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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment
of the requirement for the degree of Doctor of Philosophy
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By

MOHD RASHID BIN ADMON

January 2024

Chairman : Associate Professor Norazak bin Senu, PhD
Institute : Mathematical Research

Fractional differential equations (FDEs) model real-world phenomena capturing mem-

ory effects. However, existing numerical methods are mostly traditional, prompting the

need for innovative approaches. Artificial neural networks (ANNs), a machine learn-

ing tool, have exhibited promising capabilities in solving differential equations. This

research aims to develop a scheme based on a feedforward neural network (FNN) with

a vectorized algorithm (FNNVA) for solving FDEs in the Caputo sense (FDEsC) using

selected first-order optimization techniques: simple gradient descent (GD), momentum

method (MM), and adaptive moment estimation method (Adam). Then, a single hidden

layer of FNN based on Chelyshkov polynomials with an extreme learning machine al-

gorithm (SHLFNNCP-ELM) is constructed for solving FDEsC. Next, a scheme based

on an extended single hidden layer of FNN using a second-order optimization tech-

nique known as the Broyden–Fletcher–Goldfarb–Shanno method (ESHLFNN-BFGS)

is designed to solve FDEs in the Caputo-Fabrizio sense (FDEsCF). This study also

focuses on solving fractal-fractional differential equations in the Caputo sense with a
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power-law kernel (FFDEsCP) using FNN in two hidden layers with a vectorized al-

gorithm alongside Adam (FNN2HLVA-Adam). In the first scheme, a vectorized algo-

rithm and automatic differentiation are implemented to minimize computational costs.

Numerical results indicated that FNNVA with Adam in one or two hidden layers, 5

or 10 nodes, and an appropriate learning rate offers superior accuracy compared to

FNNVA with GD and FNNVA with MM. The second approach relies on Chelyshkov

basis functions for approximation and utilizes the extreme machine learning algorithm

for weight determination, achieving high accuracy and low computational time. The

third scheme employs the BFGS solver during the learning process, attained satisfac-

tory numerical results with fewer iterations. The final scheme utilizes a two hidden

layer FNNVA, with Adam optimization, using suitable number of nodes and value of

learning rates to handle problems involving memory and fractal concepts. The nu-

merical solutions obtained are consistent with reference solutions. In conclusion, all

proposed schemes deliver more accurate results compared to existing methods while

maintaining low computational costs.

SDG: Feedforward neural network, Fractal-fractional differential equations, Fractional

differential equations, Hidden layers, Vectorized algorithm
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

RANGKAIAN NEURAL SUAP MAJU UNTUK MENYELESAIKAN
PERSAMAAN PEMBEZAAN PECAHAN TERTENTU

Oleh

MOHD RASHID BIN ADMON

Januari 2024

Pengerusi : Profesor Madya Norazak bin Senu, PhD
Institut : Penyelidikan Matematik

Persamaan pembezaan pecahan (PPP) memodelkan fenomena dunia nyata dengan

menangkap kesan memori. Walau bagaimanapun, kaedah berangka semasa se-

cara kebanyakannya adalah konvensional, menggesa keperluan untuk pendekatan in-

ovatif. Rangkaian neural buatan (RNB), sebuah alat pembelajaran mesin, telah

menunjukkan keupayaan yang menjanjikan dalam menyelesaikan persamaan pem-

bezaan. Kajian ini bertujuan untuk membangunkan satu skema berasaskan rangka-

ian neural suap maju (RNSM) dengan algoritma vektor (RNSMAV) untuk menye-

lesaikan PPP dalam pemahaman Caputo (PPPC) menggunakan teknik pengopti-

muman peringkat pertama yang dipilih iaitu turun cerun mudah (TCM), kaedah

momentum (KM) dan kaedah anggaran momen penyesuaian (KAMP). Kemudian,

lapisan tersembunyi tunggal RNSM berdasarkan polinomial Chelyshkov dengan al-

goritma mesin pembelajaran ekstrim (LTTRNSMPC-MPE) dibina untuk menyele-

saikan PPPC. Seterusnya, skema berdasarkan lapisan tersembunyi tunggal RNSM

yang diperluaskan menggunakan teknik pengoptimuman peringkat kedua yang dike-
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nali sebagai kaedah Broyden–Fletcher–Goldfarb–Shanno (LTTRNSMD-BFGS) di-

reka untuk menyelesaikan PPP dalam pemahaman Caputo-Fabrizio (PPPCF). Ka-

jian ini juga menumpukan kepada penyelesaian persamaan pembezaan pecahan frak-

tal dalam pemahaman Caputo dengan inti hukum kuasa (PPPFCIHK) menggunakan

skema berdasarkan RNSM dalam dua lapisan tersembunyi dengan algoritma vek-

tor bersama-sama KAMP (RNSM2LTAV-KAMP). Dalam skema pertama, algoritma

vektor dan pembezaan automatik dilaksanakan untuk mengurangkan kos komputasi.

Hasil berangka menunjukkan bahawa RNSMAV dengan KAMP dalam satu atau dua

lapisan tersembunyi, 5 atau 10 nod, dan kadar pembelajaran yang sesuai menawarkan

kejituan yang lebih unggul berbanding RNSMAV dengan TCM dan RNSMAV den-

gan KM. Skema kedua bergantung kepada fungsi asas Chelyshkov untuk penyelesa-

ian dan menggunakan algoritma mesin pembelajaran ekstrim untuk penentuan berat

rangkaian, telah menghasilkan kejituan yang tinggi dan masa pengiraan yang rendah.

