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Nitrogen-doped quantum dot (N-CQD) is a novel nanomaterial that has attention 
in the agriculture field. In this work, the N-CQD was synthesized and 
characterized. The mechanism of photosynthesis is still not entirely understood, 
especially for plants growing indoors. The effects of pure and N- CQD on the 
plants that grow in indoor hydroponic systems are studied. The CQD at various 
concentrations (ranging from 0-400 ppm) applied via the foliar method toward 
the leaves of the green mustard plant (Brassica Juncea). A statistical analysis 
was performed on 54 plant samples (n=54). According to the findings, 150 ppm 
of both CQD types was determined to be the optimum concentration for 
promoting plant growth and photosynthesis parameters. The CQD-treated plant 
dramatically increased the number of leaves produced, leaves area, height, fresh 
weight, and dry weight compared to the control plant by 28.8%, 40.6%, 34.6%, 
161%, and 255%, respectively. The N-CQD treated plant significantly enhanced 
the number of leaves production, leaves area, height, fresh weight, and dry 
weight by 79%, 187%, 71.5%, 383%, and 707%, respectively. Furthermore, the 
CQD treated plant increased transpiration rate, net assimilation, stomatal 
conductance, and iWUE by 11.9%, 55.7%, 30%, and 28%, respectively. Besides 
that, N-CQD significantly raised the plant transpiration rate by 28.1%, net 
assimilation by 114.6%, stomatal conductance by 49.1%, and iWUE by 57.5%.   
In this study, N-CQD improved the growth and photosynthesis rate of the green 
mustard plants compared with CQD. The effects of CQD on plants under various 
light spectrums, including full light spectrum and red/blue light spectrum, have 
also been studied. The result demonstrates that both CQD types effectively 
enhanced plant photosynthesis under full light spectrums rather than red/blue 
light spectrum. For instance, the 150 ppm treated pure CQD plants exposed to 
the full light spectrum had phiPSII higher than plants exposed to R/B light by 
10.2%. Moreover, the 150 ppm treated doped CQD plants exposed to the full 
light spectrum had phiPSII higher than plants exposed to red/blue light spectrum 
by 11.2%. The study provides an explanation of how electron transfer works in 
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the CQD/chloroplast complex. This study's findings emphasized the potential of 
CQD as an efficient method to enhance plant growth and photosynthesis for 
indoor plants. According to the research, CQD can applied in many plant species 
and growth environments as an artificial photosynthetic pigment. The innovative 
methodology created in this study to examine the impacts of CQD under various 
light spectrums can offer insightful information for maximizing the use of CQD in 
agriculture. 
 

Keyword: Carbon quantum dots, growth, photosynthesis parameters, electron 
transfer mechanism, green mustard. 
 
