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This thesis presents the studies on hybrid nanofluid flow over various permeable surfaces

and conditions. Five different flow problems consisting of unsteady hybrid nanofluid

flow past a permeable Riga plate with thermal radiation and convective boundary condi-

tion, mixed convection hybrid nanofluid flow past a permeable non-isothermal cone and

wedge with thermal radiation and convective boundary condition, hybrid nanofluid flow

past a permeable biaxial stretching/shrinking surface with thermal radiation, oblique

stagnation-point flow of hybrid nanofluid towards a permeable shrinking surface, and

magnetohydrodynamics (MHD) stagnation-point flow of ternary hybrid nanofluid over

a permeable radially shrinking disk with thermal radiation, viscous dissipation, and

convective boundary condition are solved, analyzed, and discussed. The geometries

and governing conditions of these flow problems are defined using partial differential

equations and boundary conditions. Then, similarity transformation reduced these

equations into non-linear ordinary differential equations before being solved numeri-

cally using the bvp4c solver in MATLAB. Multiple solutions are found within certain

ranges of unsteadiness, mixed convection, and stretching/shrinking parameters. How-

ever, stability analysis confirms that only the first solution is stable while the others
i
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are unstable. The numerical results show that hybrid nanofluid and ternary hybrid

nanofluid improve the physical quantities of interest, namely the local skin friction

coefficient and Nusselt number. Nevertheless, in some cases where boundary suction

is applied, hybrid nanofluids may have a lower local Nusselt number than nanofluids.

Increasing the suction parameter can help compensate for this reduction in heat transfer

performance. The imposition of thermal radiation and convective boundary condition

also increases the local Nusselt number. Additionally, the assisting mixed convection

flow exhibits a higher local skin friction coefficient and Nusselt number than the op-

posing flow. Finally, response surface methodology (RSM) is employed to determine

the significance and optimal settings of the controlling parameters on the local Nusselt

number. Generally, the highest value of the suction parameter maximizes the local

Nusselt number and improves the heat transfer rate at the surface.

Keywords: Multiple solutions, nanofluid, RSM, suction

SDG: GOAL 9: Industry, Innovation and Infrastructure
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

ANALISIS BERANGKA DAN BERSTATISTIK BAGI ALIRAN LAPISAN
SEMPADAN DAN PEMINDAHAN HABA NANOBENDALIR HIBRID

TERHADAP PELBAGAI PERMUKAAN TELAP

Oleh

RUSYA IRYANTI BINTI YAHAYA

Ogos 2024

Pengerusi : Norihan binti Md Arifin, PhD

Institut : Penyelidikan Matematik

Tesis ini membincangkan kajian aliran nanobendalir hibrid terhadap pelbagai per-

mukaan telap dan keadaan. Lima masalah aliran berbeza yang terdiri daripada alir

tak mantap nanobendalir hibrid terhadap plat telap Riga dengan sinaran terma dan

syarat sempadan olakan, aliran nanobendalir hibrid terhadap kon dan baji yang telap

dan tak sesuhu dengan olakan campuran, sinaran terma dan syarat sempadan olakan,

aliran nanobendalir hibrid terhadap permukaan telap yang meregang/mengecut se-

cara dwipaksi dengan sinaran terma, aliran titik genangan serong nanobendalir hib-

rid terhadap permukaan telap mengecut, dan aliran titik genangan magnetohidrodi-

namik (MHD) nanobendalir hibrid ternari terhadap permukaan cakera yang telap dan

mengecut dengan sinaran terma, lesapan likat dan syarat sempadan olakan telah disele-

saikan, dianalisis dan dibincangkan. Geometri dan keadaan yang mengawal masalah-

masalah aliran ini diterjemahkan melalui persamaan pembezaan separa dan syarat

sempadan. Setelah itu, penjelmaan keserupaan meringkaskan persamaan ini kepada

persamaan pembezaan biasa tak linear sebelum diselesaikan menggunakan penyelesai

bvp4c dalam MATLAB. Penyelesaian berganda diperoleh dalam julat tertentu param-

eter ketakmantapan, parameter olakan campuran, dan parameter meregang/mengecut.
iii



© C
OPYRIG

HT U
PM

Walau bagaimanapun, analisis kestabilan mengesahkan hanya penyelesaian pertama

yang stabil, manakala penyelesaian lain adalah tidak stabil. Analisis berangka pula me-

nunjukkan bahawa nanobendalir hibrid dan nanobendalir hibrid ternari meningkatkan

pekali geseran dan nombor Nusselt setempat. Namun begitu, pengenaan sedutan

pada permukaan boleh menyebabkan nanobendalir hibrid mempunyai nombor Nus-

selt setempat yang lebih rendah berbanding nanobendalir biasa. Kenaikan parame-

ter sedutan dapat membantu mengimbangi penurunan prestasi pemindahan haba ini.

Manakala, kehadiran sinaran terma dan syarat sempadan olakan juga meningkatkan

nombor Nusselt setempat. Selain itu, aliran membantu dalam olakan campuran dida-

pati menghasilkan nilai pekali geseran dan nombor Nusselt setempat yang lebih besar

berbanding aliran berlawanan. Kemudian, kaedah tindak balas permukaan (RSM) telah

diaplikasikan bagi menentukan kepentingan pelbagai parameter kawalan terhadap nom-

bor Nusselt setempat dan tetapan optimum bagi parameter-parameter tersebut. Secara

umum, nilai tertinggi parameter sedutan menghasilkan nombor Nusselt setempat yang

maksimum dan meningkatkan kadar pemindahan haba di permukaan.

Kata Kunci: Nanobendalir, penyelesaian berganda, RSM, sedutan

SDG: MATLAMAT 9: Industri, Inovasi dan Infrastuktur
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CHAPTER 1

INTRODUCTION

Fluid dynamics is an academic discipline that focuses on the study of fluid flow. This

field of study incorporates applied mathematics, physical principles, and empirical re-

sults from experiments to design and solve fluid flow problems.

This chapter will highlight the background of the flow problems studied in this thesis.

It will explain the problem statement, objectives, scope, and significance of the studies.

Additionally, a concise overview and explanation of some of the terms used throughout

this thesis will be given to enhance understanding of the flow problems studied.