Skema ketiga menggunakan penyelesai BFGS semasa proses pembelajaran, mencapai

keputusan berangka yang memuaskan dengan bilangan lelaran yang sedikit. Skema

terakhir menggunakan dua lapisan tersembunyi RNSMAV, dengan pengoptimuman

Adam, serta bilangan nod dan nilai kadar pembelajaran yang sesuai untuk menan-

gani masalah berkaitan dengan memori dan konsep fraktal. Penyelesaian berangka

yang diperolehi adalah konsisten dengan penyelesaian rujukan. Kesimpulannya, se-

mua skema yang dicadangkan memberikan hasil yang lebih tepat berbanding dengan

kaedah sedia ada, sambil mengekalkan kos pengiraan yang rendah.

SDG: Algoritma vektor, Lapisan tersembunyi, Persamaan pembezaan pecahan, Per-

samaan pembezaan pecahan fraktal, Rangkaian neural suap maju
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CHAPTER 1

INTRODUCTION

1.1 Fractional Calculus

Fractional calculus (FC) is one of the branches of mathematics that deals with the

theory and application of derivatives and integrals of arbitrary order (real or complex

numbers) (Miller and Ross, 1993). It can be considered a modern version of mathe-

matical knowledge as it overcomes the limitations of traditional or classical calculus,

which is limited to dealing with integer-order derivatives and integrals. Although

the extension of order may seem straightforward, the theory in FC is fundamentally

different from traditional calculus, making it exclusive in applications.

Differing from traditional calculus, FC consists of an abundance of definitions.

Here, the definitions represent the mathematical formulation of fractional operator

that define as fractional differentiation or fractional integration. One of the attractive

features in FC lies behind the fractional operator itself, which able to capture memory

or hereditary effect when the transition of non-integer order takes place (Ford and

Simpson, 2001). This property often related to the behaviour of process in a system

in which the output let say Y (t), at the current time t, is depend on the process

occured in {t,Y (t)} for entire time history, t 2 [t0, t] (Tarasov, 2018). This concept is

mathematically termed as nonlocal property, differing from traditional calculus, which

is local and independent on the behaviour of a system in the history.
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The foundation of knowledge in FC crucially depends on several basic functions com-

monly encountered in the definition of derivatives and integrals of arbitrary order.

Here, the definition of the Gamma function is presented.

Definition 1.1 (Gamma Function) (Milici et al., 2018).

Gamma function or second Euler integral play the most important role in the theory of

differentiation and integrals in FC. It has the following definition

G(q) =
Z •

0
e�ttq�1dt. (1.1)

By presenting the Gamma function, it is now possible to highlight some definitions

related to fractional integrals and derivatives used in this research. To begin, let’s

introduce the classical definition of fractional integral known as Riemann-Liouville

(R-L) fractional integral, presented as follows:

Definition 1.2 (Riemann-Liouville Fractional Integral) (Podlubny, 1998).

Let (a,b) is a finite interval in the real axis R. Then, the Riemann-Liouville fractional

integral with order a > 0 is defined as

aJa
x g(x) =

1
G(a)

Z x

a
(x� t)a�1g(t)dt, (1.2)

where G(·) denotes the Gamma function.

This definition serves as the cornerstone for most of the fractional derivatives that

exist in FC, such as the Riemann-Liouville (R-L) fractional derivative and the Caputo

fractional derivative.
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Definition 1.3 (Riemann-Liouville Fractional Derivative) (Podlubny, 1998).

Let (a,b) is a finite interval in the real axis R. Then, the Riemann-Liouville fractional

derivative with order a > 0 is defined as

aDa
x g(x) =

dm

dtm

⇥
aJm�a

x g(x)
⇤

=
1

G(m�a)

dm

dtm

Z x

a
(x� t)m�a�1g(t)dt, (1.3)

where m�1 < a  m, m 2 N.

Definition 1.4 (Caputo Fractional Derivative) (Li and Zeng, 2015).

Let (a,b) is a finite interval in the real axis R. Then, the Caputo fractional derivative

with order a > 0 is defined as

C
a Da

x g(x) = aJ(m�a)
x

h
g(m)(x)

i

=
1

G(m�a)

Z x

a
(x� t)m�a�1gm(t)dt, (1.4)

where m�1 < a  m, m 2 N.

Caputo and Fabrizio (2015) develop a new fractional derivative that have non-singular

exponentional decaying kernel known as Caputo-Fabrizio (CF) fractional derivative.

The main purpose of this new derivative is to get rid of the singularity of Caputo

fractional derivative that often become challenges when designing numerical approxi-

mation at the endpoint of the singularity.

Let H1(a,b) = {g|g 2 L2(a,b) and g0 2 L2(a,b)} where L2(a,b) is the space of

square integrable functions on interval (a,b). Then, CF fractional derivative defined

as follows:
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Definition 1.5 (Caputo-Fabrizio Fractional Derivative) (Caputo and Fabrizio,

2015).

