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The low mechanical strength of hydroxyapatite restricts its use as a synthetic 
bone scaffold in bone tissue engineering applications. In this research work, 
hydroxyapatite was successfully incorporated with montmorillonite via a 
conventional sintering technique. Due to the insertion of montmorillonite, the 
specific surface area of hydroxyapatite was decreased from 76 m2/g to 73 m2/g 
and 68 m2/g for 80%/20% and 50%/50% of hydroxyapatite/montmorillonite 
nanocomposite, respectively which subsequently enhanced the mechanical 
strength nanocomposite. The nanocomposites were undergone a sintering 
process in order to further ameliorate their mechanical strength. Consequently, 
the mechanical strength of 80%/20% hydroxyapatite/montmorillonite 
nanocomposite reached a maximum strength of 421 MPa. Meanwhile, the 
strength of 50%/50% of hydroxyapatite/montmorillonite merely reached  225 
MPa after undergoing the sintering process. FTIR study showed that the 
absorption band of the resulting nanocomposite was comprised of both 
characteristics of hydroxyapatite and montmorillonite which witnessed the 
successful incorporation. XRD assayed revealed that new peakshave 
appearedat the incorporation of nanocomposite which was evidenced bythe 
formation of whitlockite and anhydrite. The nanocomposite was examined to 
deliver anti-inflammatory drugs for bone tissue engineering namely cloxacillin 
and fusidic acid. 2% w/w of cloxacillin and fusidic acid were encapsulated into 
nanocomposite in different temperatures viz. 37°C, 50°C and 70°C. The amount 
of drug encapsulated was found to be high in 80%/20% 
hydroxyapatite/montmorillonite nanocomposite for cloxacillin and fusidic acid at 
37°C. Besides that, the drug adsorption in fusidic acid occurred due to an 
exothermic reaction.Further studies on in vitro drug delivery of nanocomposites 
were done at fixed conditions. The drug-encapsulated nanocomposites at 37°C 
showed high cumulative drug release for both drugs.The drug release 
mechanism for cloxacillin and fusidic acid wasfound to follow pseudo-second-
order kinetic models with R2 above 0.98. An apatite layer was formed on the 
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surface of the nanocomposite indicating the bioactivity of hydroxyapatite 
increased as the amount of montmorillonite increased. This is toward the 
upconversion of hydroxyapatite using a cheap material for dual purposes; bone 
tissue engineering and drug delivery. 
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SINTESIS DAN PENYIFATAN NANOKOMPOSIT 
HIDROKSIAPATIT/MONTMORILLONIT UNTUK SISTEM PENYAMPAI UBAT 
 

Oleh 
 

NUR AKMA BINTI ABDUL HALIM 
 

Mei 2023 
 
 

Pengerusi : Prof. Mohd Zobir Hussein, PhD 
Institut  : Nanosains dan Nanoteknologi 
 
 
Kekuatan mekanikal hidrosiapatit yang rendah menyekat penggunaannya 
sebagai implan tulang dalam aplikasi kejuruteraan tisu tulang. Dalam 
penyelidikan ini, hidrosiapatit telah berjaya digabungkan dengan montmorillonit 
dengan menggunakan teknik pensinteran konvensional. Disebabkan oleh 
kemasukan montmorillonit, luas permukaan BET hidroksiapatit telah menurun 
daripada 76 m2/g kepada 73 m2/g dan 68 m2/g untuk masing-masing 80%/20% 
dan 50%/50% nano komposit hidrosiapatit/montmorillonit, dimana seterusnya 
meningkatkan kekuatan mekanikalnya. Nanokomposit tersebut telah menjalani 
proses pensinteran untuk meningkatkan lagi kekuatan mekanikal nanokomposit. 
Akibatnya, kekuatan mekanikal 80%/20% hidroksiapatit/montmorillonite 
nanokomposit mencapai kekuatan maksima iaitu 421 MPa. Sementara itu, 
kekuatan 50%/50% hidroksiapatit/montmorilonit hanya mencapai 225 MPa 
selepas melalui proses pensinteran. Kajian FTIR menunjukkan bahawa jalur 
penyerapan nanokomposit yang dihasilkan terdiri daripada kedua-dua ciri 
hidrosiapatit dan montmorillonit memberi bukti kejayaan penggabungan 
tersebut. Ujian XRD mendedahkan bahawa jalur baharu telah wujud yang 
membuktikan pembentukan whitlokit dan anhidrit. Nanokomposit tersebut diuji 
untuk menyampaikan ubat anti radang untuk kejuruteraan tisu tulang iaitu 
kloksasillin dan asid fusidic. 2% berat kloksasillin dan asid fusidik telah terkapsul 
di dalam nano komposit dalam suhu yang berbeza iaitu 37°C, 50°C and 70°C. 
Ubat terkapsul nanokomposit didapati tinggi dalam 80%/20% 
hidroksiapatit/montmorillonite untuk kloksasillin dan asid fusidik. Selain itu, 
penjerapan asid fusidikberlaku disebabkan oleh tindak balas eksotermik. Kajian 
lanjut mengenai in vitro penyampai ubat telah dijalankan pada keadaan 
tetap.Ubat terkapsul nanokomposit pada suhu 37°C telah menunjukkan 
pelepasan ubat kumulatif yang tinggi bagi kedua-dua jenis antibiotik 
darinanokomposit. Mekanisma pelepasan ubat untuk kloksasillin dan asid fusidik 
didapati mengikut model kinetik pseudo orde kedua dengan nilai R2 melebihi 
0.98. Tompokan apatit telah muncul diatas permukaan nanokomposit 
menunjukkan aktiviti bio hidrosiapatit meningkat apabila bilangan montmorillonit 
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meningkat. Ini adalah kearah penukaran hidrosiapatit menggunakan bahan 
murah untuk dua tujuan; kejuruteraan tisu tulang dan sistem penghantaran ubat.  
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CHAPTER 1 
 