SDG: GOAL 2: Zero Hunger, GOAL 12: Responsible Consumption and 
Production, GOAL 13: Climate Action, GOAL 15: Life on Land 
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Kuantum nitrogen didop (N-CQD) adalah nanomaterial novel yang mempunyai 
perhatian dalam bidang pertanian. Dalam kajian ini, N-CQD telah disintesis dan 
dicirikan. Mekanisme fotosintesis masih belum difahami dengan sepenuhnya, 
terutamanya untuk tumbuhan dalaman. Kesan CQD dan N- CQD pada 
tumbuhan dalaman yang tumbuh dalam sistem hidroponik dikaji. Pelbagai 
kepekatan CQD di antara 0 hingga 400 ppm diaplikasi pada daun tanaman 
pokok sawi (Brassica Juncea) dengan mengunakkan cara semburan. Kajian 
analisis statistik dilakkukan ke atas 54 sampel tumbuhan (n=54). Menurut kajian, 
150 ppm bagi kedua-dua jenis CQD ditentukan sebagai kepekatan optimum 
untuk menggalakkan pertumbuhan tanaman dan parameter fotosintesis. 
Sebagai perbandingan dengan pokok kawalan, pokok sawi yang dirawat dengan 
CQD meningkat secara dramatik dengan jumlah daun, luas daun, tinggi 
tumbuhan, berat segar, dan berat kering sebanyak 28.8%, 40.6%, 34.6%, 161%, 
dan 255%, masing-masing. Tumbuhan yang dirawat N-CQD meningkat jumlah 
daun, luas daun, tinggi tumbuhan, berat segar dan berat kering sebanyak 79%, 
187%, 71.5%, 383% dan 707 % berbanding dengan tumbuhan kawalan, masing-
masing. Sebagai perbandingan dengan kawalan, tumbuhan yang dirawat CQD 
meningkatkan kadar transpirasi, asimilasi, kekonduksian stomata, dan iWUE 
masing-masing sebanyak 11.9%, 55.7%, 30%, dan 28%. Selain itu, N-CQD 
meningkatkan secara signifikan kadar transpirasi tumbuhan sebanyak 28.1%, 
asimilasi sebanyak 114.6%, konduktansi stomata sebanyak 49.1%, dan iWUE 
sebanyak 57.5%. Dalam kajian ini, N-CQD meningkatkan pertumbuhan dan 
kadar fotosintesis tanaman pokok sawi secara berkesan berbanding dengan 
CQD. Kesan CQD pada tanaman di bawah pelbagai spektrum cahaya, termasuk 
spektrum cahaya putih dan spektrum cahaya merah/biru, juga telah dikaji. 
Hasilnya menunjukkan bahawa kedua-dua jenis CQD meningkat secara lebih 
berkesan pada fotosintesis tumbuhan di bawah spektrum cahaya putih 
berbanding dengan spektrum cahaya merah/biru. Sebagai contoh, 150 ppm 
tanaman CQD yang didedah kepada spektrum cahaya putih mempunyai phiPSII 
lebih tinggi daripada tanaman yang terdedah kepada spektrum cahaya 
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merah/biru sebanyak 10.2%. Tambahan lagi, tanaman yang dirawat dengan 150 
ppm N-CQD terdedah kepada spektrum cahaya putih mempunyai phiPSII lebih 
tinggi daripada tanaman yang didedah kepada spektrum cahaya merah/biru 
sebanyak 11.2%. Kajian ini memberikan penjelasan komprehensif mengenai 
bagaimana pemindahan elektron berfungsi di kompleks CQD/kloroplas. Potensi 
CQD sebagai kaedah yang cekap untuk meningkatkan pertumbuhan tanaman 
dan fotosintesis untuk tumbuhan dalaman diserlahkan oleh penemuan kajian ini. 
Menurut kajian, CQD dapat digunakan dalam berbagai spesies tanaman dan 
lingkungan pertumbuhan sebagai pigmen fotosintetik buatan. Metodologi inovatif 
yang dibuat dalam kajian ini untuk mengkaji kesan CQD di bawah pelbagai 
spektrum cahaya dapat memberi maklumat yang mendalam untuk 
memaksimumkan penggunaan CQD dalam pertanian. 
 

Kata Kunci: Kuantum karbon, pertumbuhan, parameter fotosintesis, 
mekanisme pemindahan elektron, pokok sawi. 
 
SDG: MATLAMAT 2: Sifar Kebuluran, MATLAMAT 12: Penggunaan dan 
Pengeluaran Bertanggungjawab, MATLAMAT 13: Tindakan Memerangi 
Perubahan Iklim, MATLAMAT 15: Kehidupan Darat 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background of Study 
 
 
According to the Global Security Food Index (GSFI), Malaysia is currently ranked 
41st in food availability and sustainability. Nevertheless, six years ago, our nation 
was ranked 40th place (Hanif, 2023).  The country's agriculture production is 
insufficient to meet demand and is unsustainable. This is mainly because of low 
productivity and quality of agricultural products (Kuen, 2022).  Additionally, the 
news stated that approximately 45% of the nation's typical income comes from 
agriculture (Kuen, 2022). Comprehensive approaches that strengthen regional 
and national food systems should be planned to avoid a significant problem in 
the future. Engineered nanomaterials have the potential to be a solution to 
maintain the stability and availability of food in the nation. NM approach toward 
the agriculture field is the best decision and well-planned strategy due to the 
ability of NM to permeate into the layer of the plant and allow modification of the 
light-capturing organelle to fasten the growth of plants effectively (Banerjee et 
al., 2019; Pérez-de-Luque, 2017).  
 
