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A B S T R A C T

Radiological diagnosis of lung cavities (LCs) is the key to identifying tuberculosis (TB). Conventional deep
learning methods rely on a large amount of accurate pixel-level data to segment LCs. This process is time-
consuming and laborious, especially for those subtle LCs. To address such challenges, firstly, we introduce
a novel 3D TB LCs imaging convolutional neural network (CNN)-transformer hybrid model (SwinUNeLCsT).
The core idea of SwinUNeLCsT is to combine local details and global dependencies for TB CT scan image
feature representation to effectively improve the recognition ability of LCs. Secondly, to reduce the dependence
on accurate pixel-level annotations, we design an end-to-end LCs weakly supervised semantic segmentation
(WSSS) framework. Through this framework, radiologists need only to classify the number and the approximate
location (e.g., left lung, right lung, or both) of LCs in the CT scan to achieve efficient segmentation of
the LCs. This process eliminates the need for meticulously drawing boundaries, greatly reducing the cost of
annotation. Extensive experimental results show that SwinUNeLCsT outperforms currently popular medical 3D
segmentation methods in the supervised semantic segmentation paradigm. Meanwhile, our WSSS framework
based on SwinUNeLCsT also performs best among the existing state-of-the-art medical 3D WSSS methods.
. Introduction

Tuberculosis (TB) is an infectious disease caused by Mycobacterium
B that has long posed a serious threat to global public health. A key

ndicator in the radiological diagnosis of TB is lung cavities (LCs) (Tan
t al., 2024; Dartois and Rubin, 2022; Ullah et al., 2024). Accurate
dentification of LCs is critical to confirm diagnosis, treatment, and
onitor TB disease progression. However, due to the complexity and
iversity of the LCs, it is not easy to annotate these cavities at the pixel
evel in CT (computerized tomography) images.

Over the past decade, deep learning models have achieved great
uccess in the field of medical image analysis. However, due to the data-
ungry nature of deep learning networks, semantic segmentation mod-
ls based on the full supervision learning paradigm typically require

∗ Corresponding author.
E-mail address: hizmawati@upm.edu.my (H. Madzin).
Peer review under responsibility of King Saud University.

a large amount of labor-intensive pixel-level annotated data (Lateef
and Ruichek, 2019; Asgari Taghanaki et al., 2021). To address this
issue, some recent methods have sought to use inexpensive labels to
overcome the challenge of annotating radiological images, including
self-supervised learning (Chen et al., 2021; Zhang et al., 2021; Huang
et al., 2021), active learning (Kirsch et al., 2019; Yoo and Kweon,
2019), semi-supervised learning (Berthelot et al., 2019; Zheng et al.,
2022; Tan et al., 2023b), and weakly-supervised learning (Ouyang
et al., 2020; Chen et al., 2022b).

In the field of weakly supervised semantic segmentation (WSSS)
(Zhang et al., 2020; Laradji et al., 2021; Ye et al., 2022; Sun et al., 2023;
Lu et al., 2023), class activation mapping (CAM) (Selvaraju et al., 2017;
Chen et al., 2022b; Wang et al., 2024) are the most common solution,
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319-1578/© 2024 The Author(s). Published by Elsevier B.V. on behalf of King
http://creativecommons.org/licenses/by/4.0/).

ttps://doi.org/10.1016/j.jksuci.2024.102012
eceived 20 January 2024; Received in revised form 21 February 2024; Accepted 1
Saud University. This is an open access article under the CC BY license

4 March 2024

https://www.sciencedirect.com
https://www.sciencedirect.com
mailto:hizmawati@upm.edu.my
https://doi.org/10.1016/j.jksuci.2024.102012
https://doi.org/10.1016/j.jksuci.2024.102012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2024.102012&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Journal of King Saud University - Computer and Information Sciences 36 (2024) 102012Z. Tan et al.
and it is also the most challenging one among all WSSS scenarios.
The fundamental concept behind CAM is to create a heatmap from
the network’s feature maps, highlighting the regions within an image
that receive the most attention during the model’s classification deci-
sions. This enables CAM-based methods to segment the deep semantic
information using only image-level labels (e.g., information about what
classes are present in an image) (Tan et al., 2023a), and thus solve
the problem of the high cost of pixel-level annotation in radiological
images to some extent. However, directly applying CAM-based methods
to identify pulmonary TB cavities in CT images is not straightforward
because the lack of pixel-level guidance when training classification
networks often leads to an excessively broad focus on features (Tan
et al., 2022), thereby reducing the segmentation accuracy of LCs using
CAM. In addition, the popular WSSS methods that use image-level
labels usually adopt a multi-stage framework (Sun et al., 2020; Wu
et al., 2021). Specifically, the multi-stage approach starts by generating
CAM as pseudo-label check-ins to train semantic segmentation tasks (Xu
et al., 2023; Su et al., 2023). This process needs to involve multiple
steps to perform, which increases the training complexity and reduces
the efficiency.

In the early development of the WSSS field, WSSS primarily re-
lied on a convolutional neural network (CNN) (Isensee et al., 2021;
Wen et al., 2021) to generate CAM. However, with the rise of vision
transformers (ViTs) (Dosovitskiy et al., 2020), ViTs have also begun
to be widely applied in the generation of CAM for WSSS (Li et al.,
2023b; Yu et al., 2023a; Ru et al., 2023). Unlike the local receptive field
of CNN, ViTs can leverage their self-attention mechanism to capture
global information more effectively in images (Ding et al., 2022). As a
result, CAM generated using ViTs often display richer global features.
However, the limitation lies in the fact that standard transformer archi-
tecture models are typically less sensitive to local features, which often
results in their inability to effectively identify some fine LCs structures.
This, in turn, impacts the precise medical diagnosis of TB.

Therefore, to address these challenges, our study focuses on the
following three primary objectives:

1. Addressing the limitations of traditional transformer architec-
tures in capturing minute structural features of LCs, we propose
a novel medical 3D imaging architecture model, dubbed Swin-
UNeLCsT. Inspired by Dong et al. (2023), the core module of
SwinUNeLCsT employs a hybrid architecture of transformer and
CNN. This hybrid structure aims to integrate both global and
local features in pulmonary TB CT images, enhancing the recog-
nition of LCs. As illustrated in Fig. 1, SwinUNeLCsT demonstrates
better performance in identifying LCs of different sizes compared
to the standard self-attention-based architectural model.

2. To reduce the dependence on the pixel-level annotation of
the LCs and improve training efficiency, we design an end-to-
end (Amodei et al., 2016; Tampuu et al., 2020) WSSS framework
for the LCs. In this framework, we utilize multi-class labels of
CT images to generate pixel-level weakly supervised regions.
These regions are then refined to produce pseudo semantic
segmentation labels for LCs.

3. To optimize the gradient conflicts (Yu et al., 2020; Liu et al.,
2021a) between various training tasks and improve the ability
to recognize TB LCs lesion features, we construct a novel LCs
WSSS training optimization strategy.

By adopting our WSSS framework, radiologists need only classify
the number and approximate location (e.g., left lung, right lung, or
both) of LCs in a CT scan to achieve efficient segmentation of the
LCs, without the need to meticulously delineate the boundaries of the
cavities in each slice, significantly reducing the cost of annotation. Our
main contributions in this work are summarized as follows:
2

Fig. 1. Class activation mappings comparison: Standard self-attention in Swin-
UNetR (Tang et al., 2022) versus global–local attention in SwinUNeLCsT for recognizing
lung cavities.

1. We introduce a novel 3D self-attention and convolution hy-
brid module and propose a novel model for TB LCs CT image
analysis, dubbed SwinUNeLCsT. This model integrates local and
global features to capture LCs of various sizes better. Com-
pared with the standard self-attention module, this model not
only has lower computational complexity but also improves LCs
recognition efficiency.

2. We propose an end-to-end learning framework for WSSS of LCs.
This framework effectively segments LCs using only classifica-
tion annotations specific to these cavities. Moreover, compared
to state-of-the-art WSSS methods in medical imaging, this frame-
work has achieved the best performance in segmenting LCs. To
our knowledge, this is the first framework developed specifically
for the WSSS of TB-affected LCs.

3. We design a novel optimization strategy for WSSS training of the
LCs. This strategy can improve the ability to extract LCs lesion
features by integrating the probability maps obtained in previous
iterations to refine the feature maps and alleviate the gradient
conflicts generated during model training.

Overall, the contributions made in this article provide a forward-
looking solution strategy for the long-standing issues of efficient LCs
semantic segmentation and the high cost of pixel-level annotation in
pulmonary TB CT medical imaging analysis.

