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Mixture models have been applied regularly by many researchers for cluster-
ing and density estimations. In particular, the Bayesian nonparametric mixture
model involving the Dirichlet process prior has recently enjoyed popularity in
clustering due to its flexibility, allowing the number of mixture components to
grow infinitely. In this thesis, we aim to present some modifications of Bayesian
nonparametric methods focusing on clustering mixed-type data, where the data

comprises of continuous, ordinal, and nominal data.

Many studies have shown successful applications of the Dirichlet process mixture
(DPM) model for clustering continuous data. However, the recent DPM model for
clustering mixed-type data assumes a common covariance matrix across clusters,
which is too restrictive in real practice. Accordingly, we develop a DPM model
for clustering mixed-type data that allows for cluster-specific covariance matrices.
To demonstrate the flexibility of our model, we compare it with the model with a
common covariance matrix. Through this comparison, our model shows superior

performance in terms of Normalized Mutual Information (NMI) in simulated



datasets with different cluster shapes and two real data applications. Our model
also succeeds in estimating the true number of clusters in all cases as opposed to
the model with a common covariance assumption that tends to overcluster the

data.

When dealing with multivariate data, not all variables contribute towards cluster
discrimination. To distinguish between relevant and irrelevant clustering vari-
ables, the DPM model for mixed-type data is further extended by specifying
hierarchical shrinkage prior on the component means. This can be thought of
as an implicit variable selection in clustering. The hierarchical shrinkage prior
considered involves the normal-gamma prior for the continuous and ordinal data;
while for nominal data, the grouped normal-gamma prior is used. The perfor-
mances of the proposed model with shrinkage prior and without shrinkage prior
are then compared. The comparison shows that the model with shrinkage prior
achieves better clustering performance with higher NMI value, especially in sim-
ulated datasets with highly overlapping clusters and real datasets. Throughout
the comparison, the model with shrinkage prior also produces a tighter clustering
output measured in the form of silhouette width. Furthermore, the proposed
model also successfully distinguishes relevant variables from noisy ones, as re-
flected by higher NMI value observed when the model is fitted with only the

relevant variables.

The standard DPM model is introduced to address unsupervised learning prob-
lems where the data is analyzed without any background knowledge. To consider
this extra knowledge in the clustering process, we develop a constrained DPM
model that can incorporate labels as side information. These labels are consid-
ered in our formulation through a product partition prior that gives clusters of
observations with similar labels a higher prior preference. The formulation is

further extended to handle multiple side information. The empirical results on
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several simulated and real datasets show that our model consistently improves its
clustering performance in terms of NMI value as more labeled data become avail-
able. Even in the presence of noisy labels, the proposed model rarely performs
worse than the standard unsupervised model, especially on continuous datasets.
In multiple side information experiments, consistent increments in NMI value are

also observed with access to more side information.

Keywords: Bayesian nonparametric, clustering, Dirichlet process, mixture model,
model-based clustering
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Model campuran sering digunakan oleh para penyelidik dalam pengelompokan
dan anggaran ketumpatan. Khususnya, model campuran Bayesian tak parametrik
yang melibatkan prior proses Dirichlet sangat popular dalam pengelompokan ker-
ana keanjalannya yang membolehkan bilangan komponen campuran bertambah
tanpa had. Dalam tesis ini, kami bermatlamat untuk membentangkan beber-
apa pengubahsuaian kaedah Bayesian tak parametrik yang memfokuskan pada
pengelompokan data data jenis gabungan. Di sini, data jenis gabungan merujuk
kepada data yang terdiri daripada gabungan data selanjar, data ordinal, dan data

nominal.

Banyak kajian berjaya menunjukkan aplikasi model campuran proses Dirichlet
(DPM) bagi pengelompokan data selanjar. Walau bagaimanapun, model DPM
terkini untuk pengelompokan data jenis gabungan mengandaikan matriks ko-
varians yang sama untuk semua kelompok, di mana andaian ini terlalu ketat
dalam amalan aplikasi sebenar. Sehubungan dengan itu, kami membangunkan

model DPM untuk data jenis gabungan yang membenarkan matriks kovarians
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berbeza untuk setiap kelompok. Untuk menunjukkan keanjalan model kami,
kami membandingkannya dengan model yang mengandaikan matriks kovarians
sama. Melalui perbandingan ini, model kami menunjukkan prestasi unggul dari
segi Maklumat Bersama Ternormal (NMI) dalam set data simulasi dengan bentuk
kelompok yang berbeza dan dua aplikasi data sebenar. Model kami juga berjaya
menganggar bilangan kluster sebenar dalam semua kes berbanding model dengan

andaian kovarians sama yang cenderung mengelompok data secara berlebihan.

