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Abstract: Antimicrobial coatings are becoming increasingly popular in functional material modifica-
tion and are essential in addressing microbial infection challenges. In this study, the phytochemical
and antimicrobial potential of aqueous, 80% methanol and 80% ethanol pod extracts of Acacia concinna
(Willd.) DC (AC) and its application in the green in situ (one pot) synthesis of silver nanoparticles on
Cellulose nano fibrils (CNF) and Waterborne polyurethane (WPU) were prepared. The phytochemical
evaluation of Acacia concinna crude extracts showed the presence of alkaloids, flavonoids, phenols,
tannins, terpenoids, saponins, steroids. The surface plasmon Resonance peak of CNF/AC-AgNPs was
450 nm and the FTIR result confirmed functional groups such as carbonyl, phenols and carboxyl were
present which was important for the bio-reduction of silver nanoparticles. The crude AC aqueous
pods extract against Gram-positive and Gram-negative bacteria compared with AC ethanol and AC
methanol extracts. The WPU/CNF/AC-AgNPs composite dispersion was also good in terms of its
antibacterial activities. The WPU/CNF/AC-AgNPs nanocomposites could be applied as bifunctional
nanofillers as an antimicrobial agent in food packaging systems and other biological applications.

Keywords: Acacia concinna (Willd.) DC (AC); cellulose nano fibrils (CNFs); waterborne polyurethane
(WPU); silver nanoparticles (AgNPs)

1. Introduction

In research from [1], silver nano-particles (AgNPs) have been shown to be very stable
at elevated temperatures and have a high surface-to-volume ratio. Additionally, because of
their antibacterial and filling capabilities, AgNPs may be used as food packaging materials.
A recent work showed that the inclusion of AgNPs enhanced the tensile strength and
water vapour barrier properties of a cellulose-based nanocomposite, while also exhibiting
apparent antibacterial activity against Escherichia coli and Staphylococcus aureus.

Cellulose nanofibrils (CNFs) are a kind of nanocellulose with a fibril width of 10–100 nm
and a length of typically more than 1 µm. CNFs may be utilised to enhance the mechanical
qualities and active functionalities of food packaging materials due to their distinctive
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architectures. Nanofibrillated cellulose (NFC) is generally created by mechanical shearing
in water, with or without pretreatment, and is a promising new bio-based nanomaterial.
Its low density, easy biodegradability and renewal, low cost, low thermal expansion and
high strength make it a promising candidate for use in many applications, including
nanocomposite films, hydrogels and foams with fibril network structures or a close packing
structure [2].

Waterborne polyurethane (WPU) is one of the most ecologically friendly materials in
the field of surface coatings and composite materials. Polyurethanes made from vegetable
oil have gained popularity as a renewable material [3–5]. In this study, jatropha oil is
used as a raw material for the manufacturing of polyols and polyurethane due to the
presence of unsaturated fatty acids. Waterborne polyurethane is a well-dispersed mixture
stabilised by electrostatic repulsive force, rather than being watery [6–8]. WPU also has
a number of benefits, including great flexibility at low temperatures, being pollution-free
and non-inflammable and has good application and non-toxicity [9–11]. Generally, an-
tibacterial nanomaterials like silver nanoparticles [12–14] and copper nanoparticles [15,16],
titanium dioxide nanoparticles [14], quaternary phosphonium salt [15], Gemini quater-
nary ammonium salt [16], p-hydroxybenzonic anionic intercalated MgAl-layered double
hydroxides [17] and 2-aminebenzothiazole [18] have been combined with WPU to cre-
ate antibacterial WPU. Plant-based antimicrobial agents have certain limitations, despite
several papers demonstrating the effective antibacterial capabilities of WPU coated with
antibacterial chemicals.

In this study, Acacia Cocina (Willd.) DC (AC) is the plant that will be studied as
it not only has phytochemical and antimicrobial potential but also acts as a reducing
agent in silver nanoparticles synthesis. Situated in Southeast Asia, the Acacia concinna
tree is known as shikakai. There are many species of Leguminosae that are related to
this plant. It is already in use as a shampoo as well as in a variety of medical products.
These pods are abundant in saponins, which include flavonoids and monoterpenoids.
Saponins are natural crude extracts derived from plants [19–24]. In earlier studies, it was
established that Acacia concinna (Willd.) DC exhibits notable antibacterial and antifungal
properties, which can be attributed to the presence of significant secondary metabolites.
These metabolites not only showcase the reducing agents and stabilizing agents and their
potential for chemotherapeutic applications, but also underscore their medicinal value [22].

