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Flexible Dye Sensitized Solar Cell (FDSSC) have attracted great attention due 
to its ability to install at curved and uneven surface. Therefore, several flexible 
substrates including plastic and metal substrate have been chosen to replace 
rigid glass substrate for DSSC application. However, due to the weak thermal 
stability of plastic Indium Tin Oxide Polyethylene Terephthalate (ITO-PET) 

substrate that limit the sintering process at 150℃, metal titanium (Ti) substrate 
was chosen as photoanode substrate due to its high thermal stability as well as 
good electrical conductivity. The main challenge for metal substrate is the 
opaqueness of metal substrate that need to be operated under back illumination 
method which will reduce the light penetration thus lead to the low power 
conversion efficiency. Consequently, the Platinum (Pt) layer on the ITO-PET for 
the counter electrode (CE) side need to be properly choose to allow sufficient 
light penetration under back illumination method. In this study, several 
experiments have been conducted to improve the efficiency of DSSC until the 
fabrication of flexible DSSC (FDSSC). During the fabrication of FDSSC, the 
titanium dioxide (TiO2) was deposited onto Ti foil using Doctor-Blade method 
while platinum (Pt) was deposited using sputtering method onto ITO-PET. The 
highest efficiency of FDSSC with 2.03% has been achieved by applying and pre-

treatment of hydrogen peroxide (H2O2) Ti foil as photoanode substrate and 7 nm 
thickness of Platinum (Pt) layer on ITO-PET as CE substrate under back 
illumination method. 
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Sel suria terpeka pewarna mudah lentur telah menarik perhatian para pengkaji 
kerana keupayaannya untuk dipasang pada permukaan yang melengkung. Oleh 
itu, beberapa substrat mudah lentur termasuk plastik dan logam telah digunakan 
untuk menggantikan penggunaan substrat kaca. Walaubagaimanapun, 
disebabkan oleh kadar kestabilan haba yang rendah bagi substrat plastik seperti 
timah indium teroksida polietilena tereftalat yang mengehadkan proses 
pembakaran sehingga 150℃, maka substrat logam seperti titanium telah dipilih 
sebagai substrat fotoanod disebabkan oleh kadar kestabilan haba dan kadar 
kekonduksian yang baik. Akan tetapi, kadar kelegapan yang tinggi menjadi 
cabaran utama bagi substrat logam dan perlu dikendalikan di bawah kaedah 
pencahayaan belakang sekaligus akan membawa kepada pengurangan kadar 
kecekapan pada sel suria terpeka pewarna mudah lentur. Oleh yang demikian, 
tempelan lapisan platinum pada timah indium teroksida polietilena tereftalat   
yang digunakan sebagai substrat elektrod tindak balas perlu dioptimakan untuk 
membenarkan kadar peratusan penembusan cahaya yang mencukupi. Di dalam 
kajian ini, beberapa eksperimen telah dijalankan untuk meningkatkan kadar 

kecekapan sel suria terpeka pewarna mudah lentur. Semasa proses pembuatan 

sel suria terpeka pewarna mudah lentur, lapisan titanium dioksida ditempelkan 

pada substrat kerajang titanium menggunakan kaedah “Doctor-Blade”. Manakala 
lapisan platinum telah ditempelkan pada substrat timah indium teroksida 
polietilena tereftalat  menggunakan kaedah percikan platinum. Kadar kecekapan 
Sel suria terpeka pewarna mudah lentur tertinggi sebanyak 2.03% telah dicapai 
menggunakan kerajang titanium dan ketebalan lapisan 7 nm platinum pada 
substrat timah indium teroksida polietilena tereftalat menggunakan kaedah 
pencahayaan belakang. 
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CHAPTER 1  
 
 

INTRODUCTION AND BACKGROUND 
 
 
1.1 General Overview 
 

 
In the beginning of the 21st century, the increase of energy consumption is 
expected as the world population continues to expand. However, conventional 
fossil energy was too limited in order to meet growing needs, with drawbacks 
such as air and water pollution, as well as releasing unsustainable levels of 
carbon dioxide (CO2) causing environmental effects, especially global warming 
and environmental destruction [1], [2]. Thus, renewable energy resources have 
received a lot of attention recently as one of the most promising green energy 
resources which hold tremendous potential in replacing the reliance on 
conventional energy resources [3].  
 
