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The counter electrode is one of the most critical components in the dye-
sensitized solar cell (DSSC). It catalyzes the reduction of iodide/tri-iodide in the 
electrolyte, bringing the electrons from external loads connected to the cells. A 
conventional platinum counter electrode is extensively used; however, the 
concern with platinum-based is that expose to corrosion in an iodine-based 
electrolyte, which affects the long-term stability of the cell. Therefore, using the 
carbon-based material to replace the platinum-based in DSSC can address the 
mentioned problems. This work synthesized a graphenated-carbon nanotube (g-
CNT) via the floating-catalyst chemical vapor deposition method. Then, the g-
CNT paste was prepared and deposited for the counter electrode. The 
morphological results revealed that the g-CNT8 obtained 34.5 S/cm, forming a 
highly conductive network due to graphene foliates at the sidewalls of CNT. This 
excellent finding is due to the hybrid structure of the g-CNT8, which provides a 
high defect structure that creates efficient electron transfer in the materials 
resulting in higher conductivity. For the counter electrode DSSC, briefly, 
GCC500 film provided good electrical conductivity of 6.28 S/cm. In addition, the 
GCC500 counter electrode offered excellent catalytic activity for the 
iodide/triiodide reaction. That is a significant feature in employing counter 
electrodes to enhance DSSC performance. Furthermore, the DSSC-based 
GCC500 exhibited 5.68 % of photovoltaic conversion energy, much higher than 
platinum (3.79 %). Therefore, the GCC500 is an excellent candidate to replace 
the conventional platinum as a counter electrode in DSSC. 
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Elektrod berlawanan adalah salah satu komponen paling kritikal dalam sel suria 
terpeka pewarna (DSSC). Ia memangkinkan pengurangan iodin/tri-iodida yang 
membawa elektron daripada beban luaran yang disambungkan kepada sel. 
Elektrod berlawanan platinum konvensional digunakan secara meluas, namun, 
kebimbangan terhadap bahan berasaskan platinum adalah terdedah kepada 
kakisan dalam elektrolit berasaskan iodin, yang menjejaskan kestabilan jangka 
panjang sel. Oleh itu, penggunaan bahan berasaskan karbon untuk 
menggantikan platinum dalam DSSC dapat menyelesaikan masalah tersebut. 
Kajian ini mensintesis tiub nano karbon-grafen (g-CNT) melalui kaedah 
pengendapan wap kimia pemangkin terapung. Kemudian, pes g-CNT 
disediakan untuk elektrod berlawanan. Hasil morfologi menunjukkan bahawa g-
CNT8 mencapai 34.5 S/cm membentuk rangkaian yang sangat konduktif kerana 
pertumbuhan foliat grafen di dinding sisi CNT. Penemuan cemerlang ini adalah 
disebabkan oleh struktur hibrid g-CNT8 yang menyediakan struktur kecacatan 
yang tinggi untuk menghasilkan pemindahan elektron yang cekap dalam bahan, 
lantas meningkatkan kekonduksian yang lebih tinggi. Untuk elektrod berlawanan 
dalam DSSC, secara ringkas, filem GCC500 memberikan kekonduksian elektrik 
yang tinggi 6.28 S/cm. Selain itu, GCC500 menawarkan aktiviti pemangkin yang 
sangat baik untuk tindak balas iodida/triiodida. Ini adalah ciri penting untuk 
meningkatkan prestasi DSSC. Tambahan pula, GCC500 menunjukkan 5.68% 
kecekapan penukaran tenaga, jauh lebih tinggi daripada platinum (3.79%). Oleh 
itu, GCC500 merupakan calon terbaik untuk menggantikan platinum 
konvensional sebagai elektrod berlawanan dalam DSSC. 
 
 
Kata Kunci: g-CNT; berasaskan karbon; elektrod berlawanan; DSSC 
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CHAPTER 1 

 

INTRODUCTIONS  

1.1 Background 

Emerging economies drive the world’s growing demand for energy and an 
increasing population, especially in developing countries [1]. That leads to global 
warming resulting from the large-scale emission of the greenhouse effect and air 
pollution, which can be caused countless illnesses [2]. Nonrenewable energy 
sources such as petroleum, natural gas, coal, and fossil fuels are used in daily 
activities [3]. Many strategies have been implemented to tackle the global issue, 
such as green, sustainable, and energy-efficient [4], [5].  