In a previous study, a composite of cellulose nanocrystal/silver nanoparticles/waterborne
polyurethane [23], cellulose nanofibril/silver nanoparticles composite [1] was investigated,
utilizing harmful a chemical reducing agent (NaBH4). However, to date, there has been
no exploration of simultaneous in situ green synthesis, incorporating Acacica concinna
pods extracts as a reducing agent in an WPU/CNF/AC-AgNPs composite. The primary
objective of this research was to present a facile, economical and time-saving approach for
fabricating an antimicrobial composite dispersion technique through the in situ synthesis of
AgNPs using green Acacia concinna pod extract. In this study, we hypothesized that antimi-
crobial agent formulations could be produced by incorporating waterborne polyurethane
(WPU) and cellulose nanofibril (CNF), along with in situ Acacia concinna pods’ crude
extract-mediated synthesis of AgNPs. We tested aqueous, 80% ethanol and 80% methanol
extracts of Acacia concinna pods as potential antimicrobial agents. The formulations were
evaluated against Gram-positive bacteria (S. aureus) and Gram-negative bacteria (E. coli).
The WPU/CNF/AC-AgNPs composite dispersion exhibited promising potential as an
antimicrobial agent in food packaging systems and other biological-related applications.

2. Materials and Methods
2.1. Materials

Bionas Sdn. Bhd., Malaysia supplied the crude jatropha oil. Sulphuric acid (H2SO4)
(99%), methanol (CH3OH) (99%), formic acid (98%), pyridine (95%) and N-methyl pyrilli-
done (NMP) (98%) were purchased from Fisher Scientific, Hampton, NH, USA. Triethy-
lamine (TEA) (30%), hydrogen peroxide (H2O2) (30%), dibutyltin dilaurate (DBTL) (98%),
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methanol (99.8%), dimethyl propionic acid (DMPA) and acetone (reagent grade) were
purchased from R&M chemicals, Tamil Nadu, India. Isophrene diisocyanate (IPDI) (98%)
was obtained from Merck, Germany and 1,6-Hexanediol (HDO) was purchased from BDH
chemical LTD, London, UK. Ethylenediamine (EDA) (99%) was obtained from Sigma
Aldrich (St. Louis, MO, USA). Cellulose nanofiber (CNF) was obtained from Institute of
Tropical Forestry and Forest Products (INTROP) (Serdang, Malaysia). Silver Nitrate (99%)
(ChemRA, Trier, Germany) and methanol (80%) (R&M chemicals) were purchased from
Evergreen Engineering & Resources. All chemicals were reagent grade and were used
as received.

2.2. Plant Sample Collection and Identification

Acacia concinna (Willd.) DC. pods were obtained from Kachin State, and the northern
part of Myanmar. The plant samples were taxonomically identified by a botanist, Dr. Khairil
Mahmud, and the voucher specimen with the accession number KM 0012/22 was deposited
at the Biodiversity Unit, Institute of Bioscience, Universiti Putra Malaysia.

2.3. Preparation of AC Pods Extract

For the studies, AC pods were dried naturally in shade at room temperature. Sub-
sequently, the dried fruits and pods were finely powdered using a Waring laboratory
blender and then sifted through a 60-mesh sieve to ensure proper refinement. The 60-mesh-
sieved AC pods were prepared for extraction using ultrasound-assisted extraction [24].
Initially, AC fine powders were macerated in aqueous, 80% ethanol and 80% methanol into
1 g-to-5 mL ratios at 500 rpm, allowing them to stir (WiseStir MSH-20D hotplate stirrer,
Seoul, Republic of Korea) at room temperature overnight. In the second stage, each solu-
tion was ultrasonically extracted with a frequency of 20 kHz and a 50 percent amplitude
(Sonifier® SFX550, Branson Ultrasonics, Bay City, MI, USA) for 15 min with ice-bath. The
filtrate was collected, and the residue was subjected to two additional extractions using
the same second stage procedures, renewing the solvents each time. In the final stage, all
collected solutions were filtered through a Buchner funnel connected to a vacuum pump.
The filtrates were concentrated using a rotary evaporator (Heidolph HB Digital, Schwabach,
Germany) at 45 ◦C to remove the organic reagents. The weight of the extracts was used to
determine the yield % and afterwards they were kept for use at 4 ◦C.