2. Related work

2.1. Deep learning in pulmonary tuberculosis CT images

Deep learning (DL) has great potential in the field of medical image
analysis, especially in the field of pulmonary TB from CT images.
Although DL has been widely used in TB X-ray analysis and other
medical imaging fields (Zhou et al., 2021b; Sainz de Cea et al., 2020;
Huang et al., 2022), its applications in TB CT image processing are
still relatively few. For example, for chest X-ray (CXR), Iqbal et al.
(2023) proposed a TB-specific model TB-UNet, which mainly consists
of two parts: the first part is a classification network consisting of five
double convolutional blocks, DenseNet-169 layers, and a feature fusion
module; The second part is the segmentation network, which is mainly
composed of the dilated fusion block and the attention mechanism.
In order to identify TB lesion tissue from CT scans, Gordaliza et al.
(2019) proposed a training adaptation strategy based on the V-Net
model. This strategy enables the use of complete 3D volumes to capture
fine-grained features. Moreover, the model is optimized through a
novel multi-task learning loss function that leverages model uncer-
tainty to weight regression and binary classification tasks. Alebiosu
et al. (2023) developed a new medical image segmentation model,
DAvoU-Net, which can generate features for TB analysis by leveraging
multi-scale residual blocks and receptive dense connections. Moreover,
to reflect the severity of TB more accurately in the image, the model
adopted a novel method, which was to input the features extracted by
a three-dimensional CNN into a bidirectional Long Short-Term memory
network (Bi-LSTM), which enabled the network to extract higher level
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Fig. 2. Overview of the SwinUNeLCsT architecture.
𝑧

𝑧

discriminative features. However, the aforementioned DL approach
cannot be directly applied to the identification of LCs in TB. This is due
to, firstly, the small size, complex morphologies, and indistinct bound-
aries of LCs lesions in TB CT images, which make recognizing TB LCs
more challenging compared to other application domains. Therefore,
to better identify LCs in CT data, we need to develop a specialized DL
strategy to overcome these challenges.

2.2. Medical image weakly supervised semantic segmentation

WSSS is a form of machine learning, characterized by its allowance
for the use of incomplete, inaccurate, or inconsistent annotation data
for training models. In traditional semantic segmentation, models usu-
ally require a large amount of pixel-level precise annotation data
for training. However, in WSSS, models can be trained using sim-
pler or incomplete annotations. These annotations might be bounding
boxes (Khoreva et al., 2017; Song et al., 2019; Liu et al., 2020),
scribbles (Lin et al., 2016; Unal et al., 2022), or just image-level
labels (Wang et al., 2020; Chen et al., 2022b). The typical workflow
of WSSS is first to use weak labels to train a model and then generate
pseudo-segmentation masks. These masks are later refined through a
series of refinement strategies and finally used to support the training
of segmentation models in a standard fully supervised manner. Among
the many WSSS methods, using image-level labels to train classification
networks is widely adopted due to its cost-effectiveness. Chen et al.
(2022a) proposed a new method suitable for medical WSSS—causal
CAM. This method employs two causal chains: categorical causal chain
and anatomical causal chain. Li et al. (2023a) developed a novel
weakly-supervised approach, SA-MIL, for precise pixel-level segmen-
tation of histopathological images. By treating pixels as instances in
Multiple Instance Learning (MIL) and introducing a self-attention mech-
anism, this method enhances the global relevance among instances and
segmentation performance. However, there are certain limitations in
directly applying these methods to identify LCs, primarily because the
activation maps obtained directly from classification networks, while
highlighting the key feature regions of the LCs in images, focus on
features that are often too broad. Different from previous work, we
propose a weakly supervised learning method specifically for the LCs.
This method not only focuses on the most distinctive features of the
LCs but also more accurately identifies the contour information of the
LCs.
3

3. SwinUNeLCsT

3.1. SwinUNeLCsT encoder

The overall SwinUNeLCsT architecture is shown in Fig. 2. Denote
the input TB CT scan image as a sub-volume  ∈ R𝐻×𝑊 ×𝐷×𝑆 and the
volumetric token with a patch resolution of (𝑉ℎ, 𝑉𝑤, 𝑉𝑑 ) has a patch size
𝑉ℎ × 𝑉𝑤 × 𝑉𝑑 × 𝑆. A sequence of 3D tokens is projected onto a size
of 𝐻

𝑉 ′
ℎ
× 𝑊

𝑉 ′
𝑤

× 𝐷
𝑉 ′
𝑑
× 𝐶 in the patch partitioning layer, where 𝐶 is the

represents the dimensionality of the embedding space. Following Liu
et al. (2021b), to efficiently model interactions between tokens in a
3D context, all projected sequences of embeddings are partitioned into
non-overlapping windows. These windows are used to calculate local
self-attention within each region. The outputs of encoder blocks in
layers 𝑙 and 𝑙 + 1 are computed as:

̂𝑙 = W-GL-MSA(LN(𝑧𝑙−1)) + 𝑧𝑙−1

𝑧𝑙 = MDFFN(LN(�̂�𝑙)) + �̂�𝑙

̂𝑙+1 = SW-MSA(LN(𝑧𝑙)) + 𝑧𝑙

𝑧𝑙+1 = MDFFN(LN(�̂�𝑙+1)) + �̂�𝑙+1,

(1)

where W-GL-MSA and SW-MSA represent window-based global–local
and sliding window partitioned multi-head self-attention modules re-
spectively. �̂�𝑙 and �̂�𝑙 are the outputs of W-GL-MSA and SW-MSA; LN
and MDFFN denote layer normalization and multi-DConv feed forward
network, respectively.

Our encoder uses a patch size of 2 × 2 × 2. Each patch is mapped to
an 8-dimensional feature space (as 2×2×2×1 = 8), where 1 represents
that the image has only one input channel. The initial embedding
space dimension is 𝐶 = 64 dimensions. Our encoder overall includes 4
stages, each stage containing 2 SwinUNeLCsT blocks, totaling 8 layers
(𝐿 = 8). Between each stage, patch merging layers are used to reduce
the resolution by a factor of 2. Patch merging involves grouping patches
of size 2 × 2 × 2 and concatenating their features, increasing the feature
dimension to 4𝐶, but as patches are merged, the total number of tokens
is reduced. After merging, a linear layer downsamples the features from
4𝐶 dimensions to 2𝐶 dimensions, thereby reducing the dimensionality
of features and further lowering the resolution. In the hierarchical
process, the linear embedding layer and SwinUNeLCsT block outputs
from the first stage maintain a resolution of 𝐻

2 × 𝑊
2 × 𝐷

2 , where 𝐻 ,
𝑊 , and 𝐷 represent the original height, width, and depth of the input
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Fig. 3. Components of the SwinUNeLCsT Block: (a) multi-DConv feed forward network (MDFFN). (b) The window-based global–local multi-head self-attention (W-GL-MSA) Module,
with (b1) depicting the spectral scaled cosine multi-head self-attention and (b2) illustrating the lightweight simplified inception. (c) The 3D window partition operation.
image. Subsequent stages continue this pattern, further reducing the
resolution in each stage, with the second stage at 𝐻

4 × 𝑊
4 × 𝐷

4 , the third
stage at 𝐻

8 × 𝑊
8 × 𝐷

8 , and the fourth stage at 𝐻
16 × 𝑊

16 × 𝐷
16 .

3.2. Multi-DConv feed-forward network

In traditional swin transformers (Liu et al., 2021b), the multi-layer
perceptron (MLP) usually consists of a series of fully connected layers,
which capture complex abstract features of the input data through
stacking multiple nonlinear transformation layers. However, such a
structural design can lead to unnecessary complexity and redundancy.
To address these issues and enhance the network’s feature extrac-
tion capabilities, we propose the multi-DConv feed-forward network
(MDFFN), as shown in Fig. 3(a). MDFFN employs depth-wise separable
convolutional layers, DConv 3 × 3 × 3, to optimize the efficiency
of local feature processing. Furthermore, it improves the modeling
of interactions between features by performing element-wise multipli-
cation on the feature maps output by two parallel sub-networks at
corresponding positions. Assume that 𝐗𝑙 is the input to the 𝑙th layer
of MDFFN, the operations in one branch of the network would be:

𝐘𝑙,𝐷𝐶𝑜𝑛𝑣 = 𝐺𝐸𝐿𝑈 (𝐷𝐶𝑜𝑛𝑣3×3×3(𝐺𝐸𝐿𝑈 (𝐶𝑜𝑛𝑣1×1×1(𝐗𝑙))))

𝐘𝑙,𝑐𝑜𝑛𝑣 = 𝐶𝑜𝑛𝑣1×1×1(𝐘𝑙,𝐷𝐶𝑜𝑛𝑣)

where GELU represents Gaussian Error Linear Unit (Hendrycks and
Gimpel, 2016). And then the output 𝐘𝑙 of the MDFFN is obtained by
an element-wise multiplication of the outputs of two such branches
followed by an element-wise addition with the input:

𝐘𝑙 = 𝐘(1)
𝑙,𝑐𝑜𝑛𝑣 ⊙ 𝐘(2)

𝑙,𝑐𝑜𝑛𝑣

3.3. Window-based global–local multi-head self-attention

In complex LCs semantic segmentation tasks, although the role of
global context is crucial, local information is equally indispensable
as a key element to maintaining rich spatial details. Traditional self-
attention mechanisms excel in capturing global dependencies, as they
compute relationships across all sequence elements, which is beneficial
for tasks necessitating a comprehensive context awareness. On the
other hand, convolutions capture local features through their local
receptive fields. This characteristic often makes them more effective
in processing data with strong spatial structures like TB CT scans.
Therefore, to fully leverage the advantages of both architectures, we
develop a window-based global–local multi-head self-attention (W-GL-
MSA), as shown in Fig. 3(b). W-GL-MSA contains two parallel branches:
spectral scaled cosine multi-head self-attention and lightweight sim-
plified Inception, which are used to extract global and local context
4

information respectively. Overall, the output of W-GL-MSA can be
represented as:

𝐎W-GL-MSA = 𝐶𝑜𝑛𝑣1×1×1
(

𝐵𝑁(𝐷𝐶𝑜𝑛𝑣7×7×7(𝐈 + 𝐗))) (2)

where 𝐵𝑁 stands for Batch Normalization. 𝐈 is the output of the
lightweight simplified inception module, and 𝐗 is the output processed
by the window-based spectral scaled cosine self-attention module.