 
Carbon quantum dot (CQD) is the most promising nanomaterial because able to 
promote the photosynthesis rate of plants and also increase the crop yield. CQD 
is zero-dimensional (0D) which typically have a particle size of less than 10 nm 
(Sharma & Dave, 2020; Youfu Wang & Hu, 2014), are the most often studied 
carbon-based NM. CQD offers several outstanding characteristics that rank it 
among the most promising materials that have emerged in the agricultural sector 
in the previous century. CQD stands out from the competition due to its 
biocompatibility, low toxicity, antioxidant activity, UV protection, antibacterial 
activity, and sustainability ( Guo et al., 2022; Kaur & Verma, 2022; Manzoor et 
al., 2023; Sharma & Dave, 2020; Tan et al., 2021; Woo et al., 2022) . These 
qualities improve their ability to be more resource-efficient and to be more 
environmentally friendly. Additionally, it means that CQD is a sustainable 
technique when used in agriculture, especially in terms of enhancing plant 
growth and photosynthesis rates to produce enough food for present and future 
generations. 
 
 
1.2 Problem Statement  
 
 
Many studies regarding the achievement of artificial photosynthesis via NM 
approaches are numerous nowadays. It has been demonstrated by numerous 
investigations that NM increases agricultural productivity. Planned strategies 
engineered nanomaterials, such as TiO2, ZnO, Mg, Ag NM, and others, have 
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been tested on plants and shown have beneficial effects (Ferdous & Nemmar, 
2020; Ebesta et al., 2021; Segatto et al., 2020). Several NM-based fertilizers are 
not environmentally favorable because they were made from inorganic and 
harmful precursors (An et al., 2022). For example, metal and metal oxide NM 
have a number of drawbacks, one of which is their toxicity (Jamkhande et al., 
2019; Mitra & De, 2016). Although these NM may show improved plant growth 
and yield, the majority of metal and metal oxide NM are hazardous to plants at 
high doses and are believed to pose a concern to the environment (Rastogi et 
al., 2017).  
 
 
The toxicity of these metal and metal oxide NM is not only harmful to the 
environment but will also cause huge side effects to the consumers who ingest 
them for long periods (Alengebawy et al., 2021; Jamuna & Ravishankar, 2015). 
For example, it has been reported in 182 studies that zinc oxide NM has adverse 
effects on the cardiovascular, neurological system, alimentary canal, 
reproductive system, and respiratory systems of the human body system 
(Keerthana & Kumar, 2020). Several chemical approaches to produce metal 
oxide NM have also been reported to include harmful substances such as H2S, 
toxic material, and metallic precursors (Raghavendra, 2017; Sabir et al., 2014). 
Other than that, the cost of the precursor is very expensive and has limitations 
in scaling up (Seabra & Durán, 2015), which  would not make it a sustainable 
approach for future agriculture. Carbon quantum dots (CQD) is one of the 
promising novel nanomaterials which able to fulfill all the requirements, whereby, 
it is environmentally friendly (Desmond et al., 2021). Among all of these 
engineered NM, CQD has emerged as a rising star because of its numerous 
advantages such as chemical inertness, photoluminescence properties, 
excellent solubility, non-toxicity, high biocompatibility, and relatively inexpensive 
cost (Lim et al., 2015; Peng et al., 2012; Xi Wang et al., 2019; Zhao et al., 2018). 
 