 
Solar energy has already been used for a long period of time in human history 
as a heat source with 3 x 1024 Joules (J) of annual solar radiation striking the 
surface of the earth [4], [5]. Solar cells, on the other hand, made a significant 
difference by converting sunlight into electricity via the photovoltaic effect which 
was discovered by French physicist, Edmond Becquerel in 1839 [6]. 
 
 
The photovoltaic effect is a combination between n-type (excess of electrons) 
and p-type (excess of holes) silicon materials forming a p-n junction. When these 
two materials are in contact with each other, free electrons and holes are able to 
diffuse into the opposite materials, hence creating an internal electric form 
between the positive charge on the n-type side and negative charge on the p-
types side (refer Figure 1.1). Several other types of first- and second-generation 
solar cells based on inorganic materials were successfully developed and 
inspired by this structure. 
 
 
The advantages of first- and second-generation solar cells rely on their high 
efficiency of 13% to 25% and 10.2% to 21.7% respectively [7], [8]. However, 
despite its high efficiency among the solar cell group, the manufacturing process 
for first- and second-generation solar cells remains the main challenge especially 
when involving harmful, toxic and scarce materials. 
 
 
Therefore, third generation solar cells have become a main focus and are 
expected to be a significant research and development in the fast-growing solar 
cell area. Dye sensitized solar cell (DSSC) is one of the most promising third 
generation solar cell groups. DSSC enables the ease of fabrication process 
without using the complex procedures, high temperature or high vacuum 
processes. Interestingly, DSSC is based on the photoelectrochemical process 
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which is identical to the photosynthesis in green plant leaves. 
 
 

 
Figure 1.1 : Electron-holes transportation in p-n junction [9]  
 
 
Concurrently, both first and second-generation solar cells are still limited by the 
theoretical value of maximum conversion efficiency of 33.7% established by 
Shockley-Queisser due to p-n junction. The limitation occured when an absorbed 
photon generates an electron-hole pair, while other photons with excess energy 
are wasted as heat. The limitation has led to research and development of third 
generation solar cells [10]. 
 
 
1.2 Third Generation Solar Cell 
 
 
Third generation solar cells are based on nanomaterial approaches not relying 
on conventional p-n junctions and have been a practical and promising method 
for the efficiency improvement in comparison to first- and second-generation 
solar cells. Three types of solar cells which highly interested by researchers are: 
 

1. Organic solar cell 
2. Quantum dot solar cell (QDSC) 
3. Dye sensitized solar cell (DSSC) 

 
 
DSSC is one of the most promising approaches in third generation solar cell 
groups. Basically, DSSC is composed of photoanode side attached to the 
transparent conductive oxide (TCO) with 12 µm thick semiconductor layer 
(usually titanium dioxide with 10 – 20 nm diameter nanoparticles) anchored with 
molecular dye (normally N719 Ruthenium dye) via carboxylate ligands which 
absorbs sunlight. The photoanode was then sandwiched together with a counter 
electrode (CE) side containing a catalyser layer (normally platinum). A redox 
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electrolyte is placed between a dye sensitized photoanode and catalyst coated 
CE. The details of DSSC working principle as well as DSSC components will be 
presented in the next chapter, while the basic layout of DSSC is presented in 
Figure 1.2. 
 