1.1 Hybrid nanofluid

Nanofluid is a fluid with nanoparticles suspended in it. This fluid was first proposed

by Choi and Eastman (1995) to resolve the drawbacks of conventional heat transfer

fluids, such as water, ethylene glycol, toluene, engine oil, alcohol, and refrigerant,

which have low thermal conductivity. The swift progress of industry and technology

demands more efficient and cost-effective heat transfer fluids. Therefore, Maxwell

(1873) suggested integrating solid particles into conventional heat transfer fluids. This

approach effectively improved the thermal conductivity of the fluid but also caused

sedimentation and clogging of flow passages. Masuda et al. (1993) encountered a

similar issue while introducing the dispersion of ultra-fine particles, such as Al2O3,

SiO2, and TiO2, into conventional fluids. Later, in 1995, Choi and Eastman (1995)

from Argonne National Laboratory, United States, presented nanofluids composed of

nanometer-sized particles with diameters of less than 100 nm, dispersed in a base

fluid (i.e., conventional fluid). The nanoparticles have greater surface areas than the

millimeter- and micrometer-sized particles used in prior investigations. Thus, using

the nanoparticles is more advantageous because heat transfer primarily occurs at the
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particle surfaces. In addition, nanoparticles remain suspended in base fluids much

longer than micrometer-sized particles and experience minimal sedimentation under

static conditions (Puliti et al., 2011). Hence, nanofluids are more stable, have a lower

probability of erosion, can reduce pumping power, and provide better heat transfer

performance.

Nanoparticles can be prepared using various chemical and physical methods such as

sol-gel synthesis, hydrothermal, electron beam lithography, solvothermal, coprecipi-

tation, microemulsion, laser pyrolysis, micelle synthesis, flow injection, thermolysis,

chemical vapor deposition, sonochemical, microwave-assisted, carbon arc, thermal de-

composition, and gas-phase decomposition (Lenin et al., 2021). Appropriate methods

can be selected based on the size and shape of nanoparticles required for a particu-

lar application. Common types of nanoparticles used in preparing nanofluids include

metallic particles, metal oxides, carbon, and ferrites, as shown in Figure 1.1. Mean-

while, the base fluid is usually a non-dielectric liquid (e.g., water (H2O), engine oil, and

ethylene glycol (C2H6O2)) or dielectric liquid (e.g., aliphatic liquids, silicone liquids,

and fluorocarbons) (Bakthavatchalam et al., 2020).

Figure 1.1: Examples of nanoparticles

Nevertheless, dispersing just one type of nanoparticle in a base fluid has disadvantages.

Each type of nanoparticle has distinct properties and behavior. For example, metal

oxide nanoparticles have low thermal conductivity and are chemically inert, while

metallic nanoparticles exhibit high thermal conductivity and are chemically reactive.
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Therefore, only one of these qualities, either high thermal conductivity or better stabil-

ity, can be imparted to a nanofluid, depending on the type of nanoparticles dispersed.

The evolution of industrial and engineering applications requires a trade-off between

the various properties of nanofluids. The favorable features of different nanoparticles

can be incorporated into a single fluid by introducing hybrid nanofluids and ternary

hybrid nanofluids. A hybrid nanofluid has two distinct nanoparticles in a base fluid,

while a ternary hybrid nanofluid comprises a suspension of three different nanoparticles

in a base fluid (see Figure 1.2). For instance, metallic and metal oxide nanoparticles

can be dispersed in a base fluid to create a hybrid nanofluid with excellent thermal

conductivity and chemical inertness. Therefore, hybrid nanofluids as working fluids

offer better thermophysical and rheological properties. Nonetheless, experimental and

theoretical studies of hybrid nanofluids are still needed to understand the behavior of

these fluids over various geometries and flow conditions.

Figure 1.2: The illustration of nanofluid, hybrid nanofluid, and ternary hybrid
nanofluid

In preparing nanofluids, hybrid nanofluids, and ternary hybrid nanofluids, one of the

significant challenges is the agglomeration of nanoparticles in the base fluid. Nanopar-
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ticles agglomerate when the Van der Waals attractive force surpasses the electrostatic

repulsive potential. Consequently, this can cause sedimentation, destabilization of

nanofluids, and reduced thermal conductivity. Since the improvement of heat trans-

fer characteristics of nanofluids depends on the synthesis and uniform dispersion of

nanoparticles, numerous approaches have been developed to minimize nanoparticle

agglomeration. Two preparation methods are commonly used: the single-step method

and the two-step method.

The single-step method simultaneously synthesizes and disperses nanoparticles in a

base fluid. This method avoids intermediate drying, storage, and transportation steps to

reduce nanoparticle agglomeration. According to Chakraborty and Panigrahi (2020),

the stability of nanofluids produced using the single-step method is better than those pro-

duced by the two-step method. Additionally, the single-step method prevents nanopar-

ticle oxidation. However, this method is less economical as it is only compatible with

low vapor pressure liquids (e.g., ethylene glycol).

Meanwhile, the two-step method is more economical for large-scale production. In this

method, the nanoparticles are first synthesized, or commercially available nanoparticles

are used and dispersed in a base fluid. The separation of synthesizing and dispersing

processes raises the risk of nanoparticle agglomeration. Hence, techniques such as

the addition of surfactants, intensive magnetic force agitation, ultrasonic agitation,

homogenizing, ball milling, and high-shear mixing are frequently used to minimize

nanoparticle agglomeration and improve the stability of nanofluids (Li et al., 2009b;

Yu and Xie, 2012). However, the two-step method has been proven more favorable for

oxide nanoparticles and unsuitable for metallic nanoparticles (Bakthavatchalam et al.,

2020). Thus, a careful selection of preparation methods must be made to develop stable

nanofluids with excellent heat transfer performance for various potential applications,

as shown in Figure 1.3.
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Figure 1.3: Potential applications of nanofluids, hybrid nanofluids, and ternary
hybrid nanofluids

1.2 Types of fluid flow

A fluid, whether a liquid or a gas, has no definite shape and conforms to the shape of

the container that holds it. Physically, a fluid is a substance that undergoes continuous

deformation when subjected to a tangential force known as shear stress. The inability

of a fluid to resist even the smallest magnitude of shear stress makes it continuously

deform and flow.

1.2.1 Laminar and turbulent flows

Laminar flow, also known as streamline or viscous flow, occurs when a fluid moves

smoothly in layers without disruptions such as eddies, swirls, or cross-currents. In

laminar flow, fluid particles near a solid surface move in straight lines parallel to the
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surface. This flow usually occurs when the fluid has a high viscosity that impedes

turbulent tendencies or moves slowly through relatively small flow passages. However,

the laminar flow may transform into a turbulent flow when the fluid has low viscosity,

high velocity, or moves through large passages (Streeter and Wylie, 1975). The transi-

tion from laminar to turbulent flow is illustrated in Figure 1.4.