Apabila berurusan dengan data multivariat, tidak semua pembolehubah menyum-
bang ke arah diskriminasi kelompok. Untuk membezakan antara pembolehubah
pengelompokan yang relevan dan tidak relevan, model DPM untuk data je-
nis gabungan dilanjutkan lagi dengan penggunaan prior kecutan hierarki pada
min komponen. Ini boleh dianggap sebagai pemilihan pembolehubah tersirat
dalam pengelompokan. Prior kecutan hierarki yang dipertimbangkan melibatkan
prior normal-gamma untuk data selanjar dan ordinal; manakala untuk data or-
dinal, prior normal-gamma berkumpulan pula digunakan. Prestasi model yang
dicadangkan dengan prior kecutan dan tanpa prior kecutan kemudian diband-
ingkan. Perbandingan menunjukkan bahawa model dengan prior kecutan men-
capai prestasi pengelompokan yang lebih baik dengan nilai NMI lebih tinggi,
terutamanya dalam set data simulasi dengan kelompok yang sangat bertindih
dan juga set data sebenar. Sepanjang perbandingan, model dengan prior kecutan
juga menghasilkan output pengelompokan yang lebih ketat diukur dalam bentuk
lebar bayang. Tambahan pula, model yang dicadangkan juga berjaya membeza-
kan pembolehubah yang relevan daripada yang hingar, seperti ditunjukkan oleh
nilai NMI yang lebih tinggi diperhatikan apabila model ini disuai dengan hanya

pembolehubah yang relevan tersebut.



Model piawai DPM diperkenalkan untuk menangani masalah pembelajaran tanpa
pengawasan di mana data dianalisis tanpa pengetahuan latar belakang. Untuk
mempertimbangkan pengetahuan tambahan ini dalam proses pengelompokan,
kami membangunkan model DPM terkekang yang boleh menggunakan data label
sebagai maklumat sampingan. Label ini dipertimbangkan dalam rumusan kami
menerusi prior produk partisi yang memberi keutamaan yang lebih tinggi kepada
kelompok dengan label yang serupa. Rumusan yang sama juga diperluaskan bagi
mengendalikan maklumat sampingan berganda. Keputusan empirikal pada be-
berapa set data simulasi dan sebenar menunjukkan bahawa model kami secara
konsisten meningkatkan prestasi pengelompokannya dari segi nilai NMI apabila
lebih banyak data berlabel tersedia. Walaupun terdapat label yang hingar, model
yang dicadangkan jarang menunjukkan prestasi yang lebih buruk daripada model
piawai tanpa pengawasan, terutamanya pada set data selanjar. Dalam eksperi-
men maklumat sampingan berganda, kenaikan konsisten dalam nilai NMI juga

diperhatikan dengan lebih banyak capaian kepada maklumat sampingan.

Kata Kunci: Bayesian tak parametrik, pengelompokan, proses Dirichlet, model
campuran, pengelompokan berasaskan model

SDG: GOAL 9: Industry, Innovation and Infrastructure
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CHAPTER 1

INTRODUCTION

1.1 Background

We live in the era of big data. With the Internet, information can be obtained
almost instantly. This has changed the dynamic of data acquisition; we expect
to see, for example, a greater variety of topics as we read more news online,
a greater variety of tags as we view more images online, and more debates as
we examine individuals engaging in a social network. As more data are created
and collected daily, the demand for effective data analysis tools continues to
rise. Clustering is one of the common data analysis tools to identify natural
grouping in a dataset. There are many different clustering methods available, such
as hierarchical-based, centroid-based, density-based, and model-based. These
methods differ in their underlying methodology in defining the target cluster.
Hierarchical clustering builds a series of clustering outputs through a merger or
division strategy based on some criteria function. Since each clustering output
is irrevisable, the clustering results depend heavily on the choice of the criteria
function (Murtagh, 1983). Centroid-based clustering, such as K-means (Hartigan
and Wong, 1979) and K-medoid (Kaufman and Rousseeuw, 2009), groups the
data based on their proximity to the cluster center called centroid. In contrast
to hierarchical clustering, the centroid-based clustering method produces only
one clustering output that is optimized iteratively. The density-based clustering,
such as DBSCAN (Ester et al., 1996), characterizes clusters as dense regions in
the sample space, separated by regions of lower density. Although density-based
clustering is effective in identifying clusters of arbitrary shapes, interpretability
suffers as a result. Overall, all these three clustering methods are purely heuristic

without any underlying formal model.