 

 
 
Figure 1.2 : Basic layout of DSSC [9]  
 
 
Figure 1.3 illustrates the operating principle of DSSC and the operation principles 
of DSSC generally can be divided into 4 basic steps: 
 

1. Absorption 
2. Electron injection 
3. Dye regeneration 
4. Iodide regeneration 

 
 
As light is illuminated onto the photoanode side, a photon is absorbed by a dye 
molecule. Due to the absorption process, photoexcitation occurred, thus 
promoting the electron (e¯ ) to the excited state (S*) from the ground state (So/S+) 
of the dye, resulting in an oxidized dye. Consequently, an electron is injected into 
the conduction band of the semiconductor layer through the electron injection 
process. The injected electron is then transported through the network of 
semiconductor layers and flowing through the external circuit. The iodide 
regeneration process takes place at the CE as the electron reaches the CE 

coated with a catalyst layer, where the triiodide ion (I3¯) receives an electron and 

promotes it to an iodide ion (I¯ ). Concurrently, the oxidized dye is reduced to its 

ground state (So/S+) as it receives an electron to replace the lost electron by the 

redox iodide/triiodide (I¯/ I3¯) coupled in electrolyte (dye regeneration). 
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Figure 1.3 : DSSC operating principle  [11] 
 
 
Recently, flexible DSSC (FDSSC) has attracted considerable attention due to 
the competitive advantage of fabrication on flexible substrates which increased 
the requirements for the broader application and easy installation on curved 
surfaces. Therefore, various flexible substrates, including indium tin oxide coated 
polyethylene terephthalate (ITO-PET) and indium tin oxide coated polyethylene 
naphthalate (ITO-PEN) substrates as well as metal sheets have been used for 
FDSSC fabrication. 
 
 

 
 
Figure 1.4 : Front illumination and Back illumination 
 
 
Metal substrate has been used to overcome the limitation since the weak thermal 

stability of plastic substrate that limits the sintering process to as low as 150℃, 
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Higher sintering temperature (450℃) is required to remove the organic binder 
from the TiO2 paste to achieve a good electrical contact at the interface between 

the TiO2 film and the substrate as well as to enhance the mechanical strength of 

the TiO2 semiconductor layer. Owing to its excellent properties of low sheet 

resistance (Rsheet), high thermal stability, abundance and flexibility to install at 

various angles, metal foil has been chosen widely as a flexible substrate. Despite 
their excellent properties, the main challenge of metal substrates is their 
opaqueness which required to be illuminated from CE side (back illumination) 
instead of photoanode side (front illumination) as illustrated in Figure 1.4. 
 
 
Besides, the DSSC technology disadvantage is low power conversion efficiency 
especially when dealing with flexibility and back illuminations method. The best- 
known conversion efficiency in FDSSC is only at 8.02% which focuses on the 
improvement of the semiconductor oxide (photoanode side) using Titanium (Ti) 
foil substrate [12]. However, this is relatively low as compared to rigid and 
inflexible DSSC (14.3%) [13]. Therefore, this research will concentrate on 
improving the efficiency of FDSSC using back illumination methods for future 
commercialization. 
 
 
1.3 Problem Statement 
 
 
Due to the limitation of flexible plastic substrates such as ITO-PET, they are only 
restricted to low sintering temperature which limited the sintering process to 

150℃. Poor interparticle connectivity, and poor adhesion between interparticle 
and substrate has resulted in a high probability of semiconductor layer cracks 
leading to low power conversion efficiency. Thus, leaving only a metal substrate 
to be used as a photoanode substrate with the ability to withstand a high 
temperature sintering method, where high temperature sintering process is 
crucial for excellent electron collection transportation purposes and substantially 
to remove additives in semiconductor oxide paste as well as to provide good 
interconnection between nanoparticles to provide excellent electron collection 
transportation 
 
 
Despite of the advantages owned by metal substrate; all kind of metal substrates 
suffer from low optical transmittance due to its opaqueness which require the 
solar cell to be operated under back illumination method that will slightly decrease 
the performance of FDSSC because of the limitation of sunlight penetration 
through the CE side. Consequently, the thickness of the Pt catalyst layer needs 
to be properly chosen in order to increase the efficiency of the FDSSC under the 
back- illumination method. 
 