 
A lot of work has been carried out on the effects of utilizing the CQD towards 
various types of plants. For example, CQD effects on the growth of Rome lettuce, 
mung bean, rice plant, wheat and others (Li et al., 2018; Li et al., 2016; Swift et 
al., 2020; Wang et al., 2018a; Zheng et al., 2017). The complex process of 
photosynthesis, which takes place in plants, involves the absorption of light 
energy, its conversion to chemical energy, and the production of organic 
compounds (Lopez & Barclay, 2017). Despite intensive study, the mechanism of 
photosynthesis is still not entirely understood, especially for plants growing 
indoors. The green mustard plants are frequently grown in hydroponic systems, 
this study will investigate the effects of CQD on the physical characteristics and 
photosynthesis parameters of these plants. In this study, comparison between 
pure and doped CQD were studied. Therefore, this will contribute to the 
knowledge of the difference in the effects of both CQD types on the growth and 
photosynthesis parameters of green mustard plants.  
 
 
Nitrogen is a crucial component for plant growth (Wahocho et al., 2016), and it 
has been demonstrated that nitrogen doped carbon quantum dots (N-CQD) or 
doped CQD can improve crop growth by serving as a source of nitrogen (Li et 
al., 2021). They may also encourage the synthesis of plant hormones, which may 
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aid in subsequent growth. The doped CQD has grab more attention in the 
agriculture research field recently, however limited research has been done so 
far. According to a recent study, N-CQD increased the growth and yield of tomato 
and maize plants (Chen et al., 2021; Wang et al., 2021). Furthermore, impacts 
of N-CQD on photosynthetic parameters, including reduced 2,6-
Dichlorophenolindophenol (DCPIP) is activity, ferricyanide, enzyme expression, 
total chlorophyll a and chlorophyll b of rice plant have also been reported (Li et 
al., 2021). There are limited studies reported on the photosynthesis 
enhancement of the light response of CQD treated plants under different light 
spectrums. In this study, full light and red/blue light spectrums are investigated 
 
 
The light response of plants is a crucial factor in determining their growth and 
development. A promising substance for improving plant development and 
stress tolerance is CQD. Yet, the majority of CQD research has concentrated on 
the effect of plants under full light spectrum conditions, paying little attention 
towards the varied light spectra affect CQD behavior in plants. By examining the 
effects of pure and doped CQD under both full light spectrum (400 - 700 nm) and 
red/blue light spectrum (400 - 500 nm and 620 -750 nm), the current work 
intended to address this knowledge gap. This study aimed to offer new insights 
into the mechanisms underlying CQD plant interactions and their potential 
applications in agriculture by evaluating the light response of CQD under various 
lighting conditions. These results imply that the light spectrum has a significant 
impact on the effectiveness of CQD on plants. This research recognizes the 
significance of investigating the CQD plant interactions that are impacted by 
various light spectrums.  
 
 
Incorporating CQD into plants can change their photoluminescence 
characteristic which can reveal information about the photosynthetic processes. 
This study examines the CQD effect on the green mustard plants' 
photoluminescence traits to learn more about how effectively photosynthesis 
occurs in indoor hydroponic systems. The effects of CQD on the plants' light 
absorption, energy conversion, and organic compound production can be 
determined by observing changes in photoluminescence qualities like 
fluorescence. These studies will hopefully help for better understand the 
processes that indoor plants use for photosynthesis. This information can be 
used to enhance hydroponic systems and increase the effectiveness of growing 
plants indoors. Further investigation is required to completely comprehend the 
processes underlying these interactions and to maximize the application of CQD 
for boosting plant growth and stress tolerance in agriculture. 
 