Yield % =
W1
W2

×100%

W1 is the weight of the extract obtained after drying of solvent.
W2 is the weight of the RCM fruit powder.

2.4. Preparation of the Waterborne Polyurethane (WPU)

Epoxidised jatropha oil (EJO) was synthesised according to the method reported by [4].
EJO, alcohol, water and sulphuric acid were used to make the jatropha oil-based polyol
(JO-P). The calculated amounts of distilled water, CH3OH and H2SO4, (10:9:1) were poured
into a beaker and then the mixture was stirred for 15 min at 64 ◦C. Then, the EJO was
added to the mixture, and the reaction continued for 30 min. The mixed compound was
transferred to a separating funnel, allowed to cool to room temperature, and the aqueous
layer was discarded. After that, excess methanol and distilled water were removed using a
rotary evaporator at 60 ◦C until a clear golden-yellow polyol was produced [25].

The JO-P was added into a neck flask together with DMPA which was previously
dissolved in NMP. Mechanical stirrer, torque meter, temperature sensor, nitrogen intake,
and dropping funnel were all included in the setting. The mixture was stirred at the rate of
400 rpm for 30 min at 70 ◦C. This was carried out to form a homogeneous mixture. Then,
1 mL of DBTL was added into the mixture and the reaction was allowed to occur for 30 min.
In this reaction, the DBTL acts as a catalyst. Next, IPDI was added drop wise into the
mixture for 30 min and the stirring rate was increase to 700 rpm. After 30 min of adding
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IPDI, the temperature of the reaction was increased to 80 ◦C. Batches (2 to 5 mL) of acetone
were added one at a time. This was carried out to control the viscosity of the mixture. After
two hours of additional reaction time, HDO was added. Next, the reactant was allowed to
cool down to 35 ◦C. The process was continued by adding TEA to neutralise the DMPA
and disperse it at 1200 rpm with deionised water. Waterborne polyurethane was formed
with 38 wt. % solid content. EDA was added and allowed to react for 30 min. The acetone
in the mixture was evaporated immediately under vacuum. The prepared WPU was kept
as the stock solution for further use [26].

2.5. Preparation of WPU/CNF/AC-AgNPs Composite

The preparation of the WPU/CNF/AC-AgNPs composite was carried out according
to [27] with slight modification with two steps procedure. In the first step CNF slurry
(2.8%, w/v) was added into 200 mL of 0.1 M silver nitrate (AgNO3) aqueous solution. In an
ultrasonic bath, the mixture was then exposed to ultrasound waves with a frequency of
20 kHz and a 50 percent amplitude for 30 min. After that, the AC aqueous extract was then
carefully added drop by drop to the combined solution as a reducing agent. The mixture
was homogenised at 12,000 rpm in a homogenizer (IKA-Labortechnik, Staufen, Germany)
until AgNPs were synthesised. The suspension’s colour shifted form pale white to light
brown, then dark brown, indicating the synthesis of stabilized CNF/AC-AgNPs.

In the final stage, a specific amount of CNF/AC-AgNPs suspension (0, 50 mL, 100 mL)
was mixed with WPU emulsion (50 mL) and stirred continuously at 1000 rpm overnight at
ambient temperature. The samples are denoted as WPU, WPU/CNF/AC-AgNPs-1 and
WPU/CNF/AC-AgNPs-2 (Figure 1). All the samples were kept at 4 ◦C.
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Figure 1. Scheme preparation of WPU/CNF/AC-AgNPs composite dispersion.

2.6. Preliminary Screening of Phytochemicals from AC Extracts

The preliminary screening of phytochemicals was performed with the extracted AC
pods samples. Table 1 shows the procedure for the qualitative determination of phytochem-
icals presents in AC pods extract in aqueous, 80% ethanol and 80% methanol solvents.

Table 1. Preliminary screening of phytochemicals.