Early on, it was discovered that the clustering method could also be built based on
a statistical framework (Bock, 1996). Such clustering methods are usually based
on a finite mixture model, referred to as the model-based clustering approach.
In this approach, the data is assumed to arise from a mixture of distributions.
Suppose we wish to partition x = (z1,...,2y) into K clusters. This task can be

formulated through the following model:

K
p(zi; 0, w) = Z wipk(wi; Or)
k=1

where pi(z;;0;) is the parametric density function of observation z; from the
kth component, 6 is the parameter that characterized the density function, and
wgs are the component weights with Zle wp = 1. This formulation requires
the number of components K to be known in advance. Since each component is
associated to one cluster, K is used interchangeably as the number of clusters.
The use of the mixture model is gaining popularity in cluster analysis primarily
due to the fact that it allows us to leverage standard statistical tools in assessing
and advancing the clustering method. Moreover, some of the most widely used
heuristic clustering methods have been proven to be approximate estimations of
some statistical models. For instance, the standard K-means can be seen as a
special case of the standard Gaussian mixture (GM) model with fixed mixing

proportions and covariance matrices (Neal and Hinton, 1998).

Model-based clustering has been applied successfully in a wide area of applica-
tions, including population structure (Pritchard et al., 2000), genetics (McLachlan
et al., 2002), computer vision (Lee, 2005), and econometrics (Frithwirth-Schnatter
and Kaufmann, 2008), just to mention a few. However, despite the success of
model-based clustering, quite a few practical issues should be considered. In
particular, in the applications where there is little information available on the
exact number of clusters, which in this case is the K therefore, the unknown

K has to be estimated from the data. From a fully Bayesian perspective, prob-



ably the most naive approach is to consider the K as an unknown parameter
by specifying a prior distribution on it. Here, the term "fully” indicates that
all the model parameters are assumed to be random, including the K. For this
approach, several inference algorithms have been put forth, many of them are
built upon the reversible jump Markov chain Monte Carlo (MCMC) proposed by
Richardson and Green (1997). Reversible jump MCMC creates a Markov chain
that jumps between mixture models of different K based on a proposal density.
This proposal density can be challenging to construct, especially in a multivariate
setting (Dellaportas and Papageorgiou, 2006). While there are advances in gen-
eralizing the construction of an effective proposal density for the Reversible jump
MCMC (Brooks et al., 2003; Hastie and Green, 2012), these increase the complex-
ity of the inference algorithms. Alternatively, Nobile (2004) proposed estimating
the K based on the model marginal likelihood. Nonetheless, the marginal like-
lihood computation turns out to be demanding even for a moderate value of K

(Frithwirth-Schnatter, 2004).

With the existence of a relatively simple MCMC (Escobar and West, 1995;
MacEachern and Miiller, 1998; Neal, 2000), it motivates us to turn to the Bayesian
nonparametric approach in this thesis. The Bayesian nonparametric clustering
allows the number K of the mixture model to grow infinitely, thus addressing
the issue of an unknown number of clusters. This framework replaces the corre-
sponding finite dimensional prior distribution of classical Bayesian analysis with
infinite dimensional stochastic processes. Moreover, this model can be considered
as an extension of the Bayesian finite mixture model with the advantage that it

does not need any model selection to find the appropriate value of the K.



1.2 Scope of the Study

Motivated by such flexibility of the Bayesian nonparametric approach, this thesis
focuses on using this approach to the mixture model in a clustering context. Much

of our work builds upon a mixture model of the form:

0,|G ~ G,

G~P,

where p(x;]0;) denotes a probability density function parameterized by a random
variable 6;. This density function constitutes the kernel of the mixture model, and
GG acts as a mixing measure following some nonparametric prior P. There have
been many nonparametric priors available in the literature, such as the Dirichlet
process, Gaussian process, Pélya tree process, and beta process. However, in
this study, we restrict ourselves to the Dirichlet process (DP) prior, which plays
a key role in the Bayesian nonparametric mixtures. The DP was introduced by
Ferguson (1973) to serve as a prior over the space of discrete probability measures.
The discreteness of the DP makes it suitable to be used as a mixing measure in
mixture modeling. Basically, the role of the DP is to tie together the observations
that share the same support, thus forming the different components of the mixture
model. The mixture model that uses DP as the mixing measure is referred to as
the Dirichlet process mixture (DPM). For Bayesian nonparametric models with
other priors, refer to the following papers: Griffiths and Ghahramani (2011), Lijoi
et al. (2005), Ishwaran and James (2001), and Pitman and Yor (1997).

In addition, since we are focusing on the clustering problem, it is stressed that the
primary purpose of all the empirical examples in this thesis is to find the clustering

classification rather than to obtain precise point estimates of parameters as in



density estimation.

1.3 Problem Statement

Due to the abundance of available data, researchers have encountered increasingly
complex data structures in an attempt to describe or explain some real world

events. This raises many new and exciting challenges in cluster analysis.