3.3.1. 3D window partition
In the 3D patch partition module of the SwinUNeLCsT encoder,

the input image is first divided into multiple small blocks, known as
patches, which are then mapped to a high-dimensional feature space
through linear embedding, as shown in Fig. 3(c). Specifically, in this
process, the input tensor is segmented into distinct, non-overlapping 3D
windows. Consider a 3D window of dimensions 𝑤×𝑤×𝑤. Consequently,
the total number of such windows is calculated as 𝐻

𝑤 × 𝑊
𝑤 × 𝐷

𝑤 . The
dimensions of each window are 𝐵 ×𝐶 ×𝑤×𝑤×𝑤. Subsequently, these
3D windows are transformed into 2D matrices. This transformation
results in a flattened dimension of 𝐵 × 𝐻

𝑤 × 𝑊
𝑤 × 𝐷

𝑤 × (𝐶 × 𝑤 × 𝑤 × 𝑤).
Self-attention is then applied within each of these flattened windows.
This involves the independent computation of Query (𝑄), Key (𝐾),
and Value (𝑉 ) matrices for each window. In the multi-head atten-
tion mechanism, where each head independently processes a distinct
segment of the channel dimension (𝐶). Consequently, this approach
results in a dimensionality of 𝐵 × 𝐻

𝑤 × 𝑊
𝑤 × 𝐷

𝑤 × (𝐶ℎ × 𝑤 × 𝑤 × 𝑤) for
each head, with ℎ representing the number of heads. Following the
computation of self-attention, the output is reconstituted into the 3D
space for each window. These windows are then reconstructed to match
the original 3D input tensor’s shape. Finally, these processed windows
are reassembled into a comprehensive 𝐵 × 𝐶 × 𝐻 × 𝑊 × 𝐷 tensor,
thereby completing the output of the 3D window partition operation
with integrated self-attention.

3.3.2. Window-based spectral scaled cosine self-attention
The self-attention mechanism in transformer models is key for

capturing global image features, but it is also a major source of com-
putational overhead. In the field of medical imaging, the standard
self-attention mechanism (Vaswani et al., 2017; Liu et al., 2021b)
exhibits a significant increase in the interaction time and memory com-
plexity of key-query dot product with the deepening dimensions of CT
images, specifically yielding a complexity of 𝑂(𝑊 2𝐻2𝐷2) for an image
with 𝑊 ×𝐻×𝐷 pixels. Although reducing the input image resolution can
mitigate the computational complexity of self-attention, it results in a
decline in the model’s recognition performance. To solve this problem,
following previous work (Wang et al., 2022; Zamir et al., 2022; Liu
et al., 2022a; Dong et al., 2023), we propose a novel spectral scaled
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cosine multi-head self-attention (SSC-MSA) with linear complexity, as
illustrated in Fig. 3 (b1). The input 𝑋𝑖𝑛 ∈ R𝐻×𝑊 ×𝐷×𝐶 is first embedded,
ielding in the generation of the query vector 𝐐 = 𝑊 𝑄

𝑑 𝑊 𝑄
𝑝 𝑋, the key

ector 𝐊 = 𝑊 𝐾
𝑑 𝑊 𝐾

𝑝 𝑋, and the value vector 𝐕 = 𝑊 𝑉
𝑑 𝑊 𝑉

𝑝 𝑋. Here, 𝑊 (⋅)
𝑝

epresents a 1 × 1 × 1 point-wise convolution, and 𝑊 (⋅)
𝑑 signifies a depth-

ise convolution with dimensions 3 × 3 × 3. Next, the SSC-MSA method
ransforms the projections 𝐐 and 𝐊 to produce a transposed attention
ap 𝐴 with a size of R𝐶×𝐶×𝐶 through their cosine similarity interaction.
verall, the SSC-MSA process is defined as:

= 𝐖𝑝 ⋅ 𝐁𝐍 ⋅𝐖𝐷𝑐7 ⋅ Attention(𝐐,𝐊,𝐕) (3)

ttention(𝐐,𝐊,𝐕) = Softmax
(

ReLU(cosine(𝐐,𝐊))
𝜏

)

𝐕 (4)

here 𝐐 ∈ R𝐻𝑊𝐷×𝐶 , 𝐊 ∈ R𝐶×𝐻𝑊𝐷, and 𝐕 ∈ R𝐻𝑊𝐷×𝐶 are matrices
btained after reshaping tensors from their original size R𝐻×𝑊 ×𝐷. 𝐖𝐷𝑐7
epresents a 7 × 7 × 7 point-wise convolution. The scalar 𝜏 is a trainable
arameter, which is not shared across different heads or layers. It is
nitialized with a value greater than 0.01.

.3.3. Lightweight simplified inception
The lightweight simplified inception is a relatively shallow struc-

ure, primarily responsible for extracting local features in images. This
odule’s design, which aligns with the concepts presented in Chollet

2017), comprises three parallel and identical branches. Within each
ranch, the feature map initially undergoes a DConv 3 × 3 × 3. Then,

it is followed by two consecutive 1 × 1 × 1 convolution layers. Between
these two convolution layers, a layer norm and a GELU activation
function are inserted to preserve feature diversity and achieve lower la-
tency. Finally, the feature maps from these three branches are merged.
Specifically, the implementation details of the lightweight and simpli-
fied inception module are shown in Fig. 3(b2). Let 𝐅 be the feature map
input to the module. The module’s output 𝐈 can be represented as:

𝐎𝑖 = 𝐶𝑜𝑛𝑣1×1×1
(

𝑅𝑒𝐿𝑈 (𝐵𝑁(𝐶𝑜𝑛𝑣1×1×1(𝐷𝐶𝑜𝑛𝑣3×3×3(𝐅𝑖))))) (5)

𝐈 = Concat
(

𝐎1,𝐎2,𝐎3
)

(6)

3.4. SwinUNeLCsT decoder

To enhance feature representation and effectively reduce the impact
of processing transformer sequence lengths, this study introduces a
convolution-based decoder. This decoder utilizes skip-connection tech-
nology to achieve information fusion between swin transformer and
convolutional networks at various levels. In our SwinUNeLCsT model,
the output sequence of each encoding stage is reorganized into feature
maps of specific sizes. Specifically, the height 𝐻 , width 𝑊 , and depth
𝐷 of the input image are reduced by a factor of 2𝑖, forming feature maps
of size 𝐻

2𝑖 ×
𝑊
2𝑖 ×

𝐷
2𝑖 ×𝐶, where 𝑖 = 0, 1, 2, 3, 4 and 𝐶 = 32, 64, 128, 256, 512.

As the network depth increases, the spatial resolution of the feature
maps gradually decreases. For example, the output feature map of the
first stage 𝑖 = 0 retains the original size, while that of the fifth stage
(bottleneck stage) 𝑖 = 5 is reduced to 1∕32 of the original size. Overall,
winUNeLCsT captures and encodes image features of different scales
ore effectively by progressively reducing the feature space. In lower

tages (such as 𝑖 = 0 or 𝑖 = 1), larger feature maps help capture
ore details; in higher stages (such as 𝑖 = 4 or the bottleneck stage

𝑖 = 5), smaller feature maps tend to encode global and abstract features.
The output feature map of the bottleneck stage is input into a DX
block to generate the final output of the encoder. Subsequently, the
decoder upsamples the bottleneck feature map through a transposed
convolution layer. The output of the transposed convolution is merged
with the representations of the preceding layers and input into a
residual block that contains two 3 × 3 × 3 depth-wise convolution layers,
ollowed by instance normalization and ReLU activation functions. The
inal output feature map is processed through a 1 × 1 × 1 convolution
ayer and a softmax activation function to generate probability masks
5

or segmenting TB CT medical images.
3.4.1. DX block
To learn richer feature representations in TB CT imaging, we de-

velop a novel large-kernel depthwise separable convolution module (as
shown in Fig. 2), inspired by the ConvNeXt architecture (Liu et al.,
2022b), known as the DX-block. This module aims to capture extensive
spatial features and long-range dependencies in the input lung CT scan
data. Specifically, the module receives an input 𝐗 with a dimension of
𝑙𝑎𝑦𝑒𝑟-𝑑𝑖, where 𝑖 represents a specific layer in the network. Then, the
utput of a basic DX-block can be expressed as:

̂ = 𝐶𝑜𝑛𝑣1×1×1(𝐺𝐸𝐿𝑈 (𝐶𝑜𝑛𝑣1×1×1(𝐿𝑁(𝐷𝐶𝑜𝑛𝑣7×7×7(𝐗))))) (7)

DX-block = 𝐗 + �̂�, (8)

here LN stands for layer normalization.

