6 Thesis Structure 

 

Chapter 1 situates this research within its historical context, highlighting the 

key motivations for reassessing energy usage in greenhouse systems. The 

study aims to explore the feasibility, methodology, and benefits of transitioning 

from a traditional alternating current (AC) electrical supply to a direct current 

(DC) supply through a PV-TEG hybrid system, aiming to improve energy 

efficiency in greenhouse applications. The chapter delves into the limitations 

inherent in a conventional PV greenhouse system and explores the potential 

benefits of integrating thermoelectricity into the standard PV system. This 

integration is intended to enhance energy output efficiency and address the 

management of excess heat generated by PV panels. Referred to as the 
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'global objective,' these aspects serve as the driving force behind the ongoing 

discourse. 

 

In Chapter 2, summary and comparison of all of the prior work is presented. 

This research, which is theoretically constructed and goes through the 

parameters that affect the greenhouse, is compared, and contrasted with the 

work that they have done. In order to serve as a foundation for further research, 

it evaluates the efforts that they have made in the past. Several critical 

analyses are included in this article, as well as a discussion of the various ways 

in which this research differs in terms of methodology and analysis. 

 

Chapter 3 outlines the methodology, focusing on the identification and 

understanding of key parameters. These parameters include electrical loads, 

PV energy generation, heat dissipation from PV panels, and the equations 

governing these elements. The analysis examines how each parameter 

impacts the design process of the PV-TEG hybrid system. A selection of DC 

appliances is made for the lab-scale PV-TEG model, and relevant equations 

are applied to accurately size the energy storage system. A set of example 

calculations using two types of TEG modules is presented. These equations 

were used to collect and display graphically data for a variety of loads and 

currents at different voltages. 

 

In chapter 4, the results of the experiment are discussed. Details of the 

experimental test rig and technique are given. The outcomes of several case 

studies conducted in the laboratory, as well as the validation of the simulation 
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model through experimental findings and previously published data, are 

discussed. This chapter also covers the outcomes of optimization research on 

hybrid photovoltaic-thermoelectric systems based on a verified simulation 

model. 

 

Chapter 5 serves as a wrap-up for the study, outlining the steps taken to meet 

the study's stated goals. In addition, the research's primary findings and 

limitations are discussed in this section. Finally, suggestions for further 

research are provided as a point of reference. 

 

The earlier chapters have been thoughtfully arranged and interconnected to 

provide a cohesive view of how the research goals and objectives were 

achieved. This structure enhances understanding and offers a clear summary 

of the study’s overall research process and findings. 
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