 
Normally, DSSC is made from rigid FTO glass substrate that can only be installed 
at a fixed angle which makes it challenging in order to achieve its maximum 
exposure of the sunlight as it falls at different angles throughout the day. 
Therefore, orienting it at a certain angle is the crucial requirement to maximize its 
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exposure to direct sunlight. For this reason, FDSSC is selected due to its ability 
to be flexed at various angles without being put into calculation of the tilt angle in 
order to achieve the maximum exposure to the sunlight in which will contribute 
to the increment in power conversion efficiency. 
 
 
1.4 Research Objectives 
 
 
The main aim of this work is to propose and fabricate flexible DSSC (FDSSC) 
with improved efficiency. Several steps in order to improve the FDSSC efficiency 
are stated as below: 
 

1. To investigate back illumination based DSSC utilizing Ti foil as 
photoanode to the I-V characteristics performance. 

2. To study the effect of the back-illumination method to the I-V 
characteristics performance at different thickness of sputtered ITO- PET 
platinum (Pt) layer in order to improve the power conversion efficiency 
of DSSC under back illumination method. 

3. To study the effect of flexibility of fabricated FDSSC at varying angles 
(from 0° to 60°) towards the I-V characteristics performance. 

 
 
All the necessary assumptions, theories, statistics, calculations, relevant 
discussion and analysis are included in this project and expected to propose some 
inspirations to overcome the problem in improving DSSC efficiency. 
 
 
1.5 Scope of Work 
 
 
This study will concentrate on the photoanode and CE substrate of the DSSC. 
Meanwhile, N719 photosensitizer and electrolyte are kept constant using the 
manufacturing process as described in [14] and [15] respectively. 
 
 
As for the photoanode component, this research work will focus on the 
semiconductor deposition method which will involve the use of Doctor-Blade 
method and titanium dioxide (TiO2) semiconductor material to produce a size of 

1 cm x 1 cm working area. Both fluorine doped tin oxide (FTO) glass and Ti foil will 
be used as rigid and flexible photoanode substrate respectively. 
 
 
Besides that, the thickness of the TiO2 layer will not be considered as one of the 

components of this research due to difficulty in controlling the thickness using the 
Doctor-Blade method. Thus, the thickness will be controlled using adhesive tape 
for photoanode masking. The minimum thickness of adhesive tape is 63 µm and 
the thickness of TiO2 semiconductor layer after the sintering process is estimated 

between 10 µm to 15 µm [16]. Meanwhile, a sputtering method will be used in 
the CE part for Pt deposition as a catalyst layer. Similar to the photoanode 
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component, FTO glass and ITO-PET will be used as rigid and flexible CE 
substrates respectively. As for the fabricated FDSSC, flexibility study will 
concentrate on bending tests only due to sturdiness of Ti foil. 
 
 
1.6 Thesis Organization 
 
 
This dissertation is structured and organized into five chapters. Chapter one 
provides a general overview of the list of energy that has been used globally 
including a background of FDSSC. Problem statement and research objectives 
of this dissertation are also presented in this chapter 
 
 
Chapter two provides literature review on the basic of operation principles of PV 
devices including FDSSC material, manufacturing methods, emphasis on the 
alternative substrate of TCO glass and necessary information are presented. 
 
 
Chapter three presents the detailed explanation on FDSSC material chosen for 
each FDSSC constituents consisting of photoanode and CE substrate, N719 dye 
and electrolyte solution as well as Pt layer. General overview of each 
measurement technique as well as detailed material that has been used in this 
research project is presented in this chapter. 
 
 
Chapter four is the main part in this research project report. Comparison study 
of front illumination and back illumination performance as well as optimization of 
back illumination method. The performance comparison of the bending test 
effect in I-V characteristics varies with different angles (from 0° to 60°). 
Additionally, all details analysis and discussion are presented in this section. 
 
 
Chapter five gives an overall conclusion for this research work along with future 
work recommendation provided. 
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