Let g(t) 2 H1(a,b) and a 2 (0,1). Then, the Caputo-Fabrizio fractional derivative

with order a is defined as

CF
a Da

x g(x) =
M(a)

1�a

Z x

a
g0(t)e

✓
�a x� t

1�a

◆

dt, (1.5)

where M(a) is normalization function such that M(0) = M(1) = 1.

1.2 Fractal-Fractional Calculus

Despite the existence of the ground-breaking theory related on fractional derivative,

there is another idea known as the fractal derivative or Hausdorff derivative (Chen,

2006). Fractal derivative or Hausdorff derivative can be defined by transforming the

classical space-time derivative that scaled with integer dimension (g, t) to a fractal

time (g, tb ) where b denotes fractal dimension in time (Allwright and Atangana, 2018;

Chen, 2006). Mathematically, this can be defined as:

dg
dtb = lim

t!s

g(t)�g(s)
tb � sb , b > 0. (1.6)

The fractal derivative can also can be defined into fractal space-time (gn , tb ) which can

be defined as

dgn

dtb = lim
t!s

gn(t)�gn(s)
tb � sb , n > 0, b > 0. (1.7)

where n denotes fractal dimension in space. From the definition above, the fractal

derivative differs from the traditional integer-order derivative in that the former

4



© C
OPYRIG

HT U
PM

represents the ratio of change of two quantities in fractal space, whereas the latter

represents the change of a function (dependent variable) with the change of another

quantity (independent variable) in ordinary space. In comparison with fractional

derivatives, fractal derivatives are local operators, while fractional derivatives are

global, as there is no convolution integral in (1.6) and (1.7).

Atangana (2017) combine the concept of fractal derivative and fractional deriva-

tive into single operator known as fractal-fractional derivative (FFD). One of the

fractal-fractional derivative used in this study is defined in the following definition:

Definition 1.6 (Fractal-Fractional Derivative in Caputo sense with power law ker-

nel) (Atangana, 2017).

Let g(x) is a differentiable function in interval (a,b). If g(x) is fractal differentiable

with order b on interval (a,b), then, fractal-fractional derivative of order a in Caputo

sense with power law kernel defined as

FFDCP
a Da,b

x g(x) =
1

G(m�a)

Z x

a
(x� t)m�a�1 dg

dtb dt, (1.8)

where
dg
dtb = lim

x!t

g(x)�g(t)
xb � tb , m�1 < a  m, and 0 < m�1 < b  m, m 2 N.

Since g is differentiable over (a,b), then

dg
dtb = lim

x!t

g(x)�g(t)
xb � tb ,

=
g0(t)

b tb�1 ,

= g0(t)
t1�b

b
. (1.9)
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1.3 Artificial Neural Network

ANN is an abstract computational model in machine learning that imitates the learning

process in the organisational structure of the human brain (Guresen and Kayakutlu,

2011). It was created in 1943 by neuroscientist Warren S. McCulloch and logician

Walter Pitts, who described the concept of ANN as a network of neuron cells in the

brain that receive inputs, process the inputs, and produce outputs (McCulloch and Pitts,

1943). The basic components of ANN is called as artificial neuron or node. It consists

of input, summing junction, activation function, bias and output as shown in Figure

1.1.

Figure 1.1: Artificial neuron/node.

1.3.1 Basic Concepts

Figure 1.2 shows a mathematical model of ANN. The circle and arrow denote the node

and input flow respectively. Let x1, x2 and x3 be the input of the ANN. While w1, w2

and w3 are the connection weights. There also a bias denoted by b. The node for the

input is labelled as a1, a2 and a3 with just acceptance of the input from the outside.

6
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The following process, known as forward propagation is take place inside ANN:

i. The connection weight is multiplied to the input before reached to the node.

a1 = w1x1, (1.10)

a2 = w2x2, (1.11)

a3 = w3x3, (1.12)

ii. The collection of this weighted input are added to become weighted sum plus

bias, which computed as follows:

v = a1 +a2 +a3 +b,

= w1x1 +w2x2 +w3x3 +b. (1.13)

This equation can be summarized in matrix form:

v = wx+b. (1.14)

where

w =
⇥
w1 w2 w3

⇤
x =

2

4
x1
x2
x3

3

5 (1.15)
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iii. Applies the activation function to the weighted sum:

o = f(v). (1.16)

where f(·) is the activation function.

A single node is insufficient for the practical problems, and networks with a large

number of nodes are frequently used. The way in which nodes are connected deter-

mines how computations proceed and constitutes an important early design decision

by neural network developer. This designation of ANN called as architecture of neural

network. One of the example of the architecture of neural network can be shown in

Figure 1.3.

Figure 1.3: Feedforward neural network.

The group of the leftmost node is called the input layer. The input layer’s nodes just

act as a route for input signals to be sent to subsequent nodes. Here, the weighted sum

and activation function are not calculated. The output layer, in contrast, refers to the

collection of nodes at the rightmost position. The final output of the neural network is

produced by these nodes. While hidden layers are those layers that exist between input

and output layers which cannot be observed outside of the ANN.
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In the early development of ANN, they had a very simple architecture with only an

input layer and an output layer, which are called single layer ANN. The input layer

does not count as a layer since it does not involve any mathematical computation in the

node, rather than just receiving values from the outside. When hidden layers are added

to this network, it produces a multilayer ANN. This network consists of an input layer,

hidden layer(s), and an output layer. An ANN that has a single hidden layer is called

a shallow neural network. A multilayer ANN that contains two or more hidden layers

is called a deep neural network (DNN). The summary of the classification of ANNs

based on layers can be seen in Figure 1.4.