. Lung cavity weakly supervised semantic segmentation

In LCs WSSS, we first use the SwinUNeLCsT model to jointly train
asks for classifying the number and location of lung cavities, to obtain
AM for LCs from these two classification layers. Then, to better
epresent LCs features, we propose a technique called CAM feature
usion gate (CFFG), which merges the CAM of these two layers, pro-
ucing CAM that simultaneously possess regions of interest for both
he location and number of LCs. Given the CAM  ∈ Rℎ×𝑤×𝑑×𝐶 , the
verall CAM (𝑖, 𝑗, 𝑠) is defined as follows:

(𝑖, 𝑗, 𝑠, ∶) = CFFG(𝑛𝑢𝑚(𝑖, 𝑗, 𝑠, ∶),𝑙𝑜𝑐 (𝑖, 𝑗, 𝑠, ∶)), (9)

here (𝑖, 𝑗, 𝑠, ∶) denotes the amalgamated CAM that fuses both num-
er classification layer’s CAM (𝑛𝑢𝑚(𝑖, 𝑗, 𝑠, ∶)) and location classifica-
ion layer’s CAM (𝑙𝑜𝑐(𝑖, 𝑗, 𝑠, ∶)).

Moreover, CAM for each classification layer is formed by merging
he CAM of two sub-layers through CFFG:

𝑛𝑢𝑚(𝑖, 𝑗, 𝑠, ∶) = CFFG(𝑛𝑢𝑚
layer-A(𝑖, 𝑗, 𝑠, ∶),

𝑛𝑢𝑚
layer-B(𝑖, 𝑗, 𝑠, ∶)), (10)

𝑙𝑜𝑐 (𝑖, 𝑗, 𝑠, ∶) = CFFG(𝑙𝑜𝑐
layer-A(𝑖, 𝑗, 𝑠, ∶),

𝑙𝑜𝑐
layer-B(𝑖, 𝑗, 𝑠, ∶)), (11)

here 𝑛𝑢𝑚
layer-A and 𝑛𝑢𝑚

layer-B denote number classification sub-layers A

nd B. 𝑙𝑜𝑐
layer-A and 𝑙𝑜𝑐

layer-B denote location classification sub-layers A
nd B.

Subsequently, through a series of steps detailed in Section 4.2, we
efine these regions of interest and generate pseudo-annotations for
Cs. Finally, we use these pseudo-annotations for end-to-end WSSS of
Cs, as shown in Fig. 4.

.1. CFFG module

The CFFG module is implemented as follows: Firstly, 𝜔𝑐
𝑘 represents

he weights for a specific class 𝑐 in the CAM 𝐴𝑘 at the classification
ayer. These weights indicate the influence of the given class 𝑐 on every
patial location in the 𝐴𝑘. Secondly, the weights 𝜔𝑐

𝑘 corresponding
o each layer are multiplied by the 𝐴𝑘 of that layer. Furthermore,
y summing the weighted activation values across all layers, the re-
ulting value 𝑐 represents the contribution of the given class 𝑐 to
he heatmap. To highlight regions of interest in the heatmap 𝑐 and
uppress irrelevant areas, we apply a Rectified Linear Unit (ReLU)
peration to 𝑐 . The overall computation is expressed as follows:
𝑐 = 𝑅𝑒𝐿𝑈 (

∑

𝑘
𝜔𝑐
𝑘 ⋅ 𝐴𝑘). (12)

inally, for CAM from two different layers 𝑐
layer-1 and 𝑐

layer-2, the
peration of CFFG can be defined as:

(𝑖, 𝑗, 𝑠, ∶) = max(𝑐
layer-1(𝑖, 𝑗, 𝑠, ∶),

𝑐
layer-2(𝑖, 𝑗, 𝑠, ∶)), (13)

here the categories of classification 𝑐 and 𝑐 in 𝑐
layer-1 and 𝑐

layer-2

an be num or loc, where num and loc represent LCs number and
ocation classification, respectively.
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Fig. 4. Overview of the proposed lung cavities weakly supervised semantic segmentation framework. The lung cavities pseudo-annotation generation process is shown in Fig. 5(a).
4.2. Weakly supervised semantic segmentation pseudo label generation

The LCs WSSS pseudo-label generation can be divided into the
following four steps:

In the first step, we extract dependable foreground and background
information from the target CAM 𝑖,𝑗,𝑠,∶, utilizing a background score
𝛽𝑙 (where 0 < 𝛽𝑙 < 1) (Ru et al., 2022). This process is implemented as
follows:

(𝑖, 𝑗, 𝑠) =

{

𝚊𝚛𝚐𝚖𝚊𝚡(𝑖,𝑗,𝑠,∶), if 𝚖𝚊𝚡(𝑖,𝑗,𝑠,∶) ≥ 𝛽𝑙,
0, if 𝚖𝚊𝚡(𝑖,𝑗,𝑠,∶) < 𝛽𝑙,

(14)

where, 𝑖,𝑗,𝑠,∶ represents the channel values in the CAM at location
(𝑖, 𝑗, 𝑠), and 𝚖𝚊𝚡(𝑖,𝑗,𝑠,∶) represents the maximum channel value at that
position. If the maximum channel value is greater than or equal to the
threshold 𝛽𝑙, (𝑖, 𝑗, 𝑠) is set to the index of the maximum value in the
corresponding channel (i.e., the predicted class label). If the maximum
channel value is less than or equal to the threshold 𝛽𝑙, (𝑖, 𝑗, 𝑠) is set
to 0, representing the background. This step aims to remove unreliable
weak supervision information in the image and retain pixel information
that is strongly related to the background and foreground.

In the second step, we utilize the LCs category information (𝑖, 𝑗, 𝑠)
obtained from the first step to extract and generate preliminary pseudo
labels for LCs from the original image (𝑖, 𝑗, 𝑠):

(𝑖, 𝑗, 𝑠) = 𝟏{(𝑖,𝑗,𝑠)=1} ⋅ (𝑖, 𝑗, 𝑠), (15)

where 𝟏{(𝑖,𝑗,𝑠)=1} is an indicator function that is valued at 1 if and only
if the pixel (𝑖, 𝑗, 𝑠) in (𝑖, 𝑗, 𝑠) is classified as LCs; otherwise, it is valued
at 0. Such processing ensures that only the pixel information belonging
to the LCs category is retained, setting all other pixels to 0 to effectively
remove the background.

In the third step, we perform a binary thresholding operation on
(𝑖, 𝑗, 𝑠) to facilitate the subsequent LCs contour recognition. The result
after binary thresholding, denoted as (𝑖, 𝑗, 𝑠), is as follows:

(𝑖, 𝑗, 𝑠) =

{

255, if (𝑖, 𝑗, 𝑠) > 𝛽𝑡 (16)
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0, otherwise,
where 𝛽𝑡 represents the threshold value, after binary thresholding,
(𝑖, 𝑗, 𝑠) will have pixel values of either 0 or 255, making it suitable
for further LCs contour recognition.

In the fourth step, we propose a LCs recognition algorithm to iden-
tify the LCs in the input image (𝑖, 𝑗, 𝑠) from three different dimensions,
as shown in Fig. 5(b). In the implementation principle, the algorithm
accepts an image (𝑖, 𝑗, 𝑠) as input, where 𝑖 and 𝑗 represent the pixel
coordinates in the image and 𝑠 represents the size or a specific slice in
the image sequence. The algorithm performs contour detection in three
different dimensions. For each contour 𝑐 within 𝐶𝑑 for every dimension,
the algorithm evaluates whether each contour is a parent contour. If
it is, that contour will be removed from 𝐶𝑑 . This step is to remove
peripheral contours or irrelevant structures to focus only on the inner
LCs contours. Once all dimensions have been processed, their results
are concatenated to form the final detection result.