(a) Laminar (b) Transition

(c) Turbulent

Figure 1.4: Illustration of the transition from laminar to turbulent

Turbulent flow involves the irregular motion of fluid particles with no definite frequency

and observable pattern. Common phenomena with turbulent flow include the rise of

smoke, waterfalls, blood flow in arteries, lava flow, atmospheric and ocean currents,

and vehicle aerodynamics. A fluid in turbulent flow contains high kinetic energy, with

its speed fluctuating in both magnitude and direction. Once this energy dissipates, the

flow returns to a laminar state.

In 1883, Osborne Reynolds conducted the first experimental study of laminar and

turbulent flows (Finnemore and Franzini, 2002). The existence of laminar and turbulent
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flows, separated by a transition phase, was observed in this study. The transition was

assumed to be related to the ratio of inertial and viscous forces. This relationship was

proposed by George Gabriel Stokes in 1851 and popularized by Osborne Reynolds to

describe the transition phase, ultimately being dubbed the Reynolds number (Re) by

Arnold Sommerfeld in 1908 (Rott, 1990). The Reynolds number is a dimensionless

quantity that represents the relationship between the inertial and viscous forces:

Re =
ρuL

µ
=
uL

ν
,

where ρ is the density of the fluid, u is the flow velocity, L is the characteristic length,

µ is the dynamic viscosity, and ν is the kinematic viscosity of the fluid. When the

Reynolds number is small, the flow is considered laminar. As the Reynolds number

surpasses a certain threshold value, the flow becomes semi-turbulent and enters the

transition phase. Beyond this value, the flow becomes completely turbulent. The mean

value of the Reynolds number in the transition phase is the critical Reynolds number.

1.2.2 Steady and unsteady flows

A steady flow occurs when all flow properties, such as pressure, velocity, temperature,

and density, remain constant over time but may vary from point to point. For example,

∂v

∂t
= 0,

∂p

∂t
= 0,

where v is the velocity, t is time, and p is pressure. True steady flow is typically found

only in laminar flow. However, a turbulent flow can be considered steady if the average

rate of change of all properties remains constant, and this case is known as the mean

steady flow.

The steady flow can be further classified as uniform or non-uniform. Uniform flow

refers to a condition where the velocity is constant in magnitude and direction at every

point in the fluid. Meanwhile, non-uniform flow occurs when the velocity varies at
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every point in the fluid. Real fluids or fluids flowing near a solid boundary generally

exhibit non-uniform flow. Nevertheless, the flow can be considered uniform if the size

and shape of the cross-section along the length of the solid boundary remain consistent

and the average fluid velocity is constant.

In contrast, unsteady or time-dependent flow occurs when flow properties at a point

change with time. Thus,
∂v

∂t
̸= 0,

∂p

∂t
̸= 0.

The unsteady flow may arise due to fluctuations in the surrounding fluid or voluntary

motions of a body, and it can be observed in various devices such as marine propellers,

hydrofoil flutters, rotor blades, and turbomachines (McCroskey, 1977). According to

Finnemore and Franzini (2002), unsteady flow is a transient phenomenon that may

eventually become steady or cease entirely. Additionally, this flow can include periodic

motion such as beach waves, tidal motion, and other oscillations.

Steady, unsteady, uniform, and non-uniform flows can exist independently. Hence, this

leads to four possible combinations, each accompanied by an example (Streeter and

Wylie, 1975):

1. Steady, uniform flow: Flow through a long pipe at a constant rate.

2. Steady, non-uniform flow: Flow through an expanding tube at a constant rate.

3. Unsteady, uniform flow: Flow through a long pipe at a decreasing rate.

4. Unsteady, non-uniform flow: Flow through an expanding tube at an increasing

rate.

1.2.3 Compressible and incompressible flows

Compressible flow is characterized by varying density from point to point (ρ ̸= con-

stant). In contrast, incompressible flow refers to flow with a constant density (ρ =
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constant). Generally, liquids are treated as incompressible, while gases are compress-

ible. However, the compressibility effects in liquids can become substantial under

high-pressure conditions. Conversely, the flow of gases with negligible heat transfer

can be considered incompressible when the flow speed is low relative to the speed

of sound (Fox et al., 2004). Common examples of compressible flow include high-

pressure gas transmission in pipelines, compressed air systems in dental drills, and

various sensing systems.

1.2.4 Single- and multi-dimensional flows

One-dimensional flow refers to a condition where the flow properties, such as velocity,

vary with time and one spatial coordinate, such as x. Variations in flow properties

perpendicular to the main flow direction are neglected. According to Streeter and

Wylie (1975), the flow through a pipe can be described as one-dimensional. In steady,

one-dimensional flow, the flow properties are only a function of one spatial coordinate;

hence,

u = f(x), v = 0, w = 0,

where u, v, and w are velocity components in the x−, y−, and z− directions, respec-

tively.

Next, two-dimensional flow is characterized by variations in flow properties with time

and two spatial coordinates, such as x and y. The fluid particles in a two-dimensional

flow are assumed to move on parallel planes along identical routes within each plane,

resulting in no changes in flow perpendicular to these planes. The variation of velocity

for steady, two-dimensional flow is:

u = f(x, y), v = g(x, y), w = 0.

Meanwhile, three-dimensional flow is defined by the fluctuations of flow properties

with time and three spatial coordinates, such as x, y, and z. The variation of flow

properties, for example, velocity, in steady, three-dimensional flow can be represented
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by:

u = f(x, y, z), v = g(x, y, z), w = h(x, y, z).

1.2.5 Boundary layer flow

Boundary layer flow describes the fluid flow within a boundary layer. The notion of

boundary layer was first introduced by Prandtl in 1904 during the Third International

Congress of Mathematicians at Heidelberg (Acheson, 1990). This concept helps ex-

plain the relationship between ideal and real fluid flows. An ideal or inviscid fluid has

zero viscosity (i.e., no internal resistance) and is incompressible. In contrast, a real or

viscous fluid, such as air, kerosene, and honey, has viscosity. Although ideal fluids do

not exist in reality, fluids are often modeled as ideal to approximate the behavior of real

fluids.