Figure 1.4: Types of ANN based on layer.

Additionally, ANN can be categorized based on how connections travel within linked

nodes. One example is the feedforward neural network (FNN), as shown in Figure 1.3.

During the data’s journey, nodes in a layer receive input data from the previous layer

and feed their output to the next layer. In FNN, there cannot be any route for data to

travel to nodes in the same layer or the previous layer. Another type of ANN based on

interconnection is known as a recurrent neural network (RNN). In this type of ANN,
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the output of nodes in a layer is allowed to flow through any layer. In other words, the

data can travel freely either along the forward path or the backward path in any linked

layer. RNN can be powerful, but they can also be extremely complicated. In fact, there

are many types of ANNs, such as Hopfield networks, cellular neural networks, finite

element neural networks, and so on (Yadav et al., 2015).

1.3.2 Learning Process

Learning process or training process in ANN involves several key steps:

i. Preparation of input data: The first step is to prepare the input data by collecting

or generating a dataset that consists of sample data and corresponding target

outputs. If the target output is provided, then the learning process is said to be

supervised learning while if the target output is not provided the learning is said

to be unsupervised learning (Kim, 2017).

ii. Network initialization: The next step is to define the architecture of the neural

network, involving the number of layers, the number of neurons in each layer,

and the types of connections between them. The network’s parameters, such

as weights and biases, are typically initialized with random numbers or using

specific initialization techniques.

iii. Forward propagation: During this stage, the input data passes across the net-

work, layer by layer, to produce an output. The activation function of each node

in the network is applied to the weighted sum of its inputs. Forward propagation

has been explained in Figure 1.2.
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iv. Error computation: After forward propagation has been completed, the net-

work’s output is compared with the desired outputs from the training data. An

error function is then used to measure the difference between the predicted and

true outputs. Various types of error functions are available, such as the squared

error function, mean squared error function, and others (Calin, 2020; Zurada,

1992).

v. Backpropagation: Backpropagation is technique to compute the gradients of the

error function with respect to network parameters. The gradients are calculated

by propagating the error backward through the network, using the basic chain

rule. It can be implemented through automatic differentiation that will be dis-

cussed later.

vi. Parameter adjustment: The goal of the learning process in ANN is to minimize

the error function by adjusting the network parameters. This situation is referred

to as an optimization process in which minimization takes place. The network

parameters that yield the minimum error function are called the argmin, as they

are the arguments to the error function that give the minimum. To achieve this,

the obtained gradient information is used to update the network’s parameters.

There are many types of optimization algorithms such as first-order optimization

techniques, second-order optimization and heuristic optimization (Kochenderfer

and Wheeler, 2019).

vii. Epoch or iteration: The iteration is repeated from steps iii to steps vi to allow

network refine the parameters.
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viii. Hyperparameter tuning: A hyperparameter is a parameter explicitly defined by

the user to control the learning process. It is typically set manually, either by

rule of thumb or through trial and error, to achieve the best optimal results in

the training process. An example of a hyperparameter is the learning rate in

first-order optimization techniques.

These steps are an overview of the common basic learning process that takes place in

ANN. The algorithm can differ in key steps v, vii, and viii depending on the type of

optimization used. The general basics of the learning process in ANN can be shown in

Figure 1.5.

Figure 1.5: Learning process in ANN.

1.3.3 Activation Function

An activation function, also known as a transfer function, is a function that applied

to the weighted sum of the input of a node to yield an output (Chakraverty and Mall,

2017). It incorporates non-linearity into the network, allowing it to learn intricate

patterns and make accurate predictions. The activation function is typically employed

after the linear transformation of the input data by the node’s weights and biases to

determine the node’s output. There are a lot of different types of activation functions

in the literature, but the most common ones are listed as follows:
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i. Identity function:

f(x) = x. (1.17)

ii. Sigmoid function:

f(x) = 1
1+ e�x . (1.18)

iii. Hyperbolic tangent function:

f(x) = ex � e�x

ex + e�x . (1.19)

iv. Orthogonal polynomials:

• Legendre polynomial defined on the interval [�1,1] can be determined with

the aid of the following recurrence formula:

Li+1(z) =
2i+1
i+1

zLi(z)�
i

i+1
Li�1(z), i = 1,2, ..., (1.20)

where L0(z) = 1 and L1(z) = z.

• Chebyshev polynomial defined on the interval [�1,1] can be determined

with the aid of the following recurrence formula:

Ti+1(z) = 2zTi(z)�Ti�1(z), i = 1,2, ..., (1.21)

where T0(z) = 1 and T1(z) = z.

In actual practice, selecting an activation function depends on the nature of the prob-

lem. Each of them have their advantages and disadvantages, and it is usual practice

to experiment with a variety of activation functions in order to identify the one that is

most suitable for a certain task. For example, sigmoid function is continously differ-
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entiable, which gradient-based optimization procedure are applicable to implement it

to ANN during training process.