Sustainable and renewable energy resources such as biomass, tidal energy, 
hydro energy, solar thermal, and solar cell are among the potential option for 
renewable energy and the most efficient [6]. The most potential among 
renewable energy is solar cell technology (photovoltaic). This technology has 
received worldwide attention and turned into a billion, especially in industry. The 
International Energy Agency (IEA) has predicted that 30% of solar energy is 
projected to supply the world’s power in 2050 and is supposed to increase up to 
60% of electricity in 2100 [7].  

A solar photovoltaic (PV) system generates electrical power from the sunlight. 
Semiconducting layers are often referred to as silicon-based PV systems. It is 
composed of p-type and n-type components forming a p-n junction. The 
semiconducting material absorbs the incident photons when the system is 
exposed to sunlight, creating positive or negative charges. The n-type 
semiconductor tends to gather electrons, whereas the p-type semiconductor 
tends to collect holes. The electricity will readily flow into the cell if an external 
load is present. Becquerel discovered the PV effect in 1839 through his research 
on how light impacts electrolyte cells [8], [9]. Later, in 1954, Bell in the United 
States developed a PV solar cell that was deployed to supply electricity for space 
satellites [10]. 

Solar cells can be classified into three generations: first, second, and third. The 
first-generation solar cells are wafer silicon-based, amorphous silicon, single-
crystalline and poly-crystalline silicon, and hybrid silicon cells. Silicon 
photovoltaics commonly demonstrated 15% to 25% energy conversion 
efficiency, leading to the photovoltaic market. The advantages of this solar cell 
technology are good performance and high stability. However, they require an 
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expensive production cost to build the module technology that demands high-
purity silicon.  

The second-generation solar cells are made from thin-film semiconductor-
based) amorphous silicon, cadmium telluride (CdTe), copper indium gallium 
selenide (CIS or CIGS). They usually recorded 12% to 15% of energy efficiency. 
The thin film has offered a potential reduction of cost using the active materials 
between two pieces of glass and flexible cells. However, it still requires high 
temperatures, complicated module technology, and poor stability, and some 
materials like cadmium used in thin-film solar cells are toxic to humans. 

Meanwhile, third-generation solar cells are often described as a new thin-film 
emerging technology, including organic photovoltaics, polymer photovoltaics, 
perovskite photovoltaics, dye-sensitized solar cell, and quantum dots solar cells. 
Yet, low energy efficiency than Si-based solar cells, third-generation solar cells 
have offered the cheapest photovoltaic technology, are friendly to the 
environment, and typically demonstrate an energy efficiency of 11% to 14.1 % 
[11]–[13]. Most recently, the Grätzel group has exhibited a high power 
conversion efficiency of 15.2 %, which is the new record in DSSC TiO2-based 
and co-adsorbed sensitizers [14].  

An effort is being made to develop third-generation solar cells, which it is hoped 
will soon replace existing solar technology and address its shortcomings. 
Generally speaking, this technology consists of non-semiconductor (polymer-
based and biomimetic) cells, tandem/multi-junction cells, hot-carrier cells, dye-
sensitized solar cells (DSSC), and up-conversion technologies. It has attracted 
attention because its benefit lies in easy fabrication, low-cost production, light, 
affordable source of renewable energy, outstanding performance under low light 
conditions, and several options for improving power conversion efficiency [13], 
[15]–[19]. 

The dye-sensitized solar cells (DSSC) were invented by Brian O’Regan and 
Micheal Grätzel in 1991 [20], [21]. The utmost components for common DSSC 
are wide band gap semiconductor, sensitizer to act as photoanode, catalyst, and 
redox couple. The photoanode, usually a dye particle coated with the nano 
porous metal oxide semiconductor film, was deposited on the transparent 
conductive oxide (TCO) glass as the photoanode, platinum (Pt) catalyst was 
deposited on TCO substrates as a counter electrode and redox mediator 
iodide/triiodide electrolyte.  

The revolution of solar cells in industry and the prediction of solar cell growth 
around the world showed in Figure 1.1. The chart reports the highest confirmed 
conversion efficiencies for different solar cell technologies as written by the 
National Renewable Energy Laboratory (NREL), the USA to the date of 
September 2022.  
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1.2 Problem Statements 

The counter electrode (CE) is one of the most critical components in the DSSC. 
It catalyzes the Iodide/Tri-iodide (𝐼3

−/𝐼−) redox reaction which bring the electrons 
from external loads connected to the cells and catalyze the 𝐼3

−/𝐼− reaction in the 
electrolyte. Conventional platinum (Pt) CE is extensively used due to its 
outstanding conductivity and electrocatalytic ability [21]. However, Pt-based CE 
is a precious metal and obtains low resistance toward corrosion in an iodine-
based electrolyte, which decomposes the Pt into platinum iodide (PtI4) [22].  