4.3. Network training

The overall loss of our approach is the weighted sum of three
distinct loss functions: 𝑁𝑢𝑚, 𝐿𝑜𝑐 , and 𝑆𝑒𝑔 . These functions are
combined as follows:

WSSS = 𝜆1𝑁𝑢𝑚 + 𝜆2𝐿𝑜𝑐 + 𝜆3𝑆𝑒𝑔 , (17)

where 𝜆1, 𝜆2, and 𝜆3 are the weighting coefficients balancing the
contributions of the different loss functions. The function 𝑆𝑒𝑔 is the
binary cross-entropy loss (Ruby and Yendapalli, 2020), defined as:

Seg = − 1
𝑁

𝑁
∑

𝑖=1
[𝛼𝑦𝑖(1 − 𝑝𝑖)𝛾 log(𝑝𝑖)

+ (1 − 𝑦𝑖)𝑝
𝛾
𝑖 log(1 − 𝑝𝑖)],

(18)

where 𝑁 represents the total number of samples, with 𝑦𝑖 and 𝑝𝑖 de-
noting the true label and the predicted probability for the 𝑖th sample,
respectively. The parameter 𝛾 is set to 2, enhancing the model’s focus
on difficult, misclassified samples. The loss functions 𝐿𝑜𝑐 and 𝑁𝑢𝑚
employ the multi-label soft margin loss (Liang et al., 2017) method.
This method calculates the discrepancy between the predicted category
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Fig. 5. Lung cavity weakly supervised semantic segmentation pseudo-annotation generation process and training process. (a1)–(a5) successively represent the original image, CAM
output by CFFG, the region of interest for the lung cavity, binary processing of the ROI, contour detection of the lung cavity.
probability vector 𝑃𝑐 and the true image-level labels 𝑌𝑐 in the LCs
location and number classification tasks:

𝜑 = 1
𝐾

𝐾
∑

𝑘=1
(𝑌 𝑘 log(𝑃 𝑘

𝜑 ) + (1 − 𝑌 𝑘) log(1 − 𝑃 𝑘
𝜑 )), (19)

where 𝜑 indicates the type of task, taking the values Num and Loc for
the number and location classification of LCs, respectively. The symbol
𝑘 represents the total number of classes.

However, jointly training multiple tasks involves the problem of
multi-objective function optimization strategies (Tian et al., 2021). This
is because gradient conflict or competition (Yu et al., 2020) often
occurs in the joint training process of different tasks. To solve the
conflict problem between different tasks, the PCGrad algorithm (Yu
et al., 2020) is a common solution. Therefore, in this paper, based
on this algorithm (Yu et al., 2020), we develop a LCs WSSS training
optimization strategy, as shown in Fig. 5(c). In this strategy, first, we
designed an iterative input feature refinement mechanism (Zhou et al.,
2021b). In this mechanism, input features are updated according to
the segmentation probability map from the previous iteration, to better
segment lesions in the LCs with unclear boundaries. For instance, LCs
lesions such as ground-glass opacities often have indistinct borders and
cannot be effectively identified in a single iteration. Secondly, to avoid
the ‘‘gradient explosion’’ problem (Kanai et al., 2017), we normalize the
gradients by dividing them by their norm to ensure that the gradient
magnitude remains within a reasonable range. Additionally, to prevent
division by zero errors during gradient updates, we introduce a small
constant 𝜖. Finally, to alleviate the gradient conflicts arising from the
joint training of semantic segmentation, number classification, and
location classification tasks, we employ the PCGrad algorithm to coor-
dinate and optimize gradient updates between different tasks. PCGrad
effectively alleviates the common gradient conflict problem in multi-
task training by calculating the gradients of each task and adjusting
them if necessary to reduce the negative influence between each other.

5. Data and experiments

In this section, to assess the effectiveness of SwinUNeLCsT, we
construct a dataset that can be used for two different supervision
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paradigms (weak supervision and full supervision) and conduct ex-
tensive experiments on it. In this section, we first briefly present the
dataset and discuss the implementation details of the experiments in
this paper. Subsequently, we introduce the evaluation metrics for the
experiment results.

5.1. Dataset

Given that LCs semantic segmentation is an emerging research
area, there are no publicly available datasets dedicated to LCs weakly-
supervised and supervised semantic segmentation experiments. To fill
this gap, we constructed an LCs attribute classification and semantic
segmentation dataset containing 328 TB patient CT images for weakly-
supervised and supervised semantic segmentation tasks. This dataset,
sourced from the official ImageCLEF2022 TB cavern detection chal-
lenge,1 is freely available for non-commercial purposes. This challenge
includes annotations for the detection of LCs and their centroids, with
each image measuring 512 × 512 pixels. ImageCLEF2022TB cavern
detection challenge is one edition of the ImageCLEF series of events.2
ImageCLEF is an international challenge aimed at advancing research
in the field of image retrieval and image recognition. It is part of the
Cross-Language Evaluation Forum (CLEF),3 a comprehensive interna-
tional challenge focusing on multilingual, multimodal, and interactive
retrieval issues in information retrieval systems. However, the Image-
CLEF2022TB caverns detection dataset does not contain annotations for
the number classification, location classification, and semantic segmen-
tation of LCs lesions. Therefore, to acquire the necessary annotations
for number classification, location classification, and semantic segmen-
tation of LCs lesions, we enlisted medical experts from the Department
of Radiology, University of Putra Malaysia to manually annotate the TB
CT image. The annotation results are shown in Fig. 6.

Moreover, to ensure the gold standard of the annotated data, we
evaluated the consistency and variability among different radiologists

1 https://www.imageclef.org/2022/medical/tuberculosis.
2 https://www.imageclef.org/.
3 https://www.clef-initiative.eu/.

https://www.imageclef.org/2022/medical/tuberculosis
https://www.imageclef.org/
https://www.clef-initiative.eu/
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in the segmentation and classification of LCs in pulmonary TB. The
specific implementation plan is divided into the following steps: First,
we selected three experienced medical experts as observers. These
experts are board-certified radiologists with a specialization in thoracic
imaging, each possessing over 10 years of experience in diagnosing
pulmonary diseases, including TB. Next, we provided the observers
with uniform guidance and standardized explanations to ensure they
had the same understanding and objectives during the segmentation
process. This included detailed descriptions of key details such as
LCs number assessment. During the annotation process, each observer
independently performed semantic segmentation and annotation of CT
images from the axial, sagittal, and coronal planes. Furthermore, to ob-
serve differences in the annotation results among experienced doctors,
we asked the doctors to annotate independently. For the segmentation
task, the annotation software we used was ITK-SNAP (Yushkevich et al.,
2016), and the annotation results were saved as Nifti format files. For
the classification task, the annotation results were saved in an Excel
spreadsheet. Finally, to further ensure the accuracy and reliability of
the observation results, we re-evaluated the annotation data where
there was inconsistency among observers and adopted the principle
of the minority conforming to the majority to determine the final
annotation results.

5.2. Experiment details

Optimizer and Learning Rate. During the training phase, the
AdamW optimizer was employed to train the network. The learning rate
was initially set to 6 × 10−5 and was progressively reduced following a
polynomial decay schedule.

Pseudo Label Generation. For the generation of pseudo labels in
LCs semantic segmentation, two thresholds were defined. The threshold
for LCs extraction in Eq. (14), denoted as 𝛽𝑙, was set to 0.45. In
binary operations for pixel extraction, the threshold in Eq. (16) 𝛽𝑡 was
determined by the lowest value between the two highest peaks in a
CT scan’s threshold distribution, ensuring pixels near a value of 0 were
removed.

Hyperparameter Optimization. A grid search hyperparameter op-
timization was conducted specifically for the loss function weight pa-
rameters in Eq. (17). This process yielded the optimal weight factors
𝜆1, 𝜆2, and 𝜆3, which were found to be 1, 1, and 0.5, respectively.

Cross-Validation and Image Size. To mitigate experimental bias
and enhance the model’s generalizability, a 5-fold cross-validation
method was utilized. Consistency was maintained in the size of the
input images, which were uniformly set to 128 × 128 × 96 pixels across
all experiments.

5.3. Evaluation metrics

In our study, we evaluate the segmentation of TB lesions and lung
normal regions using three quantitative metrics: the 95th percentile
Hausdorff distance (95HD), the dice similarity coefficient (DSC) and the
intersection over union (IoU). These metrics are calculated as follows:

95th percentile Hausdorff Distance (95HD). 95HD metric mea-
sures the distance between two sets of points that represent the surface
of the segmentation predictions and the ground truth. It is defined as
the maximum distance of a set percentage (in this case, 95%) of the
closest point pairs between the two sets, ensuring that outliers have a
less pronounced effect:

95HD = max

{

𝑃95

(

{

min
�̄�′∈𝑌 ′

‖𝑦′ − �̄�′‖
}

𝑦′∈𝑌 ′

)

,

𝑃95

(

{

min
𝑦′∈𝑌 ′

‖�̄�′ − 𝑦′‖
}

�̄�′∈𝑌 ′

) } (20)

where 𝑌 ′ and 𝑌 ′ denote ground truth and prediction surface point sets.
𝑃 represents the 95th percentile function, and it is applied to the set
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95
Fig. 6. Annotated results of the weakly supervised semantic segmentation dataset for
lung cavities. The dataset comprises 209 CT scan images featuring lung cavity lesions
and 119 without lesions. (a1)–(a4) represent CT images without lung cavity lesions.
(a5)–(a8) represent the CT images with lung cavity lesions, and the lesion area is
marked in blue.

of minimum distances from each point in one set to the closest point
in the other set.