1.3.4 Automatic Differentiation

Basically, derivatives can be computed in three ways which are manual differentiation,

numerical differentiation and symbolic differentiation. Manual differentiation involves

finding the derivative of a function by explicitly applying differentiation rules and

algebraic manipulations to the function. It is usually done manually by hand. While

numerical differentiation approximate the derivative of a function by using numerical

techniques, such as finite differences. It involves discrete data points or values of

a function to estimate the derivative. Symbolic differentiation involves finding the

derivative of a function by manipulating its symbolic representation with the help of

computer algebra systems.

Most of the learning process in ANN required the evaluation of gradient of an

error function. Manual differentiation is obviously not practical and time consuming

especially when deals with complicated functions. In comparison to the other options,

numerical differentiation is the simplest way to implement but can be highly incorrect

due to round-off and truncation errors. Besides it is not efficient and not appropriate

for evaluating gradients in training of ANN that deals with many parameters (Jerrell,

1997). Symbolic differentiation aims to cover the weaknesses of the previous two

methods, but often having an “expression swelling”, where it refers to the phe-

nomenon where the size or complexity of an expression grows significantly when

differentiate (Corliss, 1988).
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Automatic differentiation (AD) is another alternative of technique used to com-

pute the derivatives of functions. It play an important role in many optimization

algorithms and machine learning frameworks since it provides an efficient and accu-

rate computation of gradients. AD can be defined as compositions of a finite set of

elementary operations for which derivatives are known and combining the derivatives

of the constituent operations through the chain rule gives the derivative of the overall

composition (Baydin et al., 2018; Griewank and Walther, 2008). It is simple since it

just involved the application of chain rule of basic elementary operation, i.e. addition,

subtraction, division and multiplication and also elementary function, i.e. exponential,

sin, cos and etc. It consists of two mode, the first one is forward mode AD and the

other one is reverse-mode AD. In fact, backpropagation is the specialized version of

reverse-mode AD (Baydin et al., 2018).

Consider example f (x,y,z) = (x + y)z. The general procedure on performing

reverse-mode AD as follows:

Step 1: Identify the function that need to be differentiate and variables in the main

function. Here the function have three independent variables x,y and z.

Step 2: Identify the elementary operations and functions involve inside the main func-

tion. Inside function f , there is two elementary operations which are addition between

variable x and y and multiplication between x+ y and z.

Step 3: Choose one elementary operations involving variables in the function and then

introduce new intermediate variables this operation. We let q = x+ y where q is a new
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variable.

Step 4: This intermediate variable take part in another elementary operation with other

variables in the function. Then, assign the result to yet another new intermediate vari-

able. Here, let f = qz where f is another intermediate variable.

Step 5: Perform Step 4 until the last variable in the function operate with the last

intermediate variable. Here, f is our last new intermediate variable.

Step 6: Sketch computational graph that has two elements: input variables and interior

nodes representing operations as shown in Figure 1.6.

Figure 1.6: Computational graph.

Step 7: Let x = �2, y = 5 and z = �4. Perform forward propagation as shown in

Figure 1.7.

Figure 1.7: Computational graph with value at each node.
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Step 8: Take the derivative of the last intermediate variable with respect to itself which

the value is 1 as shown in Figure 1.8.

Figure 1.8: Computational graph.

Step 9: Finally, the derivative of f with respect to x,y and z can be performed by using

chain rule.

The proposed steps provide a general overview of computing derivatives using

reverse-mode AD. During the training process in ANN, the derivative of the error

function with respect to the network parameters can be found through this procedure.

Analogous to ANNs, the function f in the previous example represents the error

function, where x, y, and z are the network parameters. In real situations, the form of

the error function becomes very complex as the number of hidden layers increases.

Symbolic differentiation is not practical for this situation as it takes much longer and

faces the issue of “expression swelling”. Breaking down the complexity of the error

function into simple functions that involve basic operations may help expedite the

computation.
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1.3.5 First-Order Optimization Methods

First-order optimization methods are one of the most widely used algorithms to opti-

mize ANN. These methods update the network parameters in ANN iteratively based

on the gradient of error function with respect to network parameters . The learning rate

is the most important parameter in this method that determines the size of the update

taken. Denoting n as a step taken, l is the learning rate, E is the error function and w

is the network weights, simple gradient descent (GD) can be formulated as follows

wn+1 = wn �l ∂E
∂wn , (1.22)

where l > 0 is learning rate.

If the learning rate is too small, then simple GD will have to go through many

iterations to converge, which will take a long time. In the other way around, it makes

simple GD diverge with larger values thus fail to reach the minimum. Both situation

can be seen in Figure 1.9.

(a) (b)

Figure 1.9: Simple GD with (a) large learning rate and (b) small learning rate.

Simple GD with momentum or momentum method (MM) is a method that helps ac-

celerate simple GD in the relevant direction and dampens oscillations as can be seen

in Figure 1.10. By adding a fraction of the update vector of the past time step to the
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current update vector, the momentum formula update formula is

vn+1 = gvn �l ∂E
∂wn , (1.23)

wn+1 = wn + vn+1. (1.24)

The momentum term that denoted by g is usually set to 0.9 (Ruder, 2016). When this

value become zero, it will return back to simple GD.