 
1.3 Research Objectives 
 
 

a) To synthesize and characterize the CQD.  
b) To evaluate the effects of CQD on plant growth and photosynthesis 

parameters under full light spectrum. 
c) To explore the effects of light response on CQD treated plants 

under two different light spectrums. 
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The first objective is to determine the characterizations of CQD. Nitrogen doped 
CQD (N-CQD) is a new type of CQD prepared from empty fruit bunch (EFB).  
The characterizations of doped CQD was studied. Second objective of the study 
is to evaluate the effects of CQD on plant growth and photosynthesis 
parameters. Pure CQD (CQD) was previously synthesized using a similar 
precursor and techniques. The plants were treated with both pure and doped 
CQD to analyze their effects on plant growth and photosynthesis parameters. 
Last objective is to explore the effects of light response on the CQD plants under 
two different spectrums. The two types of CQD were tested to determine their 
effects on light response under two different spectrums. 
 
 
1.4 Scope of Work and Limitations 
 
 
The first objective is to synthesize and characterize the CQD. In the prior 
publication, the characterization of pure CQD made from the EFB was reported 
(Jamaludin et al., 2020). To prepare the doped CQD (N-CQD), a similar 
preparation technique and an EFB precursor were used. The EFB natural-based 
biochar served as the primary precursor for the production of N-CQD, along with 
urea. Using high-resolution transmission electron microscopy (HRTEM), the 
morphology of the prepared N-CQD was investigated. Fourier transform infrared 
(FTIR) spectroscopy was used to conduct structural analyses of N-CQD. N-CQD 
was produced and diluted into a few concentrations, ranging from 0 ppm to 400 
ppm. Then, using photoluminescence (PL) spectroscopy, the optical analyses of 
the prepared N-CQD at various concentrations were studied. In the first 
objective, the results of two CQD types were compared and discussed in depth. 
 
 
The second objective of the studies is to evaluate the effects of CQD on plant 
growth and photosynthesis parameters under full light spectrum. Green mustard 
plants were treated with both pure and doped CQD. The green mustard plants 
received a foliar treatment of CQD on their leaves. The CQD concentration is a 
factor that impacts the plants. As a result, the green mustard plants were 
exposed to five different concentrations: control (zero parts per million), 50, 100, 
150, 200, and 400 parts per million. The plant physiological characteristics like a 
number of leaves produced, area of leave, height, fresh and dry weight of green 
mustard plants were measured. The photosynthesis parameters such as net 
assimilation, transpiration rate, stomatal conductance, and water use efficiency 
were determined for each treated plant. The LICOR fluorometer photosynthesis 
machine was used to obtain these data. With the aid of the Rubisco Kit, the 
Rubisco activity of a few carefully chosen concentrations that have a major 
impact on the plant was investigated. PL spectroscopy was used to examine the 
PL characteristics of the isolated chloroplast from the treated plants. 
Comparisons were made between the physiological traits and photosynthetic 
parameters of the two types of CQD. The optimal concentration of one CQD type 
that effectively improves the physical characteristic and photosynthetic 
parameters is chosen at the end of the second objective. 
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The third objective is to evaluate the impacts of light response on CQD plants 
under two different light spectrums. Different types of spectrums of light which 
include full light and red/blue light spectrums were chosen. The full light spectrum 
has 400 -750 nm wavelength. Red light has a wavelength of 620 - 750 nm while 
blue light has a 400 - 500 nm wavelength. The photometer was used to gauge 
each light's brightness. The green mustard plants were treated foliar applications 
of a few fixed doses of pure and doped CQD. The greatest quantum efficiency 
(Fv/Fm), effective quantum yield (PhiPSII), and light response curve were the 
parameters that collected for this third objective. The results from the various 
light wavelengths were then compared. The results of the pure and doped CQD 
were compared after that. Some limitations in this study were the space for the 
plantation of plant were not enough due to the availabilities of the limited number 
of holes in the one hydroponics system. The maximum number of holes that can 
be used to carried out the experiment is limited which make it harder to carry the 
large number of samples at one time.  A greater sample size is necessary to 
produce a reliable statistical result. Therefore, the experiments were run a few 
times using the same hydroponics system due to space restrictions. 
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