The standard DPM model is limited to handling a single type of data at a time.
In particular, the Gaussian distribution is usually adopted as the mixture kernel
to handle continuous data, and the multinomial distribution to handle nominal
data. In real applications, we frequently encountered mixed-type data. The
mixed-type data is defined as a set of data that contains several different types
of variables. For instance, we are often asked for gender and age when filling
out a survey. These two pieces of information already constitute two different
types of data. However, clustering approaches for handling mixed-type data are
less studied in the literature, let alone its extension. Moreover, most clustering
approaches and their extensions are exclusively constructed to handle only one
type of variable; see Vouros and Vasilaki (2021), Sarkar et al. (2020), and Peralta
et al. (2016) among others. Furthermore, the current method of DPM for clus-
tering mixed-type data has a very restrictive assumption in terms of the cluster
shape (Carmona et al., 2019). This restriction leads us to develop a more flexible

model for clustering mixed-type data.

The next problem that needs to be addressed is that not all variables are relevant
and contribute towards cluster discrimination. The inclusion of these irrelevant
variables could obscure the true cluster structure. This is especially true in mul-
tivariate settings when there are so many variables involved. In many application

domains, some variables that make up the clusters are perceived to bring about



more information than others. For example, suppose in a medical diagnosis, the
practitioner is clustering tissue samples into multiple cancer types. At the same
time, the practitioner is also interested in isolating which genes give rise to can-
cerous cell behavior. This process of identifying subsets of variables that are
crucial in distinguishing a cluster structure is called the variable selection pro-
cess. Having a clustering model that can also identify both the cluster structure
available in the data as well as the variables that contribute to this particular
structure is beneficial. Some works on variable selection in clustering include Fu
et al. (2021), Prakash and Singh (2019), and Marbac and Sedki (2017). Never-
theless, these methods are only applicable to continuous data. This motivates us

to explore variable selection in clustering mixed-type data.

In addition, the standard DPM is initially introduced to address an unsupervised
learning problem where the data is analyzed with nothing known about the true
cluster structure. However, in many practical applications, one often performs
cluster analysis with a rough idea of how the cluster structure should be. For
instance, a few hundred billion emails are estimated to be sent and received
daily. Suppose we have access to the database of emails, with some already
being classified as ”spam” or "non-spam”. In this case, clustering can be used
to classify the emails such that one group is predominantly made up of ”spam”
and another group is primarily made up of "non-spam”. Then, to fully leverage
all the available information, the pre-classified emails can be used to guide the
clustering algorithm to make a more accurate grouping. This grey area between
having absolutely no knowledge and having some information has encouraged the
researcher to extend the current clustering algorithm to a case called constrained
clustering; see, for example, Covoes et al. (2013) and Basu et al. (2008). In this
thesis, we are interested in extending the DPM model to a constrained case for

continuous and mixed-type data by considering labeled data as side information.



1.4 Objectives

Indeed, the present challenges give us many opportunities to devise new tools
for capturing the hidden patterns in the data. Therefore, to address these chal-
lenges, we aim to provide a few contributions to the current DPM model. More

specifically, the objectives of our study are:

1. To develop a DPM model for clustering mixed-type data based on latent

variables approach.

2. To develop a method for variable selection in clustering mixed-type data

using shrinkage prior.

3. To develop a constrained DPM model for clustering mixed-type data that

can incorporate labeled data as side information.

Model verification of all the proposed methods in this study is done by simulation
studies. In addition, the applicability of each method is also illustrated through

the usage of publicly available datasets.

1.5 Outline of the Thesis

We organize the rest of the thesis as follows.

In Chapter 2, we start with a brief introduction to cluster analysis, finite mixture

model, and infinite mixture model. Then, we briefly review the technical concepts

and discuss the necessary tools that lay a foundation for our study. This is

followed by a literature review discussing important works related to this study.



Starting from Chapter 3, we begin with our main contributions. In this chapter,
we propose a DPM model that simultaneously handles mixed continuous, ordinal,
and nominal data. Using the latent variables approach, we describe how the ordi-
nal and nominal data are incorporated into the Gaussian kernel. The restriction

on the choice of prior is also discussed.

Chapter 4 explores the use of shrinkage prior on the component means in a mixed-
type data setting., which allows for implicit variable selection. The comparison
between DPM with and without shrinkage prior is also illustrated through simu-
lated and real datasets. In addition, the validity of the variables selected is also

investigated.

In Chapter 5, we propose a constrained version of the DPM model that takes
into account the availability of labeled information. To be specific, the labeled
data is integrated via a product partition prior, where the relationship between
the product partition model and DPM is also described. The formulation is also
extended to accommodate multiple side information. In the first part of the
chapter, we focus on the conjugate Gaussian kernel case. We then also present a

variation of the model in a mixed-type data setting.

Finally, Chapter 6 provides the concluding remarks and the significant contribu-
tions of this study. Suggestions for future works related to this study are also

presented in this chapter.
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