A boundary layer refers to a narrow region of fluid located near a solid boundary,

as shown in Figure 1.5. When a real fluid with a velocity of ue flows past a solid

boundary, the fluid particles adhere to the solid surface due to the no-slip condition

and the frictional force between the fluid and the solid surface. Consequently, these

fluid particles acquire the same velocity as the solid boundary. If the solid boundary

is stationary, the attached fluid particles will have zero velocity. The viscosity of the

fluid, or its resistance to flow, then causes the deceleration of fluid particles near the

solid boundary upon colliding with the stationary fluid particles. As a result, the fluid

velocity decreases until some distance from the solid boundary, at which the viscosity

effect becomes less prominent. The fluid velocity then approaches the initial velocity

in the mainstream (i.e., the free stream velocity) asymptotically. The region where

the velocity gradient of the fluid ranges from zero to 99% of the free stream velocity

is called the boundary layer. Within this boundary layer, the fluid may exhibit either

laminar or turbulent flow. The region beyond the boundary layer, where the effect of

viscosity is negligible and the fluid behaves as an ideal fluid, is known as the free stream

region.
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Next, the formation of a thermal boundary layer is depicted in Figure 1.6. In this case,

the real fluid is assumed to have an initial temperature of T∞ and flows past a solid

boundary with a temperature of Tw > T∞. Due to the temperature difference, heat

transmission occurs between the solid surface and the surrounding fluid, leading to a

gradual increase in the temperature of the fluid layers. However, the amount of heat

transferred diminishes with increasing distance from the solid surface. As a result, the

fluid temperature remains constant after some distance from the solid boundary and

equals the free stream temperature (i.e., T∞). Therefore, the region between the solid

surface and the point at which the fluid reaches 99% of the free stream temperature is

known as the thermal boundary layer.

Figure 1.6: Formation of thermal boundary layer

Most heat and mass transfers occur within the boundary layer. The thickness of the

boundary layer (δ) influences the heat and mass transfer rates between the solid bound-

ary and the surrounding fluid. A thinner boundary layer enhances heat and mass transfer
11
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rates. According to Schlichting and Gersten (2017), fluids with a high Reynolds number

or low viscosity produce a thinner boundary layer.

The stability of a boundary layer, the transition point from laminar to turbulent, and the

separation point are mainly influenced by the adverse pressure gradient. As the pressure

increases while moving downstream, it acts against the flow direction and produces a

retarding force towards the fluid flow. Due to viscosity, fluid elements lose momentum

or kinetic energy to overcome this adverse pressure gradient. Consequently, the fluid

velocity near the solid surface decreases, and the boundary layer thickens. As the

velocity gradient approaches zero, the boundary layer is forced to detach or separate

from the solid surface, causing a reverse flow (see Figure 1.7). Generally, boundary

layer separation begins at the point on the solid surface where the flow is strongly

pushed back, causing the velocity gradient in the y−direction

((
∂u
∂y

)
w

)
and the wall

shear stress (τw) to become zero:

τw = µ

(
∂u

∂y

)
w
= 0.

Figure 1.7: Boundary layer separation

1.2.6 Stagnation-point flow

Stagnation point flow refers to the fluid flow near a stagnation point. The stagnation

point exists on the surface of a solid boundary and denotes the point at which the
12
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stream of a fluid attaches to and separates from the solid boundary. As stated by Wang

(2008), the stagnation region exhibits the highest pressure, heat transmission, and mass

deposition rates. The depiction of the stagnation-point flow is presented in Figure 1.8.

When a real fluid with a velocity of ue encounters a stationary solid boundary and

strikes orthogonally at a stagnation point, the fluid stream halts, reducing its velocity

to zero. The fluid then separates along the stagnation streamline and flows towards

the upper and lower regions of the solid boundary. Understanding the stagnation-point

flow is beneficial for designing thrust bearings and radial diffusers, reducing drag,

optimizing transpiration cooling, and enhancing thermal oil recovery (Merkin et al.,

2022).

Figure 1.8: Formation of stagnation point flow

In cases where the fluid strikes the stagnation point at an arbitrary angle, the flow is

known as the oblique stagnation-point flow (see Figure 1.9). According to Tamada

(1979), the oblique stagnation-point flow comprises two components: an irrotational

stagnation-point flow perpendicular to the solid surface and a shear flow parallel to

the surface. Typically, this flow emerges during the enhancement of heat and mass

transfers using fluid jets. The fluid may impact a surface obliquely due to the geometric

configuration of the solid boundary or the blockage of the nozzle (Wang, 1985). Besides

that, the oblique stagnation-point flow can occur during the reattachment of viscous

flow to a solid boundary (Tamada, 1979). Furthermore, fluid flow can stagnate at the

interface of two immiscible fluids (Tilley and Weidman, 1998).
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Figure 1.9: Formation of oblique stagnation-point flow

1.3 Types of effects

Several phenomena, such as thermal radiation, mixed convection, viscous dissipation,

and magnetic field, can accompany fluid flow. These phenomena can be treated as

effects within the fluid flow. Mathematical descriptions of these effects can be achieved

by incorporating specific terms into the governing equations or boundary conditions of

the flow problem.

1.3.1 Thermal radiation

Thermal radiation is a mode of heat transfer involving the emission of electromagnetic

radiation from a heated object in all directions through an unoccupied gap. This emis-

sion arises from the molecular and atomic agitation generated by the internal energy

of matter (Siegel and Howell, 1992). All matter at temperatures above absolute zero

emits electromagnetic radiation. Thus, thermal radiation is prevalent in most practical

situations and applications.

The applications of thermal radiation range from heat transfer in furnaces and combus-

tion chambers to energy transmission from nuclear explosions. According to Siegel

and Howell (1992), thermal radiation becomes more prominent in conditions with

large temperature differences. Several space exploration devices, such as rocket noz-

zles, nuclear power plants for space applications, and gaseous-core nuclear rockets, are
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specifically engineered to function at high temperatures for optimal thermal efficiency

(Siegel and Howell, 1992). Therefore, thermal radiation must be considered when

calculating the thermal effects of these devices. Additionally, thermal radiation can

transfer heat through a vacuum without requiring a medium. Other applications of

thermal radiation include astrophysical flows, electric power generation, and cooling

of nuclear reactors (Kejela et al., 2021). In some instances, thermal radiation modifies

temperature distributions and affects conduction, free convection, or forced convection

(Siegel and Howell, 1992). For example, thermal radiation in the boundary layer flow

of gases can influence convective heat transfer. Therefore, it is important to consider

radiative heat transfer in various flow problems.

However, studying radiative heat transfer between a solid surface and a fluid faces

two significant challenges (Aboeldahab and El Gendy, 2002). The first difficulty is

predicting the absorption of radiation by the fluid. In a system containing radiating

fluid, radiation is absorbed and emitted not only at the boundary but also within the

interior of the system. Hence, it makes prediction a difficult task. Secondly, the ab-

sorption coefficients of absorbing-emitting fluids are highly influenced by wavelength.

Consequently, computing radiative flux will require complex integration with respect

to wavelength and other independent variables.