Dice similarity coefficient (DSC). The DSC metric is a statistical
tool used to measure the similarity between two samples. For segmenta-
tion tasks, it quantifies the overlap between the predicted segmentation
and the ground truth, with values ranging from 0 (no overlap) to 1
(perfect overlap):

Dice =
2
∑𝐼

𝑖=1 𝑌𝑖𝑌𝑖
∑𝐼

𝑖=1 𝑌𝑖 +
∑𝐼

𝑖=1 𝑌𝑖
, (21)

where ∑𝐼
𝑖=1 𝑌𝑖𝑌𝑖 represents the number of correctly predicted voxels.

∑𝐼
𝑖=1 𝑌𝑖 denotes the total number of voxels in the actual set. ∑𝐼

𝑖=1 𝑌𝑖
represents the total number of voxels in the predicted set.

Intersection over Union (IoU). The IoU is another metric for
quantifying the overlap between the predicted segmentation and the
ground truth. It is calculated as the area of overlap between the
two segmentations divided by the area of their union. Like the Dice
coefficient, IoU values range from 0 to 1, where 1 indicates perfect
agreement:

IoU =
∑𝐼

𝑖=1 𝑌𝑖 ∩ 𝑌𝑖
∑𝐼

𝑖=1 𝑌𝑖 ∪ 𝑌𝑖
, (22)

where ∑𝐼
𝑖=1 𝑌𝑖 ∩ 𝑌𝑖 represents the total number of voxels where both

the actual value and the predicted value are 1, i.e., the intersection.
∑𝐼

𝑖=1 𝑌𝑖 ∪ 𝑌𝑖 denotes the total number of voxels where at least one of
the actual value or predicted value is 1, i.e., the union.

For the quantitative evaluation of LCs attributes classification, we
utilized receiver operating characteristic (ROC) curves, area under the
ROC curve (AUC), recall (REC), precision (PRE), accuracy (ACC), false
positive rate (FPR), and F1-score (F1).

ACC = TP + TN
TP + TN + FP + FN (23)

REC = TP (24)
TP + FN
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Fig. 7. Qualitative and quantitative results of various class activation mapping methods. CAM-Loc and CAM-N represent class activation mapping for lung cavity location and
number classification.
PRE = TP
TP + FP (25)

FPR = FP
FP + TN (26)

F1 = 2 × PRE × REC
PRE + REC (27)

where FP, TP, FN, and TN represent the counts of false positives, true
positives, false negatives, and true negatives, respectively.

6. Results

In this section, we first present the WSSS experimental comparison
results of various LCs region of interest generation methods, as well as
the ablation results for each component of SwinUNeLCsT. Finally, to
better evaluate the performance of SwinUNeLCsT, we compare it with
the state-of-the-art methods.

6.1. Generation of lung cavity region of interest

We use the mainstream CAM to obtain the region of interest of LCs,
namely the Grad-CAM (Selvaraju et al., 2017). In practice, the choice of
pooling method significantly impacts the quality of the generated CAM.
Firstly, global max-pooling gmp, emphasizes the regions in feature
maps with the maximum response, which is often very effective for
highlighting key features that a localization model is concerned with.
Secondly, global average-pooling (gap) computes the average value
for each channel, resulting in information averaging across the entire
feature map. This approach helps capture broader feature information.
However, gmp and gap are just two special cases of ‘‘top-k%’’ pooling
methods, namely top-100% and top-1% pooling. To further explore the
optimal pooling method for classification networks suitable for swin
transformer and convolutional hybrid architectures, we also considered
9

the effects of top-k% pooling with k values other than 1% and 100%. In
addition, to verify the performance of the CFFG technique, we masked
the CAM of the LCs lesion number and location classification tasks re-
spectively while keeping the training strategy of the joint classification
task unchanged.

The quantitative and qualitative results analysis of the proposed and
baseline methodologies is summarized in Fig. 7. From Fig. 7(a), we
observed that CAM generated based on CFFG exhibits the best perfor-
mance compared to CAM formed by a single task (CAM-Loc or CAM-N).
In addition, Fig. 7(b) shows the qualitative recognition result of LCs
for various CAM methods. From this sub-figure, we observed that the
CAM output method based on gmp constructed in this paper (baseline
method) can more precisely focus on LCs lesion tissues compared to
other methods.

In conclusion, the experiment in this subsection explores the impact
of various pooling methods on the CAM generation effect. Specifically,
compared with other pooling strategies (including gap and various top-
k% pooling methods), gmp demonstrates more accurate lesion feature
identification capabilities. Moreover, compared to CAM outputs from a
single task, the CFFG technology proposed in this study offers powerful
robustness in identifying LCs by integrating CAM from both lesion
location and number classification tasks. Therefore, the results of the
aforementioned ablation experiments demonstrate that, in the context
of classification networks employing transformer and convolution hy-
brid architectures, gmp is better at capturing LCs lesion features in
CT scan imaging and is more effective in generating high-performance
Grad-CAM for feature aggregation.

6.2. Ablation studies

6.2.1. Component ablation experiment
To analyze the contributions of different components in our pro-

posed LCs WSSS framework, we conducted a series of ablation experi-
ments, as shown in Tables 1–2.
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Table 1
Impact of various ablation modules in SwinUNeLCsT on weakly supervised semantic segmentation for lung cavities. W-MSA stands for multi-head self-attention module. MLP
represents the original MLP component in Swin UNetR. W-GL-MSA stands for window-based global–local multi-head self-attention.

ID MLP W-MSA DX-blocks MDFFN W-GL-MSA Segmentation (±SD) Number classification Location classification

95HD IoU DSC ACC REC PRE FPR F1 ACC REC PRE FPR F1

M-1 × ✓ ✓ ✓ × 34.78 ± 8.29 0.247 ± 0.133 0.391 ± 0.129 0.711 0.792 0.801 0.462 0.796 0.729 0.812 0.818 0.471 0.815
M-2 × × × ✓ ✓ 34.12 ± 7.95 0.251 ± 0.142 0.395 ± 0.147 0.714 0.802 0.799 0.458 0.800 0.731 0.814 0.823 0.458 0.818
M-3 ✓ × ✓ × ✓ 32.51 ± 5.23 0.260 ± 0.136 0.411 ± 0.141 0.720 0.798 0.810 0.443 0.804 0.737 0.822 0.819 0.445 0.821
M-4 × × ✓ ✓ ✓ 31.43 ± 7.46 0.267 ± 0.126 0.418 ± 0.134 0.723 0.806 0.811 0.421 0.809 0.742 0.821 0.835 0.398 0.828
Table 2
The impact of various ablation modules in W-GL-MSA on weakly supervised semantic segmentation for lung cavities. W-SSC-SA stands for window-based spectral scaled cosine
self-attention. LSI represents lightweight simplified inception.

ID LSI W-SSC-SA Segmentation (± SD) Number Classification Location Classification

95HD IoU DSC ACC REC PRE FPR F1 ACC REC PRE FPR F1

M-4 ✓ ✓ 31.43 ± 7.46 0.267 ± 0.126 0.418 ± 0.134 0.723 0.806 0.811 0.421 0.809 0.742 0.821 0.835 0.398 0.828
M-5 ✓ × 35.56 ± 8.27 0.235 ± 0.131 0.386 ± 0.129 0.694 0.783 0.798 0.471 0.790 0.708 0.804 0.817 0.465 0.810
M-6 × ✓ 33.12 ± 6.83 0.258 ± 0.116 0.405 ± 0.123 0.711 0.794 0.805 0.452 0.799 0.726 0.812 0.824 0.442 0.818
Fig. 8. Qualitative results of lung cavity recognition by various ablation methods. The average DSC is marked on each image.
Table 1 shows the ablation experimental results of DX blocks,
MDFFN, and W-GL-MSA modules in the SwinUNeLCsT model. We used
the method that includes all the basic modules of SwinUNeLCsT as
our baseline method (M-4). Firstly, to validate the effectiveness of our
proposed MDFFN in reducing model complexity and enhancing the
capability of LCs feature extraction, we replaced the MDFFN approach
with the original MLP module of Swin UNetR (M-3). From the control
experiment between the baseline method and the M-3 method, we
observed that the method based on the MDFFN module outperforms the
method using the original MLP module of Swin UNetR in all metrics
of LCs recognition (except the REC metric of location classification).
Second, from the control group of the baseline method versus the M-
2 method, we observed that removing the DX block component from
SwinUNeLCsT results in a slight decrease in the overall LCs identifi-
cation performance. This result confirms the effectiveness of the DX
module in capturing spatial features and long-distance dependencies of
lung CT scan data. Finally, to validate the effectiveness of the W-GL-
MSA, which integrates global and local features in LCs identification,
we replaced W-GL-MSA in SwinUNeLCsT with the original W-MSA in
SwinUNetR, denoted as method M-1. From the table, we observed that
the M-1 method shows a large drop in all metrics compared to the
baseline method. This indicates that compared to standard W-MSA,
W-GL-MSA, which integrates both global and local features, achieves
better recognition of the LCs.