No Phytochemical
Name Method Observation References

1. Phenols Sample + 5 drops of 2% (w/v) FeCl3 Black or Blue-green colouration [28]

2. Flavonoid Sample + 5 drops diluted NaOH + diluted HCL Yellow solution with NaOH turned
colourless with HCL [29]

3. Alkaloid Sample + 5 drops of Dragendroff’s reagent The orange colour was formed [29]

4. Tannins Sample + 2 mL 2% FeCL3 Blue-green or black colouration [30]

5. Terpenoid Sample + 3 mL chloroform+ 2 mL Con.H2SO4 Reddish-brown colour [29]

6. Saponin Sample + 4 mL distilled water (shaken) Foam formation [29]

7. Steroids Sample + 4 drops Chloroform + Conc H2SO4 Red colour in the chloroform layer [31]
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2.7. Disc Diffusion Test on AC Pods Extracts

The disc diffusion technique was used on Muller Hinton Agar (MHA) medium to
test the antibacterial activity of extracts. S. aureus and E. coli were the targets of this test.
Before placing the disc paper in a specific spot at the top of the MHA medium, 100 µL of
106 CFU/mL bacteria suspension was dispersed throughout the medium. The 40 µL of AC
aqueous, 80% ethanol and 80% methanol extracts were dropped at the centre of each disc.
Vancomycin discs (30 µg) and Ampicillin discs (10 µg) were utilised as the positive control,
while 10% DMSO served as the negative control. The diameter of the transparent region
was measured after 18 h of incubation at 37 ◦C. All samples, positive and negative controls
were carried out three times separately.

2.8. UV-Vis Spectrophotometry (UV-Vis)

UV-visible spectrum analysis in the 300–700 nm region was performed on all different
formulations of CNF/AC-AgNPs, CNF/AgNO3 and AC aqueous extracts (Shimadzu
UV-1800 spectrophotometer, Kyoto, Japan). The analysis employed the quartz cuvettes.

2.9. Fourier-Transform Infrared Spectroscopy (FTIR)

The functional groups of the samples were analysed using FTIR spectroscopy. The
Perkin-Elmer Spectrum 2000 (GmbH, Burladingen, Germany)was employed, which was
equipped with a horizontal germanium attenuated total reflectance (ATR). The spectra
were obtained with a nominal resolution of 4 cm−1 in a range of 400–4000 cm−1.

2.10. Scanning Electron Microscopy (SEM)

The sample morphologies were examined using a Hitachi SU3500 (SEM; Tokyo, Japan).

2.11. Statistical Analysis

All of antimicrobial data were gathered utilising IBM-SPSS version 25, employing
one-way analysis of variance (ANOVA). Mean differences were determined using the least
significance difference (LSD) method.

3. Results and Discussion
3.1. Percentage Yield of Extraction and Phytochemical Constituent

The most polar solvents utilized in phytochemical extraction techniques are distilled
water, 80% ethanol and 80% methanol. The literature also suggests using these solvents
to extract the most bioactive components from plants [32]. The percentage yield and
phytochemical composition of aqueous, 80% ethanol and 80% methanol AC pods were
shown in Table 2. The yield percentages for AC pods extracted aqueous, 80% ethanol and
80% methanol were 13.2%, 10% and 14% respectively. According to earlier research, the
yield percentages of ethanolic extracts of AC using the Soxhlet extractor and maceration
were 8.73% and 14.18%, respectively. Moreover, Badi and colleagues discovered that the
AC aqueous extract yielded 8.3% through hot maceration [33].The percentage yield of the
extract is generally influenced by different types of solvents and extraction methods. Saleh
and his colleagues demonstrated a 50% increase in the yield of chlorogenic acid extracted
from Cynara scolymus L. leaves when using ultrasound-assisted extraction, compared to
the conventional maceration process conducted at room temperature [34]. The current
percentage yield of the extract shows higher values compared to the previous study due to
ultrasonic extraction.

Tannins, phenols, alkaloids, terpenoids and steroids were found in the aqueous,
80% ethanol and 80% methanol solvent extracts of AC. Flavonoids were observed only in the
aqueous extracts, while saponins were present only in the aqueous extract of Acacia concinna
Figure S1. According to research, the preliminary phytochemical analysis includes antioxi-
dant, hormonal, enzyme-stimulating, DNA replication-interfering and antimicrobial effects.
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Table 2. Phytochemicals screening and percentage yield of AC extracts.

Aqueous Extract 80% Ethanol Extract 80% Methanol Extract

Yield % 13.2% 10% 14%

Phytochemical

Phenols + + +

Flavonoid + - -

Alkaloid + + +

Tannins + + +

Terpenoids - + +

Saponins + - -

Steroids + + +
+ = Presence; - =Absence.