Several researchers have developed simplified models with lower computational costs

but remain adequately accurate for practical applications. One of these simplifications

is the Rosseland approximation, where the net radiative heat flux (qr) is expressed as

follows (Rosseland, 1931; Magyari and Pantokratoras, 2011b):

qr = − 4

3k∗
∇(eb), (1.1)

with k∗ as the Rosseland mean spectral absorption coefficient. This approximation

applies to an optically thick medium where radiation exchange occurs only between

neighboring volume elements (Kataria and Mittal, 2015). Hence, the thermal radiation
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in an optically thick medium can be described as a diffusion process. According to

Rohsenow et al. (1998), the calculation of thermal radiation at the macroscopic level

is based on the Stefan-Boltzmann law, which relates the energy flux emitted by a

blackbody to the fourth power of the absolute temperature:

eb = σ∗T 4,

with eb as the blackbody emissive power, T is the absolute temperature, and σ∗ =

5.669 · 10−8 Wm−2K−4 is the Stefan-Boltzmann constant. A blackbody is an ideal

surface that absorbs all incident radiation, regardless of wavelength and direction, and

is also an ideal emitter with radiation emitted independent of direction. The blackbody

emissive power is the rate at which energy is released per unit area.

For a plane boundary layer flow over a hot surface, Equation (1.1) is simplified to the

following form:

qr = −16σ∗

3k∗
T 3dT

dy
, (1.2)

where y represents the coordinate of the region perpendicular to the surface. The Rosse-

land approximation in Equation (1.2) is sometimes called the diffusion approximation

for the density of a radiation flux (Shvydkii et al., 2018). This approximation has

been used to model processes such as glass cooling, ceramic manufacturing, viscous

electrically conducting incompressible flows, and convection–radiation heat transfer

(Malek et al., 2021).

1.3.2 Mixed convection

Convection is a heat transfer process in which heat is transferred from one region to

another through the movement of fluids. Free or natural convection arises when fluid

movement is generated by buoyancy forces resulting from differences in density. These

differences may occur due to gradients in temperature, concentration, or composition

(Rohsenow et al., 1998). For instance, when a fluid is heated from below, the hot
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fluid molecules become less dense and rise, while the denser cold fluid molecules sink,

resulting in the bulk movement of fluid and free convection. The Grashof number (Gr)

is a dimensionless number related to free convection heat transfer. It describes the

relationship between buoyancy forces that facilitate free convection and the resisting

viscous forces (Rohsenow et al., 1998):

Gr =
gβ(Tw − T∞)L3

ν2
,

where β is the thermal expansion coefficient and g is the gravitational acceleration.

Here, the term gβ(Tw − T∞) represents the buoyancy force. The convective mass

transfer can be represented by gβ(Cw−C∞) whereCw is the concentration at the solid

surface and C∞ is the free stream concentration. In this case, the natural convection

occurs due to concentration gradients.

Meanwhile, forced convection arises when an external source, such as a fan, pump,

or compressor, drives fluid movement. For example, a small fan is installed in the

chassis to dissipate heat from electronic components in a computer. Generally, forced

convection can be expressed using Newton’s Law of Cooling:

dT

dt
= qconv = h(Tw − T∞).

Newton’s Law of Cooling states that the rate of heat exchange between a solid boundary

and its surroundings (qconv) is proportional to the difference in temperature between the

solid surface and the surroundings. The constant of proportionality in this relationship

is known as the heat transfer coefficient (h). It is significantly influenced by fluid

properties, the shape and roughness of the solid surface, and the type of fluid flow (i.e.,

laminar or turbulent). In the case of a no-slip boundary condition, heat transfer between

the solid surface and the adjacent stationary fluid layer occurs purely by conduction.
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Hence,

qcond = −kfluid
∂T

∂y

∣∣∣∣
y=0

= qconv,

−kfluid
∂T

∂y

∣∣∣∣
y=0

= h(Tw − T∞), (1.3)

where k is the thermal conductivity of the fluid. Equation (1.3) is defined at the bound-

ary condition and named the convective boundary condition. The convective boundary

condition is useful for various engineering and industrial applications, including tran-

spiration cooling, material drying, and laser pulse heating (Ramreddy et al., 2015).

Mixed convection describes the combination of free and forced convection. Mean-

while, mixed convection flow is characterized by the significant influence of forced

flow on free convection or the buoyancy force in forced convection. This flow type

becomes prominent when there is a substantial difference in temperature and/or a low

forced flow velocity (Bachok et al., 2013). Various applications of mixed convection

flows include electronic devices, nuclear reactors, solar collectors, and heat exchangers

(Bachok et al., 2013). Mixed convection flow can occur in either assisting or opposing

flows. According to Joye and Wojnovich (1996), the buoyancy force in free convection

is a gravity effect that consistently acts in a vertical direction, whereas the direction

of the forced flow is random. When the buoyancy and forced motions are in the same

direction, the flow is referred to as assisting or aiding. In this case, free convection

complements forced convection and enhances heat transfer. In contrast, when buoyancy

and forced motions are in opposite directions, the flow is termed the opposing flow.

Here, the free convection resists the forced convection and diminishes heat transfer.

In solving the laminar, two-dimensional mixed convection flow over a flat surface, the

following dimensionless mixed convection parameter (λ) is encountered:

λ =
Grx
Re2x

.
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Here, Grx is the local Grashof number and Rex is the local Reynolds number. The

mixed convection parameter represents the ratio of buoyancy forces to inertial forces

in the boundary layer. Hence, it provides a measure of the influence of free convection

on fluid flow compared to forced convection. Different values of λ denote different

situations, such that (Pop and Ingham, 2001):

• When λ = Grx
Re2x

→ 0, forced convection is more dominant than free convection.

• When λ = Grx
Re2x

→ ∞, free convection is more dominant than forced convection.

1.3.3 Viscous dissipation

Viscous dissipation, or frictional heating, is an irreversible process in which the ki-

netic energy of a fluid is converted into thermal energy due to the work done against

viscous forces. This dissipation acts as an energy source and becomes significant in

high-velocity fluid flows, highly viscous flows, flows through microchannels, and in

fluids with a moderate Prandtl number and moderate velocities with low wall heat fluxes

(Morini, 2008). According to Desale and Pradhan (2015), the impact of high-velocity

flow on heat transfer can be observed in various practical applications, such as heat

transfer around gas turbine blades and rocket engines.

Generally, viscous dissipation is characterized by the dimensionless Eckert number

(Ec), which expresses the ratio of kinetic energy to the boundary layer enthalpy differ-

ence (Desale and Pradhan, 2015):

Ec =
u2

Cp∆T
.