INTRODUCTION 
 
 
1.1 Research background 
 

Nanotechnology is defined as the technology that utilizes molecules or structures 
in nanometer size ranging between 1nm and 100nm, where the uniqueness 
entitle novel application in broad-spectrum, from chemistry, physics and biology 
to engineering, medical and electronics. In 1959, the lecture entitled “There’s 
Plenty of Room at the Bottom” by Richard Feynman, predicted that humans will 
utilize things at the atomic level. Feynman’s hypotheses have been proven 
practical, and for this reason, he is known as the father of modern 
nanotechnology. After almost two decades, a scientist from Japan named Norio 
Taniguchi coined the term “nanotechnology” as; the separation, consolidation 
and deformation of materials by one atom or one molecule (Javed et al., 2019). 
In the medical field, nanotechnology is extensively applied for bone disease 
treatment in order to combat the limitations of conventional treatment. 
Unfortunately, the current golden standard of autologous bone grafting is 
hampered by inadequate supply, donor site morbidity, variable resorption and 
low passing rate in certain sites. These limitations brought an idea of the 
nanomaterials formulation, especially for the regeneration of bone tissue. At the 
present time, research focused on the application of nanomaterials as an implant 
material in bone tissue engineering field. Bone tissue engineering is an emerging 
field where chemical, physical and biochemical signal like genetically fabricated 
materials, growth factor and drugs are carried through a nano-biomaterial-based 
scaffold to improve bone regeneration in the desired site of human body 
(Mottaghitalab et al., 2015; Samorezov and Alsberg, 2015). In numerous cases, 
the man-made bone scaffold itself was not able to complete bone regeneration. 
To address this limitation, the idea to formulate bone scaffold made from bio-
nanocomposite incorporating drug to accelerate bone tissue regeneration is 
emerged. 
 

The porous biodegradable nano-size materials are preferred due to their ability 
to provide mechanical support during the repair and regeneration of damaged or 
infected bone. Based on the International Union of Pure and Applied Chemistry 
(IUPAC), nanoporous materials are grouped as macroporous (d ≥ 50nm), 
mesoporous (2nm ≤ d < 50nm) and microporous (d < 2nm). However, it is quite 
challenging to produce a nano-biomaterial with good mechanical strength. The 
high mechanical strength can be achieved by scarifying the porous structure as 
the porous structure is important for cell adhesion and proliferation. Besides that, 
the porous structure is also useful as a controlled drug delivery vehicle owing to 
several features such as high surface area, tunable pore sizes and stable 
uniform pore structure. These features empower them to adsorb and release 
drugs consistently and in a predictable manner. 
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Nowadays, research focused on fabricating nanocomposite to mimic the original 
bone. This fact was owed to the unique character of nanocomposite including 
high wear resistance and chemical inertness with great mechanical strength 
which can reduce the aforementioned limitations of conventional therapies. In 
general, the nanocomposite is comprised of a matrix material incorporated with 
nanomaterials like nanoclay, nanotubes, nanorod and nanowires, etc. 
Nanocomposites are tailored to suit their intended application, which is the 
reason behind their classification. These nanocomposite materials are classified 
depending on the nature of matrix phase material namely ceramic matrix 
nanocomposite, metal matrix nanocomposite and polymer matrix 
nanocomposite. Aside from being widely applied in the medical field, 
nanocomposites also find applications in a variety of sectors of human society 
such as in biotechnology (e.g. gene delivery devices), agriculture (e.g. 
nanopesticides and nanofertilizers), automotive manufacturing (e.g. automobile 
parts like car compartment), construction manufacturing (e.g. material for 
buildings and bridges, etc) (Garcés et al., 2000);(Sahoo & Tripathy, 
2017);(Tripathy, 2017);(Hossain et al., 2020);(Kumar et al., 2021). 
Nanocomposite has been used, is still in use and will continue to be used to 
satisfy the material demand of such industries, at least until a more sustainable 
alternative is coined or invented. 
 