3.2. Antimicrobial Activities of AC Extracts

The antimicrobial activities of aqueous, 80% ethanol and 80% methanol ACs were
assessed using the disc-diffusion assay. While the aqueous extract of AC demonstrated
antibacterial activity specifically against E. coli with an inhibition zone of 7.38 ± 0.15 mm, all
extracts exhibited antibacterial properties against S. aureus, with inhibition zones ranging
from 110.51 ± 0.71 to 15.81 ± 0.72 mm, as detailed in Table 3 and Figure S2. The aqueous AC
extracts displayed similar antibacterial potentiality to the two positive controls, Vancomycin
and Ampicillin. In addition according to [35], some bio-active compound may not be able
to fully express their activity when utilizing discs because they may become stuck in the
disc’s pores and be unable to move through the inoculation media. Nevertheless, the fact
that both extracts show antibacterial activity is noteworthy.

Table 3. The antibacterial activities of aqueous, 80% ethanol and 80% methanol AC extracts.

Sample
Zone of Inhabitation

E. coli (mm) S. aureus (mm)

Aqueous 7.38 ± 0.15 B 15.81 ± 0.72 B

80% ethanol - 10.51 ± 0.71 D

80% methanol - 13.2 ± 0.18 C

Vancomycin (30 µg) 7.55 ± 0.23 B 19.94 ± 0.57 A

Ampicillin (10 µg) 11.15 ± 0.12 A 6.85 ± 0.05 E

DMSO (10%) 0 0 F

Values are means ± SD of three determinations. Means within each column with different letters differ significantly
(p < 0.05).

According to S.Todkar and co-authors, the aqueous extract of AC exhibited antibacte-
rial activity, with inhibition zones of 10.4 mm for B. subtilis and 5.4 mm for S. aureus [36].
It also inhibited K. pneumoniae, P. aeruginoda and E. coli, with inhibition zones measuring
12.5 mm, 5.4 mm and 10.2 mm, respectively. On the other hand, the methanol extract of AC
showed antibacterial effects against B. subtilis (10.2 mm) and S. aureus (6.2 mm), as well as
against K. pneumoniae, P. aeruginosa and E. coli, with inhibition zones of 11.4 mm, 5.2 mm,
and 10.2 mm, respectively.

Studies on phytochemicals have demonstrated the antimicrobial effectiveness of plants
rich in various phytochemicals, including tannins, terpenoids, alkaloids, phenol and
flavonoids, which are also described in this study (Table 3) [29]. Additionally, pheno-
lic compounds have a phenol structure, which consists of an aromatic benzene ring and at
least one hydroxyl (O-H) group [37]. The disruption of the plasma membrane caused by the
accumulation of hydroxyl groups by phenols that interact with membranes is the primary
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mechanism by which they exert their antibacterial effects. This accumulation modifies the
membrane’s hydrophobicity and surface charge, leading to localized ruptures, pore devel-
opment and leakage, among other disruptive outcomes [38]. According to earlier research
on P. betle leaf extracts, fatty acids like stearic acid and palmitic acid exhibit antimicrobial
properties that are effective against a wide range of infections [39]. Flavonoids are capable
of regulating the function of bacterial enzymes that are essential for the survival of the cell,
such as those that catalyse the production of cell wall components, cell membrane fatty
acid or ATP (adenosine triphosphate) [40].

The results of this study may differ from previous studies regarding the antibacterial
effects of AC pod extracts, and this could be attributed to several factors. These factors
include the use of different extraction methods, variations in the diffusion capacity of
the active substances and differences in the geographic location of the plant materials
used in this investigation. Additionally, the use of various organic solvents in this study
may have also influenced the antibacterial effects of the AC extract. Thus, it is crucial
to take these factors into consideration when interpreting the results of this study and
when comparing them to earlier findings. The aqueous AC extract is more active on
the candidates compared to 80% ethanol and 80% methanol pod extracts. Therefore, the
aqueous AC extracts were further subjected to application as reducing agents in the in situ
green synthesis of silver nanoparticles and the crude extract was used for antimicrobial
composite dispersion formulation.