We also performed ablation experiments on the W-GL-MSA module
to further verify the effectiveness of W-GL-MSA for WSSS in the LCs,
and the results of the experiments are shown in Table 2. First, from the
table, we observed that after removing the LSI (lightweight simplified
inception) module that extracts local features (M-6), SwinUNeLCsT has
a decrease in the overall segmentation and classification performance
of LCs. This result shows that the local features of CT images extracted
by the LSI module play an important role in enhancing the recogni-
tion performance of the LCs. Moreover, after removing the W-SSC-SA
(window-based spectral scaled cosine self-attention) module that ex-
tracts global features (M-5), SwinUNeLCsT also shows a significant
decline in the overall segmentation and classification performance of
10
LCs. This result verifies that the global features of CT images extracted
by the W-GL-MSA module also play a key role in enhancing LCs recog-
nition. However, we observed that the SwinUNeLCsT, integrating both
LSI and W-SSC-SA module (M-4), achieved the best performance across
all metrics. This result corroborates the effectiveness of the W-GL-MSA
module, which amalgamates global and local features, in enhancing
LCs recognition. Finally, to visually show the recognition effect of each
ablation method on LCs features, we visualized the recognition effect of
these methods (M-1 to M-6) in Fig. 8. The figure shows that the baseline
method (M-4) also achieves the best LCs recognition result compared
to other methods.

To further verify the performance of our method in LCs attribute
classification, we visualized the ROC curves of each ablation model (M-
1 to M-6) in the LCs number and location classification task, as shown
in Fig. 9. From the figure, we observed that the method incorporating
all SwinUNeLCsT components (M-4) achieved the best AUC in the
classification tasks of LCs number and location, with values of 0.737
and 0.762, respectively. Moreover, the W-GL-MSA module method (M-
4), which merges global and local features, demonstrated superior
classification performance compared to methods containing only global
or local features (M-5 or M-6).

Fig. 10 presents the confusion matrices of each ablation method.
In these matrices, higher values on the diagonal indicate a greater
number of correctly classified lung CT instances. Higher values of the
diagonal indicate a greater number of misclassified lung CT instances.
From these confusion matrices, we observed that for LCs attribute
features with higher similarity, the probability of misclassification is
higher. For example, the misclassification rate was higher between ‘‘3
cavities’’ and ‘‘more than 3 cavities’’ and between ‘‘both lungs’’ and
‘‘left lung’’ or ‘‘right lung’’. Among all ablation methods, the baseline
method (M-4) demonstrated the best overall classification performance
in the confusion matrix. These experimental results further illustrate
the superiority of SwinUNeLCsT in the classification of LCs attributes.

In conclusion, in this ablation study, we first explored the con-
tributions of the MDFFN, DX block, and W-GL-MSA module in the
SwinUNeLCsT model. Experimental results show that the MDFFN plays
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Fig. 9. ROC curves of various ablation methods for lung cavity attribute classification.
Fig. 10. Confusion matrices for various ablation methods. (a)–(f) represent M-1 to M-6 methods in turn.
Table 3
The impact of different classification layer combinations on lung cavity recognition performance.

ID Num-CLS
sub-layer

Loc-CLS
sub-layer

Segmentation (± SD) Number classification Location classification

A B A B 95HD IoU DSC ACC REC PRE FPR F1 ACC REC PRE FPR F1

M-7 ✓ ✓ × × 34.86 ± 8.67 0.246 ± 0.124 0.388 ± 0.118 0.709 0.789 0.798 0.482 0.793 – – – – –
M-8 × × ✓ ✓ 34.19 ± 10.14 0.249 ± 0.137 0.391 ± 0.143 – – – – – 0.727 0.814 0.819 0.458 0.816
M-9 × ✓ ✓ ✓ 34.08 ± 8.73 0.257 ± 0.128 0.406 ± 0.138 0.718 0.793 0.812 0.448 0.801 0.735 0.818 0.821 0.434 0.820
M-10 ✓ × ✓ ✓ 32.04 ± 6.26 0.259 ± 0.131 0.409 ± 0.124 0.721 0.801 0.809 0.439 0.807 0.738 0.821 0.827 0.409 0.824
M-11 ✓ ✓ × ✓ 33.92 ± 7.63 0.255 ± 0.117 0.405 ± 0.121 0.717 0.794 0.805 0.451 0.799 0.733 0.815 0.822 0.436 0.819
M-12 ✓ ✓ ✓ × 32.18 ± 8.58 0.258 ± 0.142 0.408 ± 0.133 0.719 0.797 0.806 0.443 0.801 0.736 0.817 0.824 0.418 0.821

M-4 ✓ ✓ ✓ ✓ 31.43 ± 7.46 0.267 ± 0.126 0.418 ± 0.134 0.723 0.806 0.811 0.421 0.809 0.742 0.821 0.835 0.398 0.828
Table 4
Quantitative results of various 3D medical weakly supervised semantic segmentation methods.

Methods 95HD IoU DSC

Laradji et al. (2021) 36.84 ± 5.94 0.224 ± 0.135 0.368 ± 0.142
Ye et al. (2022) 35.87 ± 6.72 0.231 ± 0.147 0.379 ± 0.143
Lu et al. (2023) 32.65 ± 6.82 0.255 ± 0.129 0.409 ± 0.125
Sun et al. (2023) 35.16 ± 8.76 0.238 ± 0.117 0.387 ± 0.113

SwinUNeLCsT 31.43 ± 7.46 0.267 ± 0.126 0.418 ± 0.134
a critical role in enhancing the model’s efficiency in extracting lung
features. The introduction of the DX block effectively enhances the
model’s ability to capture key spatial features and process long-distance
dependencies. The W-GL-MSA module enhances the feature extraction
capability for LCs of various sizes by integrating global and local
features. Secondly, we also explored the role of the W-GL-MSA module
in the WSSS of the LCs. Experimental results show that the W-GL-MSA
module, which integrates the LSI and W-SSC-SA modules, achieves the
best results in LCs recognition. This result verifies the importance of
integrating local and global features to improve LCs feature extraction
capabilities.

6.2.2. Multi-classification task ablation experiment
To explore the impact of the combination of different classifica-

tion layers in the LCs WSSS framework proposed in this paper on
the LCs recognition performance, we conducted a series of ablation
experiments, as shown in Table 3. Firstly, we constructed two ablation
experiment settings that only included a single classification task to
11
investigate the impact of LCs location and quantity classification tasks
on the performance of WSSS. These are the M-7 method, which rep-
resents quantity classification, and the M-8 method, which stands for
quantity classification, respectively. From the table, we observed that
the method that only includes the number classification task (M-7) has
slightly lower segmentation performance than the method (M-8) that
only includes the position classification task. This result indicates that
compared to quantity classification tasks, the spatial information pro-
vided by LCs location classification tasks is more efficient for achieving
segmentation of the LCs. Furthermore, compared with training on a
single classification task, when jointly training on number and location
classification tasks (M-9 to M-12), all LCs recognition indicators have
larger improvement. This result shows that jointly training LCs location
and number classification tasks is more beneficial for WSSS of LCs than
training individual tasks separately. We also observed that the methods
(M-4) that include all classification sub-layers also achieve the best
performance in all other evaluation indicators except the recall rate
(REC) indicator of position classification.
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Table 5
Quantitative results of various 3D medical semantic segmentation methods. The number of parameters and GFLOPs (with a single input volume of 128 × 128 × 96 for the fully
supervised segmentation tasks) are shown. SwinUNeLCsT† represents a variant of SwinUNeLCsT based on a supervised learning setting.

Methods GFLOPs Parameter 95HD IoU DSC

nnUnet (Isensee et al., 2021) 637.5 30.8M 26.93 ± 7.17 0.334 ± 0.135 0.482 ± 0.128
TransBTS (Wang et al., 2021) 198.9 33.1M 25.31 ± 8.92 0.341 ± 0.118 0.493 ± 0.130
nnFormer (Zhou et al., 2021a) 1635.6 159.0M 24.92 ± 6.35 0.347 ± 0.129 0.499 ± 0.141
UnetR (Hatamizadeh et al., 2022) 476.4 92.6M 24.53 ± 8.73 0.352 ± 0.125 0.508 ± 0.134
SwinUnetR (Tang et al., 2022) 595.3 62.2M 24.02 ± 6.73 0.355 ± 0.131 0.514 ± 0.137
UnesT (Yu et al., 2023b) 465.2 87.3M 23.97 ± 7.69 0.359 ± 0.129 0.518 ± 0.132

SwinUNeLCsT† 461.6 84.5M 23.54 ± 6.86 0.365 ± 0.113 0.526 ± 0.121
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Overall, in this ablation study, we explored the impact of features
f LCs location and number classification tasks on the performance of
SSS of LCs. The experimental result verifies that integrating features

rom LCs location and quantity classification tasks can enhance the
erformance of WSSS of the LCs.