1.2 Problem statement 
 

Modern medicine is formulated to treat certain health problems in a short period 
of time.  In modern medicine, drug was widely used and applied in treating illness 
and injury. Drug is a chemical substance that is used as a remedy to prevent and 
cure various diseases. Conventional drug administration, while extensively 
applied such as tablets, syrups, capsules and ointments endure from poor 
bioavailability, poor absorption from desired site, instability level in body plasma 
and high dose discard. The conventional drug administration methods also 
showed ineffective antibiotics localization and an excessive amount of drugs 
may cause the risk of systemic toxicity. This therapy often failed when bacteria 
form a biofilm and adhere to the bone implant in bone regeneration process. 
 

A well-known nano-biomaterials, hydroxyapatite (HA) is a type of calcium 
phosphate and is recognized to be biocompatible due to its chemical similarities 
to the mineral constituent of bones or teeth. Consequently, HA is usually used 
as a drug carrier material in drug delivery sytem to aid in bone tissue 
regeneration. Nevertheless, HA has low mechanical strength as low as 12 MPa 
even after being sintered at 1000°C (Komur et al., 2016) which limit its 
application as drug carrier in bone tissue engineering. Figure 1.1 showed the 
chemical structure of hydroxyapatite. 
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Figure 1.1: Hydroxyapatite chemical structure 

 

In this research, the nanocomposite-based hydroxyapatite was formulated by 
incorpating clay named montmorillonite to achieve better mechanical strength. 
The addition of montmorillonite into the nanocomposite is expected to improve 
the mechanical strength of nanocomposite-based hydroxyapatite by tuning the 
pores structure of hydroxyapatite. In addition, the pores structure of 
hydroxyapatite/montmorillonite nanocomposite could make the nanocomposite 
as a good candidate for drug carrier. 
 

1.3 Objectives 
 

There are a few objectives of this research. Essentially, the main goal of this 
research is to synthesis and characterizes the hydroxyapatite-montmorillonite 
nanocomposite and its controlled release properties as drug carrier. 
 

In particular, the objectives of this research are as follows: 
 
1. To design, synthesis and optimize the hydroxyapatite-montmorillonite 

nanocomposite. 
2. To study the physicochemical properties of hydroxyapatite-

montmorillonite nanocomposite at different temperatures by using 
fourier transform infrared spectroscopy (FT-IR), x-ray radiation 
diffraction (XRD), universal testing machine (UTM), Brunauer-Emmet 
Teller (BET) and field emission electron microscopy (FESEM). 

3. To study the adsorption mechanism and controlled release properties of 
hydroxyapatite-montmorillonite nanocomposite of cloxacillin and fusidic 
acid by using uv-vis spectrophotometer. 
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1.4 Significance of study 
 

The present studies were carried out in order to formulate a novel ceramic-based 
nanocomposite by using hydroxyapatite. Hydroxyapatite was incorporated with 
clay named montmorillonite through a conventional powder sintering technique. 
This synthesis method used is simple, cost-effective, eco-friendly and 
economical of scale method. These formulations were proved can improve the 
mechanical strength and pore structure of hydroxyapatite.  Furthermore, the 
presence of montmorillonite was found to enhance the bioactivity of 
nanocomposite by increasing the apatite formation. In drug delivery studies, 
these formulations were capable to sustain the release of the drug adsorbed onto 
the pore structure of nanocomposite. Survey of the recent literature indicates 
that no such research studies were done in biomedical applications, especially 
for drug delivery systems. 
 

1.5 Scope of study 
 

The scope of this study is to investigate the physiochemical properties of 
hydroxyapatite/montmorillonite nanocomposite and drug delivery studies. In this 
study, hydroxyapatite/montmorillonite nanocomposite was synthesized by 
conventional powder sintering technique atvarious temperatures. Subsequently, 
the sintered hydroxyapatite/montmorillonite nanocomposite was used as a 
carrier for a drug delivery system with two types of drugs viz. cloxacillin and 
fusidic acid. 
 

In Chapter 4, the study covers the synthesis and characterization of 
hydroxyapatite/montmorillonite nanocomposite and the drug delivery study of 
cloxacillin. A cloxacillin adsorption was studied at a certain temperature to 
investigate the effect of montmorillonite addition onto nanocomposite towards 
the drug adsorption process. The release profile of cloxacillin from 
nanocomposite(s) was studied in phosphate buffer solution (PBS) at pH 7.0 to 
mimic the human body fluid. In chapter 5, the scope is involving the 
physicochemical properties of hydroxyapatite/montmorillonite nanocomposite 
loaded fusidic acid, the adsorption behavior of fusidic acid onto 
hydroxyapatite/montmorillonite nanocomposite in different temperature and their 
drug delivery study. 
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