3.3. UV-Vis Spectrophotometry (UV-Vis)

Growing interest has been generated by recent studies on the production of AgNPs
using plant extracts. Numerous plant extracts have been used to encourage the production
of AgNPs for various uses. In this study, the potential of the AC pods extract in the green
situ synthesis of AgNPs was established for the first time. The plant extract and silver
nitrate solution’s colour shift serve as a preliminary indicator which can be used to identify
the synthesis of Ag NPs. After incubation, the colourless silver nitrate solution and the
light-green fruit extract changed to a dark brown (Ag+ to Ag0). Silver ions can be drawn to
phenolic compounds which have carboxylic and hydroxyl groups. The stability and bio-
reduction of the Ag ions are strongly controlled by water-soluble heterocyclic components
and polyhydroxylic compounds, respectively. The phenolic compounds in plant extracts
may operate as capping agents, exert steric and electrostatic forces and prevent growth
around the NPs’ surface [41]. Flavonoids and phenolic compounds may function as capping
agents, potentially causing the efficient transformation of Ag+ to Ag0 [42].

UV–vis spectrum is one of the most important indicators used to determine the for-
mation of AgNPs in an aqueous solution. Figure 2 presents the absorption spectra of
AC-aqueous plant extract, AgNO3 and CNF/AC-AgNPs. In this experiment, the silver
nanoparticles’ spherical shape and dispersion medium explain the surface plasmon res-
onance (SPR) which is represented by a band visible at about 450 nm [43]. The resonant
oscillation of conducting electrons on the nanoparticle’s surface brought on by an interac-
tion with electromagnetic waves was attributed to the development of SPR. AgNO3 and
the aqueous AC plant extract did not show absorbance in the visible region of the electro-
static spectrum (400–450 nm). Similar findings were observed in AgNPs synthesised using
Kalanchoe pinnata leaf extract [44] (Aryan et al., 2021) and Piper nigrum seed extract [45]
(Kanniah et al., 2021a). According to Lakkin et al., the AgNPs which showed absorption
around 440 nm tend to have a spherical shape [46]. Ocimum tenuiflorum, Centella asiatica
and Clonorchis sinensis extracts were used to make AgNPs, and the absorbance at 420 nm
was measured using a UV spectrophotometer [47].
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3.4. Fourier Transformed Infrared (FTIR) Spectroscopy

These samples, which include the aqueous AC extract, WPU/CNF/AC-AgNPs-1 and
WPU/CNF/AgNPs-AC-2 are shown in Figure 3 as well as their FTIR spectra. For the
aqueous AC extract, the broad peak at 3416 cm−1 is assigned to the aromatic OH group.
The absorption peak at 2920.36 cm−1 is due to SP3 C-H stretch. The absorption peaks at
2860.23 cm−1 may be caused by the carboxylic acid group. There is a strong aromatic H-
bonded OH stretch at 3428.27 cm−1, which increases the likelihood that a phenolic group is
present [48]. It was discovered that the high absorption peak between 1699 and 1606 cm−1

is caused by the C=O bond. Aldehydes, ketones and carboxylic acids can all be used to
indicate the presence of carbonyl compounds. One of the common reducing agents is ketone
which functions well when converting metal ions into metal nanoparticles [49]. -C=N
stretching and intermolecular/intramolecular hydrogen bonds with medium intensity
at 1654 cm−1 and O-H stretching and intermolecular/intramolecular hydrogen bonds
with medium intensity at 3293 cm−1 were observed for the WPU/CNF/AC-AgNPs-1
solution, respectively. Additional -C=O- stretching and –O-H stretching at 1647 cm−1 and
3248 cm−1 are proof of the presence of carbonyl/carboxylic acid in the sample material. In
WPU/CNFs/AC-AgNPs-2, the -C=C- stretching band is located at 1623 cm−1 and also at
3280 cm−1. In addition, a sharp absorption band between 1021 and 1090 cm−1 is assigned
to the C=O group of molecules.

According to new research, peaks in the area of 2000–3000 cm−1 are mostly attributable
to the effects of the atmosphere. Carbohydrates and carboxylic acids have stretching vibra-
tions; thus, they may cause damage. In this instance, C-H and O-H would be present [50].
All of the formulations presented here had this C-H and O-H stretching. In the research
carried out in [51], -C=C skeletal vibrations in a phenol ring caused high-frequency peaks
between 1350 and 1600 cm−1 to occur, whereas the low-frequency peaks between 1050 and
1200 cm−1 were caused by the stretching of C-O bonds in the phenols.
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3.5. Antimicrobial Properties