Figure 1.10: Momentum dampens the oscillation.

Simple GD and MM update the w with the constant or same learning rate. The adaptive

subgradient method, or Adagrad, use different learning rate for network parameters

based on the historical gradients. The Adagrad update formula is

vn = vn�1 +

✓
∂E
∂wn

◆2
, (1.25)

wn+1 = wn � lp
vn + e

∂E
∂wn , (1.26)

where e is small number usually chosen as 1 ⇥ 10�8 to avoid division by zero

(Kochenderfer and Wheeler, 2019). From this formula, the learning rate has been

change in such a way that it will decrease due to the summation of the previous

square gradient for every iteration. However, the value of the square root at the

denominator will be accumulated which then become large causes the learning rate

become infinitesimally small. Thus the algorithm not able to make adjustment on the

network parameters.
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Root mean squared propagation or RMSProp extends Adagrad to avoid the ef-

fect of a monotonically decreasing learning rate. RMSProp maintains a decaying

average of squared gradients, thus the formula can be updated as follows:

vn = s1vn�1 +(1�s1)

✓
∂E
∂wn

◆2
, (1.27)

wn+1 = wn � lp
vn + e

∂E
∂wn , (1.28)

where s1 2 (0,1) is the forgetting factor which control the exponential decay rate, v

is second moment of the gradient that initialized to be zero and e is small number to

avoid division by zero.

The adaptive moment estimation method, or Adam also adapts learning rates

that stores both an exponentially decaying squared gradient like RMSProp, but also an

exponentially decaying gradient like momentum. Initializing the gradient and squared

gradient to zero introduces a bias. A bias correction step helps alleviate the issue. The

Adam formula are:

Biased decaying momentum : vn = s1vn�1 +(1�s1)
∂E
∂wn , (1.29)

Biased decaying squared gradient : un = s2un�1 +(1�s2)

✓
∂E
∂wn

◆2
, (1.30)

corrected decaying momentum : v̂n =
vn

1�s1
, (1.31)

corrected decaying squared gradient : ûn =
un

1�s2
, (1.32)

new update : wn+1 = wn � lp
ûn + e

v̂n, (1.33)

where s1,s2 2 (0,1) is the decay rates for the moment estimates and v and u biased

estimate for the first moment and second moment of the gradient which both initialized
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to be zero.

1.3.6 Broyden-Fletcher-Goldfarb-Shanno Optimization Method

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is one of the quasi-Newton

algorithm categorized under second-order optimization methods. Compared from

first-order optimization methods discussed in the previous section, second-order

optimization methods provide additional second-order information for better training

trajectory across the local curvature of error function in order to make the right

step size to reach a local minimum. The fundamental of quasi-Newton methods is

based on Newton method where the computation of true Hessian matrix or square

matrix of second-order partial derivatives of a scalar-valued function is replaced by

an approximation of Hessian to make it more practical in terms of simplicity and

computational time.

Consider a vector function f : Rn ! Rm with m � n. The goal is to minimized

the vector function to find the optimal parameter, w⇤ from weights, w = [w1,w2, ...wn]

such that

w⇤ = argmin
w

{F(w)}, (1.34)

where

F(w) =
1
2

m

Â
i=1

( fi (w))2 =
1
2
||f(w)||2 = 1

2
fT(w)f(w). (1.35)

Provided that f has continous partial derivatives, the Taylor series for f can be written
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as

f(w+h) = f(w)+J(w)h+ higher order terms, (1.36)

where J(w) 2 Rm⇥n is the Jacobian. This matrix contain the first partial derivatives of

the function components,

J(w)i j =
∂ fi

∂w j
(w). (1.37)

As can be seen in (1.35), F : Rn ! R. Then, the first derivative or gradient of F is

given by

∂F
∂w j

(w) =
m

Â
i=1

fi(w)
∂ fi

∂w j
(w), (1.38)

that can be rewrite as

∂F
∂w

(w) = J(w)T f(w), (1.39)

also from (1.38), the second derivative of F is given by

∂ 2F
∂w j∂wk

(w) =
m

Â
i=1

✓
∂ fi

∂w j
(w)

∂ fi

∂wk
(w)+ fi(x)

∂ 2 fi

∂w j∂wk
(w)

◆
, (1.40)

that can be rewrite as Hessian matrix, H

H = J(w)T J(w)+
m

Â
i=1

fi(w)f00i (w). (1.41)

The weight updating formula for the Newton method is given as

wk+1 = wk �lH(wk)
�1 ∂F

∂wk
(wk), (1.42)

where l is the learning rate is set by default as 1. However, computing the inverse
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Hessian is very expensive.

The variants under second-order optimization lies on updating this approxima-

tion of Hessian matrix, in replace with the exact Hessian matrix. Besides, the matrix

must be symmetric and positive definite so that it is nonsingular (Rafati and Marica,

2020; Tan and Lim, 2019). Since H(wk) = Hk, it can be computed at each iteration

through the following approximation

Hk = Hk�1 +
ff T

f T d
� Hk�1d (Hk�1d )T

d T Hk�1d
(1.43)

where d = wk �wk�1 = and f =
∂F
∂wk

(wk)�
∂F

∂wk�1
(wk�1). By finding this inverse,

the following update of wk+1 in (1.42) can be obtained.