Here, Cp is the heat capacity at constant pressure and ∆T is the temperature difference

between the solid surface and the surroundings. If viscous dissipation is neglected in

the fluid flow, the Eckert number is zero.
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1.3.4 Magnetohydrodynamics (MHD)

Magnetohydrodynamics (MHD) , also known as magnetofluid dynamics or hydromag-

netics, is the study of the flow of an electrically conducting fluid in the presence of a

magnetic field (Roberts, 1967). Electrically conducting fluids include plasmas, liquid

metals, and salt water (electrolytes). Research on MHD flow was initiated in the late

1930s or early 1940s. The discovery of the Alfvén wave by Hannes Alfvén in 1942,

which later received the Nobel Prize in 1970, played a crucial role in developing mag-

netohydrodynamics. This discovery demonstrated the ability of electromagnetic waves

to travel through conducting fluids (Cramer, 2001). Applications of MHD include

thermonuclear fusion, electromagnetic pumps, and electromagnetic stirring.

The fundamental concept of MHD is that magnetic fields can generate electric currents

within a flowing conducting fluid, creating forces on the fluid and modifying the mag-

netic field itself (Sheikholeslami and Ganji, 2016). In MHD, the flow of a conducting

fluid across a magnetic field generates a potential difference, which induces the flow

of electric currents. These induced electric currents give rise to a secondary magnetic

field called the induced magnetic field (Davidson, 2001). The induced magnetic field

counteracts the externally applied magnetic field, effectively preventing the magnetic

field lines from entering the conducting fluid. Conversely, when the magnetic field en-

ters the conducting fluid, the induced magnetic field strengthens the applied magnetic

field (Sheikholeslami and Ganji, 2016). Consequently, this leads to the fluid appearing

to ‘drag’ the magnetic field lines along with it. Additionally, the interaction generates

a Lorentz force that affects the relative movement of the magnetic field and the fluid.

Meanwhile, the magnetic Reynolds number (Rm) is a significant dimensionless param-

eter in MHD. It can be defined as follows:

Rm =
uL

ξ
= uLµ0σ,
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where ξ = 1
µ0σ

is the magnetic diffusivity with µ0 as the permeability of free space

and σ as the electrical conductivity. The magnetic Reynolds number estimates the

relative effects of magnetic induction on magnetic diffusion. When Rm is very large,

the diffusion of the magnetic field can be neglected. The magnetic field lines become

‘frozen’ into the conductive fluid and move along with the fluid. In contrast, when

Rm is very small, the influence of magnetic induction can be neglected as magnetic

diffusion dominates.

1.3.5 Permeable surface

A permeable surface allows fluids to penetrate or pass through it. Fluid flow over

a permeable surface is frequently observed in various engineering applications, such

as the design of thrust bearings, radial diffusers, thermal oil recovery systems, food

processing, cooling of turbine blades and nuclear reactors, electronic cooling, filtration

process, and extraction of geothermal energy (Hajmohammadi et al., 2015). When

analyzing boundary layer flow, the term “permeable surface” is synonymous with the

suction and injection of fluids.

Suction and injection were first introduced by Prandtl in 1904 as methods to stabilize

laminar flow against disturbances and to prevent or delay boundary layer separation

(Preston, 1946; Halima et al., 2023). Suction involves the removal of fluid from a

system, while injection supplies fluid into a system. The injection or blowing of high-

energy fluid particles into the boundary layer can delay boundary layer separation.

Meanwhile, suction removes the low-energy part of the boundary layer (i.e., the portion

with the lowest velocity) for a more filled velocity profile that reduces the thickening

of the boundary layer.

As illustrated in Figure 1.10, two different kinds of boundary layer suction are commonly

applied: slot suction and continuous suction (Delery, 1985). In slot suction, the

boundary layer is removed through several slots. Meanwhile, continuous suction
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assumes that the wall or solid surface is permeable. Hence, the vertical velocity at the

surface boundary condition is not zero and can have either a negative or positive value

to indicate the presence of suction or injection effects, respectively.

(a) (b)

Figure 1.10: Illustration of (a) slot suction and (b) continuous suction

1.4 Stability analysis

Stability analysis is a technique used to assess the stability of solutions to a given

problem. A boundary value problem, representing a fluid flow, may possess no solu-

tion, a single solution, or multiple solutions. When multiple solutions exist, stability

analysis is conducted to determine the stability and significance of each solution. Un-

like unstable solutions, stable solutions are physically relevant and realizable in practice.

Stability analysis was first performed by Wilks and Bramley (1981). In this investiga-

tion, dual solutions were obtained and categorized as upper-branch and lower-branch

solutions. Stability analysis was then conducted by treating the problem as unsteady or

time-dependent. A linear eigenvalue problem with γ as the unknown eigenvalue was

introduced, and the smallest value of γ was determined through numerical computation.

The findings indicated that the upper-branch and lower-branch solutions had positive

and negative values of γ, respectively. It was concluded that the upper-branch solutions

were stable with initial decay of disturbance, while the lower-branch solutions were

unstable due to initial growth of disturbance.
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Thus, conducting stability analysis is crucial, particularly for flow problems with mul-

tiple solutions. This approach helps determine the stability of solutions, which is

essential for addressing flow problems effectively.

1.5 Response surface methodology (RSM)

Response surface methodology (RSM), or the Box-Wilson methodology, is an exper-

imental design-based approach incorporating statistical and mathematical techniques

for developing, improving, and optimizing processes (Box and Wilson, 1992). Ac-

cording to Myers et al. (2009), the RSM is particularly significant when multiple input

variables or controlling parameters can impact a performance measure or process. This

statistical analysis offers several advantages of reducing experimental cost, minimizing

variability around a target when bringing the performance value to the target value,

and ensuring the optimal conditions discovered through simulation can be replicated

in actual applications (Han et al., 2015). In subsequent paragraphs, the performance

measure is referred to as the response, while the input variables are the independent

parameters. The relationship between the response and the independent parameters can

be described by a low-degree polynomial model (Khuri and Mukhopadhyay, 2010):

Res = f(X)T c+ ϵ,

where Res is the response, XT = [
X1 X2 X3 . . . XN

] is the independent

parameters, N is the number of independent parameters, f(X) is a vector function of

m elements that consists of powers and cross-products of powers ofX1, X2, X3, . . . XN

up to a certain degree of d, c is a vector of m unknown constant coefficients, and ϵ

is a random experimental error assumed to have a zero mean. When d = 2, the

dimension of the vectors becomem = 1+2N+[N(N−1)]/2. Meanwhile, f(X)T =

[
1 X1 X2 . . . XN X2

1 X2
2 . . . X2

N X1X2 X1X3 . . . XN−1XN
] and

cT = [
c0 c1 c2 . . . cN c11 c22 . . . cNN c12 c13 . . . cN−1,N

]. Thus,
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the following second-order model is obtained (Myers et al., 2009):

Res = c0 +
N∑
i=1

ciXi +
N∑
i=1

ciiX
2
i +

N−1∑
i=1

N∑
j=i+1

cijXiXj , (1.4)

where c0 is the intercept term, and ci, cii, and cij are the linear, quadratic, and two-

factor bilinear terms, respectively. This model can predict the response values for given

settings of independent parameters (controlling parameters). Besides that, the signif-

icance of the independent parameters can be determined through hypothesis testing,

and the optimum settings of the independent parameters that produce the maximum or

minimum response within a specific region of interest can be identified.