These led many researchers to explore other low-cost materials with low 
resistance and excellent electrocatalytic ability. For instance, carbonaceous [23], 
[24], alloys [25], [26], conducting polymers [27], [28], and composites [29]–[31] 
have been developed as Pt-free CE.  

Recently, extensive studies have investigated carbon-based CE materials, such 
as carbon nanotubes (CNT) [23], carbon fibres [32], [33], carbon black [34], 
graphene, and graphite [35], [36]. Carbon-based materials are chemically stable 
in iodine-based electrolytes and do not degrade when exposed to iodine. It also 
provides active catalytic sites at their edges. Nevertheless, many carbon 
materials with good catalytic properties do not have the competence for electron 
transfer. Therefore, initiating the hybrid carbonaceous materials will improve the 
charge transfer of conducting electrons. CNT alone does not show good 
improvement in conductivity; hence hybrid can enhance electrical conductivity. 
Graphene tends to form stacking phenomena, leading to stronger interlayer -

 stacking and van der Walls interactions that prevent electron transport and 
iodide/triiodide ion transfer producing active defect region. It causes an increase 
in internal resistance and diffusion resistance of the redox reaction. Hybrid can 
prevent stacking, thereby improving the conductivity of the materials.  

The hybrid properties of the graphenated-carbon nanotube structure are 
hypothesized to provide a way to optimize the hybrid structure by creating a 
bridging for electrons to improve the conductivity. High defect of basal and edges 
plane enhancing electrons transfer by electron bridging lead to increasing 
conductivity. That allowed for superior electronic conductivity and catalytic 
activity than any of the two materials could achieve independently. 

1.3 Objectives 

This research aims to achieve high power conversion efficiency dye-sensitized 
solar cells by implementing graphenated-carbon nanotubes cotton as a counter 
electrode in dye-sensitized solar cells. The working objectives that have been 
considered in this research are: 
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i. To synthesize and characterize graphenated-carbon nanotubes via 
the floating-catalyst chemical vapor-deposition method and 
determine the structural and morphological properties.  

ii. To investigate the graphenated-carbon nanotubes films on electrical 
and electrocatalytic properties.  

iii. To implement and evaluate the graphenated-carbon nanotubes-
based counter electrode in DSSC for high power conversion DSSC. 

 
 

1.4 Scope and Limitations 

This research aimed to examine the performance of carbon-based counter 
electrodes for DSSC. Since the study focuses only on implementing 
graphenated/CNT-based counter electrodes, the photoanode TiO2-FTO coated 
and Pt-based counter electrodes serve as a benchmark for the conventional 
DSSC. The approached material, hybrid graphenated/CNT (g-CNT) was 
synthesized and characterized, which would later be used to fabricate a counter 
electrode. During the g-CNT synthesis, the carbon sources injection rate was 
fixed at 6 ml/hr and 8 ml/hr due to less formation of g-CNT under 6 ml/hr, whereas 
at more than 8 ml/hr there is no formation of graphene foliates. Therefore, the 
selection of injection rate in this work is limited to as stated and other than that 
injection rates are out of the research scope. As there are different types of 
electrolytes and dyes, this research focuses on Iodine-electrolyte and synthetic 
N719 dye. DSSC fabrication and characterization are based on conventional Pt-
based counter electrodes and the proposed graphenated/CNT-based counter 
electrodes. The photoanode fabrication procedure is optimized and 
characterized, but all parameters related to the photoanode are still out of the 
research scope. 

1.5 Thesis Contents 

The layout of this thesis is: Chapter 1 reviews the background of the study. It 
also explains solar cell generation and DSSC and enlightens on the previous 
research that led to the problem statement of this study. Chapter 2 is a literature 
review of the previous research related to the background on the improvement 
of DSSC. Besides, the explanation of the operation principles and device 
structure of DSSC. Chapter 3 explains the research methodology. This chapter 
briefly describes the method, equipment, and materials used in this research. 
The synthesis of GCC, preparation of carbon paste for counter electrode, and 
DSSC fabrication experimental setup involved in the DSSC characterization 
were explained in detail. Chapter 4 discusses the experimental results from the 
characterization techniques and analyzes the outcome, including morphological, 
structural, electrochemical, electrical properties and DSSC performance. Lastly, 
Chapter 5 concludes the finding and highlights the contribution of this research 
and recommendations for future research to improve the DSSC performance. 
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