Alternatively, the inverse of Hessian matrix also can be approximate directly

through BFGS. Let H(wk)
�1 = Qk. The inverse Hessian matrix can computed at each

iteration through

Qk =

 
I � df T

f T d

!
Qk�1

 
I � fd T

f T d

!
+

df T

f T d
, (1.44)

Substituting into the update equation in (1.42) yields

wk+1 = wk �lQk
∂F
∂wk

(wk). (1.45)

1.3.7 Extreme Learning Machine Algorithm

Extreme Learning Machine algorithm (ELM) is a ML algorithm that introduced by

Huang et al. (2006), provide an en extremely fast and efficient scheme as it categorize
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under optimization free approach. The objective of ELM is to find the weights and

biases from the hidden layer to the output layer, while the other network parameters

are randomly initialized and remain fixed. ELM is non-iterative process that involve

the implementation of Moore-Penrose generalized inverse during finding the unknown

network parameters.

Let input x = (x1, ...,xi)T , where xi denotes the input value, o j denotes the jth

output of the FNN, ki is the ith weight between the output and the hidden layer, ai is

the weight between input layer and hidden layer and bi is the bias in ith hidden layer,

then FNN can be expressed as:

N

Â
i=1

kig(wix j +bi) = o j, j = 1, ...,d. (1.46)

If target t = (t1, ..., td)T , where t denotes the target with N hidden nodes and d is the

number of training data, the aim of ELM is to minimize error between target and output

of the FNN by minimizing the following objective function:

E =
d

Â
j=1

(o j � t j)
2. (1.47)

According to Huang et al. (2006), FNN with one hidden layer able to approximate all

training data with zero error,

d

Â
j=1

����o j � t j
����= 0, (1.48)

so there exist a set of wi, bi and ki that satisfy

N

Â
i=1

kig
�
wix j +bi

�
= t j, j = 1, ...,d. (1.49)
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The above formula can be reformulated as linear system

Hk = T, (1.50)

where

H(w1, ...,wN ,b1, ...,bN ,x1, ...,xd) =

2

64
g(w1x1 +b1) · · · g(wNx1 +bN)

... · · · ...
g(w1xd +b1) · · · g(wNxd +bN)

3

75 , (1.51)

k =

2

64
k1
...

kN

3

75 , T =

2

64
t1
...

tN

3

75 . (1.52)

It cannot guarantee that the matrix H are non-degenerate or square matrix, thus it is

impossible to find its inverse. Hence by using minimal norm least square solution of

the system. Then, the following solution of k can be obtained

k = H†T. (1.53)

where H† is the Moore-Penrose generalized inverse matrix.

1.4 Statement of the Problem

Selecting appropriate configurations in architecture of FNN, such as the number of hid-

den layers, when solving differential equations may enhance solution accuracy. How-

ever, it is noteworthy that these investigations have mainly concentrated on ODEs.

The question of whether including more than one hidden layer in FNN is necessary for

solving FDEs remains unanswered.
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Besides, a critical concern when working with FNN with more than one hidden

layer is computational time, due to the iterative looping statements used in computer

programs. The increased number of hidden layers results in a significant increase in

execution time, often lasting for hours.

In aspect of optimization, there is less concern on realizing the capability of

first-order optimization method on solving FDEs. Since there are many types of them,

it is necessary to select only several its variant and compare their performances. This

style of study has not yet been performed in any previous of studies, not only in ODEs

but also in FDEs.

Next, a specific variant of second-order optimization methods, namely the BFGS

method, has proven effective in solving FDEs in the Caputo sense when employed

with FNNs in a single hidden layer. However, the effectiveness of this optimization

method in solving FDEs remains a subject of inquiry when dealing with FNNs

equipped with two hidden layers.

So far, the suggested optimizations are iterative. An alternative is the ELM, a

non-iterative approach demonstrating significant results in terms of accuracy and

computational efficiency in solving ODEs. However, the potential of ELM in

solving FDEs using FNN remains unexplored. Additionally, the combined impact of

implementing orthogonal polynomials as a hidden layer along with ELM for solving

FDEs is unknown and requires further exploration.
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1.5 Objective of the Study

In this study, the aim of the research is to propose several schemes based on one of the

variants in ANN known as FNN to solve FDEs and FFDEs. Several objectives of this

research are highlighted as follows:

i. To develop FNN with vectorized algorithm (FNNVA) for solving FDEs in Ca-

puto sense (FDEsC) using first-order optimization techniques.

ii. To construct a single hidden layer of FNN based on Chelyshkov Polynomial

(SHLFNNCP) for solving FDEs in Caputo sense (FDEsC) using ELM.

iii. To design extended single hidden layer of FNN (ESHLFNN) for solving FDEs

in Caputo-Fabrizio sense (FDEsCF) using BFGS method.

iv. To extend FNN in two hidden layers with vectorized algorithm (FNN2HLVA)

for solving FFDEs in Caputo sense with power law kernel (FFDEsCP) using

adaptive moment estimation method (Adam).

1.6 Scope of the Study

This research is focused to solve initial value problem (IVP) for both FDEs and FFDEs.

In the aspect of ANN architecture, this research consider fully connected feedforward

neural network, in which the information or value from the input layer is in forward

pass. There is no path of value going to the node on the same layer or previous layer.