.3. Comparison to state-of-the-art

To further evaluate the performance of SwinUNeLCsT, we trained
xisting WSSS methods on the dataset constructed in this study, with
he results shown in Table 4. From the table, we observed that Swin-
NeLCsT achieved the best performance in WSSS of LCs, with a 95HD
f 31.43, an IoU of 0.267, and a DSC of 0.418.

Moreover, to validate the superiority of the SwinUNeLCsT architec-
ure, we compared it under a fully supervised learning setting with
ther state-of-the-art medical 3D semantic segmentation models, in-
luding nnUnet, TransBTS, nnFormer, UnetR, UnesT, and SwinUNetR,
ith the results presented in Table 5. Architecturally, under a fully su-
ervised paradigm, SwinUNeLCsT transformed into a multi-task learn-
ng model capable of performing both segmentation and classification
f LCs. Unlike WSSS, SwinUNeLCsT under full supervision does not
equire the generation of semantic segmentation pseudo-labels. There-
ore, we removed all steps from the CAM output to pseudo-label gen-
ration and replaced global max pooling with global average pooling.
o distinctly differentiate SwinUNeLCsT under different supervision
aradigms, we named the fully-supervised model as SwinUNeLCsT†.
rom Table 5, we observed that the SwinUNeLCsT† model exhibits
uperior performance across the 95HD, IoU, and DSC metrics with
cores of 23.54, 0.365, and 0.526, respectively. We also observed that
winUNeLCsT† balances computational efficiency and model complex-
ty well. Firstly, regarding computational efficiency, SwinUNeLCsT† has
lower GFLOPs value at 461.6, indicating fewer floating-point opera-

ions per second. This is less computationally intensive than nnUNet,
hich has a significantly higher GFLOPs value of 637.5. Furthermore,
espite its efficiency, SwinUNeLCsT† maintains a moderate parameter
ount of 84.5M, which is higher than some models, such as TransBTS
nd nnFormer, but lower than UnetR and SwinUNetR. Secondly, in
erms of model complexity, SwinUNeLCsT† finds a middle ground,
resenting fewer parameters than the most complex model, UnetR, but
ore than the less complex TransBTS and nnFormer. Finally, when

onsidering performance, SwinUNeLCsT† leads in all three metrics
valuated.

In conclusion, this ablation experiment shows that the
winUNeLCsT model performs best in both weakly supervised and
ully supervised paradigms. Meanwhile, its excellent performance also
ighlights the superiority of the SwinUNeLCsT model based on the
NN–transformer hybrid architecture in identifying LCs.

. Discussion

.1. The application of weakly supervised semantic segmentation in tuber-
ulosis diagnosis

WSSS is particularly important in medical image analysis, as acquir-
12

ng a large volume of precisely annotated medical images is often both d
xpensive and time-consuming. In this study, we developed a WSSS
ramework for the LCs, aimed at improving the accuracy and efficiency
f medical diagnoses. The core of this framework is to use low-cost
lassification annotations to train a deep-learning model capable of
dentifying and segmenting LCs in lung CT. Moreover, we conducted
series of experiments to demonstrate the effectiveness of this frame-
ork on various lung image datasets and compared it with traditional

ully supervised learning methods. The experimental results show that,
ven with limited annotated data, our weakly supervised framework
an achieve satisfactory segmentation accuracy, demonstrating its great
otential in addressing the high-cost problem of annotating LCs images
n TB diagnosis.

.1.1. Enhanced diagnostic efficiency
The application of our WSSS framework can significantly expedite

he process of LCs analysis in lung CT scans. By automating the seg-
entation process, radiologists can quickly identify areas of interest,

eading to faster diagnosis and treatment planning. This not only im-
roves workflow efficiency but also enhances patient throughput in
edical facilities.

.1.2. Integration with clinical workflows
Implementing our WSSS framework within clinical workflows could

acilitate assistance during diagnostic procedures. This integration
ould provide radiologists with immediate insights, enhancing decision-
aking processes and potentially leading to more accurate diagnoses.

.2. Why do we need an efficient transformer-based LCs segmentation
odel?

Unlike other WSSS methods designed for various pulmonary CT
iseases, SwinUNeLCsT focuses on the segmentation of the LCs, avoid-
ng overly broad areas of interest, and thus can more efficiently focus
n key features. On the other hand, pure transformer architecture
etworks sometimes miss key local features due to the lack of inductive
ias of CNN in processing image data, such as the nnFormer model.
n contrast, although pure CNN architectures (such as nnUNet) can
ffectively capture local features through convolution operations, they
ave limitations in capturing long-range feature dependencies in im-
ges. To solve these limitations, some medical imaging models adopt
NN–transformer hybrid architecture, such as TransBTS, UnetR, UnesT,
nd SwinUNetR. One thing these hybrid models have in common is
hat the way the transformer interacts with the CNN module is by
oncatenating features sequentially. However, in the SwinUNeLCsT
odel constructed in this paper, the transformer and CNN modules
ainly interact through element-wise addition at the channel level.
oreover, a large number of experimental results show that this inter-

ctive method can more closely and efficiently combine local and global
eatures, thereby more accurately utilizing the spatial information in CT
ata.



Journal of King Saud University - Computer and Information Sciences 36 (2024) 102012Z. Tan et al.

w

7.3. Principal findings and their significance

In our research, to enhance the recognition capabilities of the
pulmonary LCs, we introduced a novel window-based hybrid global–
local multi-head self-attention mechanism. This mechanism effectively
combines the local feature recognition capabilities of CNN with the
global information extraction process of transformer architecture net-
works, achieving efficient integration of global context and local detail
information. On the other hand, to address the high computational
complexity challenge posed by the self-attention mechanism within
transformer models, we designed an innovative spectral scaling cosine
multi-head self-attention mechanism. This mechanism initially reduces
the dimensionality of the feature space through point convolutions
(using 1 × 1 × 1 kernels), followed by capturing spatial information

ith fewer parameters through depthwise convolutions (using 3 × 3 × 3
kernels). By generating lower-dimensional query (𝐐), key (𝐊), and
value (𝐕) vectors, this approach alleviates the computational burden of
the attention mechanism. Moreover, by incorporating cosine similarity,
we reduce the need for large-scale matrix multiplication operations.
The resulting transposed attention map 𝐴, sized R𝐶×𝐶×𝐶 , is based
on channel dimensions rather than the traditional spatial dimensions.
Compared to the attention maps generated by standard self-attention
mechanisms, it features a smaller size and lower spatial complexity.

7.4. Limitations and future work

Although SwinUNeLCsT has achieved state-of-the-art performance
in the field of LCs recognition, its hybrid architecture based on CNN
and transformer is not as good as the baseline model SwinUnetR in
terms of computational efficiency and model complexity. However,
this challenge reduces its usefulness in clinical diagnostic applications
as it may result in longer identification times. To address this issue,
our future research will focus on finding strategies to further improve
computational efficiency and reduce model complexity. For example,
we will explore sparse attention techniques suitable for LCs recognition
to further reduce the computational complexity of the self-attention
mechanism.

8. Conclusion

In this study, we present an innovative model for 3D TB image
analysis (SwinUNeLCsT). This model employs a hybrid architecture
integrating transformer and CNN, effectively consolidating global and
local features in TB CT imaging to improve recognition of LCs of
various sizes. To demonstrate SwinUNeLCsT’s effectiveness, we collab-
orated with radiologists to develop the first WSSS CT dataset for TB
LCs. Using this dataset, we trained SwinUNeLCsT under both weakly-
supervised and supervised semantic segmentation paradigms. In the
supervised semantic segmentation paradigm, SwinUNeLCsT demon-
strated superior performance, surpassing current popular medical 3D
supervised semantic segmentation methods. Similarly, in the WSSS
paradigm, SwinUNeLCsT also achieved the best performance among
the state-of-the-art medical 3D WSSS methods. This innovative WSSS
approach not only reduces the labeling burden but also sets a new
benchmark for WSSS methods in medical imaging, especially in the
field of TB LCs CT medical analysis. In addition, we also introduce a
novel optimization strategy for multi-task training of the SwinUNeLCsT
model under weak supervision settings. Experimental results show that
this strategy effectively alleviates gradient conflict and enhances the
identification efficiency of LCs. Overall, these achievements not only
verify the effectiveness of SwinUNeLCsT but also highlight its forward-
looking and practicality in handling complex medical image analysis
13

tasks.
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