In response surface methodology, a series of experiments with an appropriate ex-

perimental design must be carried out to measure the response values for specific

configurations of the independent parameters. One of the most popular designs for

fitting the second-order model is the central composite design (CCD). In this design,

the number of experimental runs can be calculated using the formula of 2N +2N +C∗

where 2N is the factorial points, 2N is the axial points, and C∗ is the center points.

The factorial points are significant for estimating linear and interaction terms (i.e., the

two-factor bilinear term). Generally, these points are the vertices of an N-dimensional

cube representing the experimental domain, with each vertex indicating a specific com-

bination of the high (1) and low (-1) levels of the independent parameters. Then, the

axial points are located at the center of each face of the cube, at a distance α∗ from

the center point, and are significant for estimating the quadratic terms. Meanwhile, the

center points are the replicates at the center of the cube that provide an internal estimate

of error and contribute to the estimation of the quadratic terms. In general, statistical

analysis utilizing RSM involves the following steps:

1. Designation of independent parameters and their ranges.

2. Selection of experimental design.

3. Prediction and validation of model equation.
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4. Determination of optimal point.

Each step will be explained in the Methodology section.

In fluid dynamics, RSM is commonly employed to predict the relationship between a

system’s input and output variables and to optimize the system. Several researchers have

utilized the RSM to enhance the significance and novelty of numerical investigations.

Integrating numerical and statistical investigations provides a better understanding of

the results obtained. In addition, most studies of heating or cooling problems aim to

identify optimal settings for improved heat transfer performance. Hence, the RSM can

be used for heat transfer optimization, where the local Nusselt number serves as the

response. The RSM is executed using a powerful statistical software called Minitab. A

comprehensive theoretical explanation of the RSM methodology has been put forth by

Myers et al. (2009) and Khuri and Mukhopadhyay (2010).

1.6 Problem statement

The idea of hybridizing different nanoparticles arises from the attempt to find effi-

cient working fluids for heat transfer applications. Nanofluids were initially proposed

as potential substitutes for conventional heat transfer fluids. Various theoretical and

experimental studies have demonstrated that nanofluids possess better thermophysical

properties than conventional fluids. Subsequently, a more advanced type of nanofluid,

termed hybrid nanofluid, was developed and is believed to have better rheological and

thermophysical properties than nanofluids and conventional fluids. Then, the successful

dispersion of three dissimilar nanoparticles in a conventional fluid led to the synthesis

of ternary hybrid nanofluids. These newly introduced heat transfer fluids are expected

to outperform conventional fluids in various applications. However, comprehensive

studies are necessary to investigate the flow and thermal behaviors of hybrid nanofluids

in various geometries and conditions, as well as the mixing ratio, nanoparticle combi-

nations, stability, and mechanisms contributing to enhanced heat transfer performance.
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Nevertheless, most fluid flow problems are too complex and costly to investigate ex-

perimentally. Therefore, theoretical or numerical investigations provide a faster and

more economical alternative by translating flow problems into mathematical formula-

tions. These problems can be analyzed and solved using various numerical methods

and built-in solvers in mathematical software.

In theoretical investigations, various hybrid nanofluid flow problems can be mathemati-

cally described using governing partial differential equations and boundary conditions.

Different geometries (e.g., cone, sheet, and wedge) and conditions (e.g., thermal radi-

ation, viscous dissipation, suction, magnetic field, and convective boundary condition)

are introduced as effects within the fluid flow by adding related terms to the governing

equations and boundary conditions. Each effect becomes a controlling parameter with

a distinct correlation to the flow and heat transfer characteristics. However, the flow

configurations explored by researchers may be limited to certain combinations of these

effects; for example, a hybrid nanofluid flow over a cone is considered with the effects

of magnetic field and suction, while other effects may be overlooked or excluded for

future research. The present study aims to examine the neglected effects on different

fluid flow problems, intending to address existing literature gaps and improve previous

studies.

Additionally, the numerical computation of the governing equations and boundary

conditions may yield multiple solutions. However, it has been noted that some studies

discussed multiple solutions without thoroughly analyzing the stability and significance

of each solution. Hence, it can be challenging to verify the realizability of the solu-

tions. Therefore, stability analysis is important to assess the stability and significance

of solutions.

Since hybrid nanofluids have been developed to serve as superior heat transfer fluids

(heating or cooling fluids), it is important to examine the relationship between the
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controlling parameters and their role in influencing heat transfer performance. The

heat transfer performance can be measured using the local Nusselt number related to

the heat transfer rate at the solid surface. However, more than numerical investigations

are required to elucidate the relationship between controlling parameters and the local

Nusselt number. This relationship can be better visualized and described through sta-

tistical investigation using RSM. Additionally, the RSM can be utilized to determine

the optimal conditions for achieving maximum heat transfer rate.

Accordingly, the research questions related to the problem statement are as follows:

• What are the effects of controlling parameters on the flow and heat transfer of

hybrid nanofluid in different flow geometries and conditions?

• Do the studied flow problems yield multiple solutions, and among these solutions,

which are stable and significant for real-world applications?

• Which controlling parameters are significant to the heat transfer performance of

hybrid nanofluid in the studied flow problems?

• What is the optimal setting for the controlling parameters to achieve the maximum

heat transfer rate in the studied flow problems?

1.7 Objectives

The main objectives are to

i. formulate the mathematical model of the following flow problems:

(a) Unsteady mixed convection hybrid nanofluid flow past a permeable Riga

plate with thermal radiation and convective boundary condition.

(b) Mixed convection hybrid nanofluid flow past a permeable non-isothermal

cone and wedge with thermal radiation and convective boundary condition.

(c) Hybrid nanofluid flow past a permeable biaxial stretching/shrinking surface

with thermal radiation effect.
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(d) Oblique stagnation-point flow of hybrid nanofluid towards a shrinking sur-

face with suction.