Besides, unsupervised learning is considered as there is no targeted solution consid-

ered.
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1.7 Significance of the Study

The proposed schemes prioritize speed and efficiency in addressing FDEsC and

FFDEsCP by emphasizing a vectorized algorithm. This algorithm employs vector

and matrix computations to reduce computational load, particularly in FNN parts like

forward propagation, avoiding conventional looping statements. Additionally, the

incorporation of Hessian information via the BFGS method, as the third objective,

aims to speed up the training process by reducing the required iterations. Notably,

the scheme associated with the second objective eliminates the need for an iterative

optimization procedure in adjusting network parameters, leading to a clear reduction

in computational time. In summary, these schemes offer time savings and user-friendly

solutions for solving FDEs and FFDEs.

Furthermore, traditional numerical methods typically provide a discrete solu-

tion, requiring repetitive algorithm runs for different step sizes, which obviously

time inefficient process. The proposed schemes in all objectives, however, naturally

generate continuous solutions. These solutions extend beyond discretized points,

encompassing values within reasonable absolute error from the exact solution.

Consequently, researchers avoid the time-consuming repetition of procedures.

Last but not least, the implementation of proposed scheme for all the objectives

are not restricted for only specific type of problems but it also can be extended to

various type of them such as multi-order FDEs or system of FFDEs. Consequently,

this versatility allows researchers to save a considerable amount of time and effort,
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as they need only understand and implement one method to address various types

of problems, as opposed to grappling with different numerical techniques for each

distinct problem they encounter.

1.8 Organization of the Thesis

The thesis is organized as follows:

In Chapter 2, a historical reviews of fractional calculus is presented. Then, the

emergence of fractal-fractional calculus is described. Next, a review regarding on

ANN on solving differential equation is briefly discussed. The topic covers thereotical

studies involving ANN as a universal approximator, ANN on solving ODEs, ANN for

solving FDEs and ANN for solving FFDEs. The theoretical difficulties regarding on

the convergences and stability of ANN is also highlighted. Finally, research gap is

discussed.

Chapter 3 describes the new numerical scheme based on FNN to solve FDEsC

using selected first-order optimization techniques which are simple GD, MM and

Adam. At the first stage, architecture of FNN with many hidden layers is exposed.

Then, the methodology of the scheme is briefly discussed through two stages: method

formulation and vectorized algorithm. The method formulation involved the form

of FDEC that will be solved, the approximation of Caputo fractional derivatives and

learning algorithm. The vectorized algorithm is then designed to make the training

process work efficiently. Four problems involving FDEsC then are listed. Finally,

the designed scheme is implement on these problems to show the effectiveness of
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the designed scheme through investigation on different number of nodes, hidden

layer, learning rate and first-order optimization techniques that has been extensively

discussed based on the presented numerical results.

Chapter 4 discusses the newly single hidden layer of FNN based on Chelyshov

polynomial for solving FDEsC using ELM. A basic preliminaries involve in this

chapter is listed at the beginning of this chapter including the definition of Chelyshkov

polynomials and some properties of the Caputo derivative. The architecture of this

type of FNN that make use Chelyshkov polynomials as activation function is then

presented. The methodology for solving specific type of FDEC using the proposed

scheme is then briefly explained. To investigate the applicability and performance of

the proposed method, five real world application problems are solved. The discussion

has been discussed at the end of the chapter based on the numerical results obtained.

Chapter 5 introduces a new scheme based on extended single layer of FNN for

solving FDEsCF using BFGS method. At first, an architecture of extended single

layer of FNN with appropriate selection of activation function is presented. Then,

the proposed scheme is ddiscussed through three stages. At first stage, the method

formulation involving type of FDECF, construction of approximation solution and

approximation of Caputo-Fabrizio derivative is derived. Then, the vectorization is

derived for forward propagation, approximate solution and error function. In the last

stage, the learning solver that use BFGS method is described. Finally, five problems

are presented and tested with the scheme alongside with the discussion.
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Chapter 6 present new numerical scheme based on FNN in two hidden layer

using Adam to solve FFDEsCP. At initial stage, the architecture of FNN in two hidden

layer is presented. This include the forward propagation and activation function

used in the architecture. Then, the methodology involving method framework and

vectorized algorithm is briefly explained. Three problems involving FFDEsCP

are presented to investigate the applicability of the proposed scheme. Finally, the

numerical results is provided and discussed.

Finally, the overall discussion and finding in the thesis is concluded in the Chapter

7. At first, several conclusions can be drawn from this work is highlighted. Then,

some potential future works that could be expanded further are suggested to interested

researcher in the recommendation section.
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Chen, W., Sun, H., Zhang, X., and Korošak, D. (2010a). Anomalous Diffusion Mod-
eling by Fractal and Fractional Derivatives. Computers & Mathematics with Appli-
cations, 59(5):1754–1758.
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Zúñiga-Aguilar, C., Gómez-Aguilar, J., Romero-Ugalde, H., Escobar-Jiménez, R.,
Fernández-Anaya, G., and Alsaadi, F. E. (2021). Numerical Solution of Fractal-
Fractional Mittag–Leffler Differential Equations With Variable-Order Using Artifi-
cial Neural Networks. Engineering with Computers, 38:2669–2682.
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