The disc-diffusion method was used to test the antimicrobial activity of the samples of
WPU, WPU/CNFs/AgNPs, WPU/CNFs/AgNPs-AC-1 and WPU/CNFs/AgNPs-AC-2
formulations against bacteria, including a strain of the Gram-negative bacteria E. coli and
a strain of the Gram-positive bacteria S. aureus, as can be seen in Figures 4 and S3.The
diameter of the disk was 6 mm. WPU alone did not show any antimicrobial activity while
WPU/CNF AgNPs showed activity against E. coli with an inhibition zone of 12.27 ± 0.5 and
against S. aureus with an inhibition zone of 12.30 ± 0.19 mm. The antibacterial properties
of silver nanoparticles are linked to the release of Ag+ ions, which bind to the abun-
dantly present negatively charged functional groups in membrane proteins such sulfhydryl,
carbonyl, imidazole, amino and phosphate to change the structure of the membrane and en-
hance its permeability. Ag+ ions disrupt the cellular transport mechanism, which results in
cell death [34,35]. For WPU/CNFs/AgNPs-AC-1, the inhibition zones were 7.29 ± 0.4 mm
for E. coli and 6.38 ± 0.052 mm for S. aureus. As WPU/CNFs/AgNPs-AC-2, the inhibi-
tion zone for E. coli was 10.63 ± 0.3 mm, whereas the inhibition zone for S. aureus was
9.62 ± 0.32 mm. In the research in [36], they stated that the inhibition zones (mm) for E. coli
and S. aureus were 7.8 and 6.2 mm. They also stated that the outcome of their investigation
demonstrates that the extracts of plants used displayed possible antimicrobial activity
against the tested pathogens. The current investigation supports the idea that numerous
medicinal herbs could be beneficial as antimicrobial agents. In this investigation we utilised
solely crude extracts of pods from Acacia concinna. The study involved the profiling of
secondary metabolites that have been demonstrated to have antibacterial action in terms of
inhibiting and blocking crucial enzymes needed for the development and metabolism of
microbes [22].

It should be noted that the inhibition zones of the antimicrobials against the bacterial
colonoes do not develop in a circular radius surrounding the antimicrobial spot. According
to new research, the addition of a CNF/AgNP composite (1–10 mg/mL) resulted in a
declining trend in the number of E. coli O157:H7 in the first 6 h, and the inhibitory effects
were concentration-dependent in the second 6 h. Antimicrobials may be activated utilising
CNF/AgNP since then. The results of the investigation into the antimicrobial activities of
these plant extracts were presented in Figure 3.
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3.6. Morphology of WPU/CNF/AC-AgNPs Composite Films

Scanning Electron Microscopy (SEM) images of WPU/CNF/AC-AgNPs-1 and WPU/
CNF/AC-AgNPs-2 are shown in Figures 5a and 5b, respectively. The films showed a flat
surface and uniform colour, indicating the homogeneous dispersion of the WPU, CNF and
AgNPs with some cracks and aggregates. For the WPU/CNF/AC-AgNPs-1 composite,
aggregated white particles were observed on the surface. This suggests that individual
silver nanoparticles were present on the CNFs’ surface, and the WPUs may cluster together
as cellulose fibrils intertwine during film preparation [1]. In addition, a rough and wrinkled
surface can be observed in the film. Moreover, increasing the content of CNF/AC-AgNPs
in the WPU matrix led to a relatively rougher surface. This aggregation likely results from
an excess of nanoscale filler being introduced into the mixed matrix.
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4. Conclusions

Here, an innovative, simple, cost-effective and environmentally friendly method for
the fabrication of WPU/CNFs/AgNPs through ultrasound-assisted green in situ synthesis
of silver nanoparticles into WPU and CNF was successfully demonstrated. It is worth not-
ing that the aqueous AC pods extract exhibited superior reduction and clapping abilities for
the stabilization of the silver nanoparticles compared to the ethanol and methanol extracts
of AC pods. Furthermore, the AC pods extracts demonstrated robust antimicrobial proper-
ties against both Gram-positive and Gram-negative bacteria. The WPU/CNFs/AgNPs-AC
composite dispersion identified as a potentially effective antimicrobial agent can be utilized
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as a natural alternative to chemical antibacterial agents in various applications, ranging
from biological coatings to the food industry.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/polym16192683/s1, Figure S1 phytochemical screening of AC aqueous,
ethanol and methanol extract; Figure S2 of antimicrobial properties of AC pods extracts; Figure S3 of
antimicrobial properties of WPU/CNFs/AgNPs-AC composite dispersion.
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