(e) MHD stagnation-point flow of ternary hybrid nanofluid over a permeable

radially shrinking disk with thermal radiation, viscous dissipation, and

convective boundary condition.

ii. conduct stability analysis on multiple solutions in determining the stable and

significant solution.

iii. analyze the effects of various controlling parameters on thermal and rheological

behaviors of hybrid nanofluid.

iv. utilize the response surface methodology (RSM) in identifying the significant

controlling parameters influencing the Nusselt number and the optimal conditions

for maximum heat transfer rate.

1.8 Scope

The scope of the studies presented in this thesis is limited to the laminar, incompress-

ible, two-dimensional, and three-dimensional boundary layer flow of hybrid nanofluid

and ternary hybrid nanofluid. All flow problems are modeled based on the single-phase

nanofluid model proposed by Tiwari and Das (2007). Various geometries are consid-

ered, including sheet, cone, wedge, Riga plate, and disk with permeable surfaces to

allow suction. Additionally, a no-slip condition is assumed on the solid surface.

The thesis focuses on two types of working fluids: Al2O3-Cu/water hybrid nanofluid

and Al2O3-TiO2-Cu/water ternary hybrid nanofluid. Water is chosen as the base fluid

due to its widespread availability, excellent dispersion stability for nanoparticles, high

heat capacity, and low viscosity (Panduro et al., 2022). Meanwhile, the combination of

nanoparticles is selected based on the complementary qualities of each nanoparticle.

Each nanoparticle has the following qualities (Ukueje et al., 2022; Mohammed Zayan

et al., 2023):
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• Cu: Offers high thermal conductivity and corrosion resistance, making it an ideal

metal for various heat transfer applications, but lacks chemical inertness.

• Al2O3: Exhibits good chemical inertness, is not susceptible to surface oxidation,

is simpler to combine into liquid due to its hydrophilic surface properties, is

a low-cost metal oxide that allows for large-scale production, is economically

accessible, but possesses low thermal conductivity.

• TiO2: Adapts well to high-pressure applications with varying concentrations and

is widely used as a thermal conductivity enhancer in various applications, such

as refrigerant, conduction enhancers, convective heat transfer, and antifogging

coatings.

Incorporating a small amount of Cu nanoparticles with Al2O3 and TiO2 nanoparticles

can significantly improve the thermal properties. Furthermore, Al2O3-Cu/water hybrid

nanofluid and Al2O3-TiO2-Cu/water ternary hybrid nanofluid are commonly used in

numerical investigations (see Chapter 2). Various experimental studies on these hybrid

nanofluids have also been extensively discussed by Suresh et al. (2011), Suresh et al.

(2012), Selvakumar and Suresh (2012), Siddiqui et al. (2019), Çolak et al. (2020), Ma

et al. (2021), Xuan et al. (2021), and Marulasiddeshi et al. (2022). Hence, these studies

affirm that the chosen fluids are feasible in real-life applications and can be employed

for numerical investigations.

Additionally, it is assumed that the nanoparticles are spherical in shape, have a uniform

size, and are in thermal equilibrium. The base fluid and the suspended nanoparticles are

also in thermal equilibrium. Meanwhile, the correlations for thermophysical properties

(e.g., density, viscosity, heat capacity, thermal conductivity, and electrical conductivity)

of hybrid nanofluid and ternary hybrid nanofluid are based on Takabi et al. (2016) and

Jakeer et al. (2023), respectively. For the response surface methodology (RSM), the

experimental design is based on the face-centered central composite design.
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1.9 Significance of the study

Research on the flow and thermal behaviors of hybrid nanofluids in various flow geome-

tries and conditions is necessary due to the rapid progress in technology and industries.

The present research involves formulating, solving, analyzing, and discussing math-

ematical models for various flow problems that may arise in real-life applications.

Mathematical simplifications of these flow problems provide essential insights into the

underlying flow processes before addressing the corresponding actual flow phenomena.

Furthermore, other researchers have not yet investigated the flow problems discussed

in this thesis. Therefore, valuable information on the behavior of hybrid nanofluid

and ternary hybrid nanofluid in different geometries and conditions can be gained and

shared for future research. The implementation of stability analysis in these studies

helps assess the practical applicability of the numerical solutions and facilitates the

analysis and discussion of the results. The behavior of hybrid nanofluid and ternary

hybrid nanofluid in the studied flow problems can be approximated using the results of

the stable solution. Thus, this can assist other researchers in predicting the anticipated

outcome if the studies are extended or replicated experimentally for real-life applica-

tions.

Meanwhile, incorporating statistical investigation into the current studies will provide

a better understanding of the relationship between different controlling parameters and

the local Nusselt number. This approach can also identify the significant parameters

and the optimal settings for maximizing the local Nusselt number. Hence, valuable

insights can be obtained regarding the heat transfer performance of hybrid nanofluid

and ternary hybrid nanofluid in specific flow problems.

1.10 Thesis outline

This thesis comprises a total of nine chapters. Chapter 1 provides a brief introduction

to the terminology employed in this thesis. It includes a historical description and def-
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inition of certain types of fluid, fluid flow, permeable surface, types of effects, stability

analysis, and response surface methodology. At the end of this chapter, the problem

statement, objectives, scope, and significance of the study are presented to help readers

gain a better understanding of the thesis.

Meanwhile, Chapter 2 consists of literature reviews related to the studied problems.

This chapter summarizes and discusses past studies conducted by other researchers on

nanofluids, hybrid nanofluids, and ternary hybrid nanofluids. Then, Chapter 3 explains

the general mathematical formulation of the studied problems and the numerical meth-

ods used to solve these problems. Additionally, this chapter describes the steps involved

in stability analysis and response surface methodology.

Next, Chapters 4 to 8 present an elaborate discussion of the five flow problems listed

in the objectives. Chapter 4 discusses the unsteady mixed convection hybrid nanofluid

flow past a permeable Riga plate with radiation and convective boundary condition.

Chapter 5 examines the mixed convection hybrid nanofluid flow past a non-isothermal

cone and wedge with radiation and convective boundary condition. Then, Chapter

6 addresses the hybrid nanofluid flow past a biaxial stretching/shrinking permeable

surface with radiation effect. Chapter 7 analyzes the oblique stagnation-point flow of

hybrid nanofluid towards a permeable shrinking surface. Finally, Chapter 8 scrutinizes

the MHD stagnation-point flow of ternary hybrid nanofluid over a permeable radially

shrinking disk. These chapters generally comprise an introduction section, followed

by sections for problem formulation, stability analysis, response surface methodology,

results and discussion, and conclusions. The thesis concludes with Chapter 9, which

includes recommendations for possible future work.
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