
© C
OPYRIG

HT U
PMFEEDFORWARD NEURAL NETWORK FOR SOLVING PARTICULAR

FRACTIONAL DIFFERENTIAL EQUATIONS

By

MOHD RASHID BIN ADMON

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,
in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

January 2024

 IPM 2024 4

© C
OPYRIG

HT U
PM

All material contained within the thesis, including without limitation text, logos,
icons, photographs and all other artwork, is copyright material of Universiti Putra
Malaysia unless otherwise stated. Use may be made of any material contained within
the thesis for non-commercial purposes from the copyright holder. Commercial use of
material may only be made with the express, prior, written permission of Universiti
Putra Malaysia.

Copyright ©Universiti Putra Malaysia

© C
OPYRIG

HT U
PM

DEDICATIONS

To all of my love
Father Admon Ahmad & Mother Jaliah Sulkiman

Elder Brother Mohammad Ali, Mohd Fairul Radzi & Mohd Ariff
Elder Sister Nor Delyliana & Siti Mastura

Brother-in-Law Shaiful Haili
Sister-in-Law Nik Hazura, Noor Aslinda, Faizah

Nephews Zahin Irfan, Muhammad Ariqq, Muhammad Ahnaf, Muhammad Anas,
Muhammad Faeeq Luthfi & Rizqin

Niece Nur Farah Adila, Nur Fasha Amira, Nur Adelia Amani, Nur Aqilah Husna, Nur
Aisyah Imaan & Aisyah

Their support and company made my Ph.D. journey went seamlessly

And most importantly;
To Myself

A guy who works so hard to realize his dream as a Ph.D. graduate.

© C
OPYRIG

HT U
PM

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment
of the requirement for the degree of Doctor of Philosophy

FEEDFORWARD NEURAL NETWORK FOR SOLVING PARTICULAR
FRACTIONAL DIFFERENTIAL EQUATIONS

By

MOHD RASHID BIN ADMON

January 2024

Chairman : Associate Professor Norazak bin Senu, PhD
Institute : Mathematical Research

Fractional differential equations (FDEs) model real-world phenomena capturing mem-

ory effects. However, existing numerical methods are mostly traditional, prompting the

need for innovative approaches. Artificial neural networks (ANNs), a machine learn-

ing tool, have exhibited promising capabilities in solving differential equations. This

research aims to develop a scheme based on a feedforward neural network (FNN) with

a vectorized algorithm (FNNVA) for solving FDEs in the Caputo sense (FDEsC) using

selected first-order optimization techniques: simple gradient descent (GD), momentum

method (MM), and adaptive moment estimation method (Adam). Then, a single hidden

layer of FNN based on Chelyshkov polynomials with an extreme learning machine al-

gorithm (SHLFNNCP-ELM) is constructed for solving FDEsC. Next, a scheme based

on an extended single hidden layer of FNN using a second-order optimization tech-

nique known as the Broyden–Fletcher–Goldfarb–Shanno method (ESHLFNN-BFGS)

is designed to solve FDEs in the Caputo-Fabrizio sense (FDEsCF). This study also

focuses on solving fractal-fractional differential equations in the Caputo sense with a

i

© C
OPYRIG

HT U
PM

power-law kernel (FFDEsCP) using FNN in two hidden layers with a vectorized al-

gorithm alongside Adam (FNN2HLVA-Adam). In the first scheme, a vectorized algo-

rithm and automatic differentiation are implemented to minimize computational costs.

Numerical results indicated that FNNVA with Adam in one or two hidden layers, 5

or 10 nodes, and an appropriate learning rate offers superior accuracy compared to

FNNVA with GD and FNNVA with MM. The second approach relies on Chelyshkov

basis functions for approximation and utilizes the extreme machine learning algorithm

for weight determination, achieving high accuracy and low computational time. The

third scheme employs the BFGS solver during the learning process, attained satisfac-

tory numerical results with fewer iterations. The final scheme utilizes a two hidden

layer FNNVA, with Adam optimization, using suitable number of nodes and value of

learning rates to handle problems involving memory and fractal concepts. The nu-

merical solutions obtained are consistent with reference solutions. In conclusion, all

proposed schemes deliver more accurate results compared to existing methods while

maintaining low computational costs.

SDG: Feedforward neural network, Fractal-fractional differential equations, Fractional

differential equations, Hidden layers, Vectorized algorithm

ii

© C
OPYRIG

HT U
PM

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

RANGKAIAN NEURAL SUAP MAJU UNTUK MENYELESAIKAN
PERSAMAAN PEMBEZAAN PECAHAN TERTENTU

Oleh

MOHD RASHID BIN ADMON

Januari 2024

Pengerusi : Profesor Madya Norazak bin Senu, PhD
Institut : Penyelidikan Matematik

Persamaan pembezaan pecahan (PPP) memodelkan fenomena dunia nyata dengan

menangkap kesan memori. Walau bagaimanapun, kaedah berangka semasa se-

cara kebanyakannya adalah konvensional, menggesa keperluan untuk pendekatan in-

ovatif. Rangkaian neural buatan (RNB), sebuah alat pembelajaran mesin, telah

menunjukkan keupayaan yang menjanjikan dalam menyelesaikan persamaan pem-

bezaan. Kajian ini bertujuan untuk membangunkan satu skema berasaskan rangka-

ian neural suap maju (RNSM) dengan algoritma vektor (RNSMAV) untuk menye-

lesaikan PPP dalam pemahaman Caputo (PPPC) menggunakan teknik pengopti-

muman peringkat pertama yang dipilih iaitu turun cerun mudah (TCM), kaedah

momentum (KM) dan kaedah anggaran momen penyesuaian (KAMP). Kemudian,

lapisan tersembunyi tunggal RNSM berdasarkan polinomial Chelyshkov dengan al-

goritma mesin pembelajaran ekstrim (LTTRNSMPC-MPE) dibina untuk menyele-

saikan PPPC. Seterusnya, skema berdasarkan lapisan tersembunyi tunggal RNSM

yang diperluaskan menggunakan teknik pengoptimuman peringkat kedua yang dike-

iii

© C
OPYRIG

HT U
PM

nali sebagai kaedah Broyden–Fletcher–Goldfarb–Shanno (LTTRNSMD-BFGS) di-

reka untuk menyelesaikan PPP dalam pemahaman Caputo-Fabrizio (PPPCF). Ka-

jian ini juga menumpukan kepada penyelesaian persamaan pembezaan pecahan frak-

tal dalam pemahaman Caputo dengan inti hukum kuasa (PPPFCIHK) menggunakan

skema berdasarkan RNSM dalam dua lapisan tersembunyi dengan algoritma vek-

tor bersama-sama KAMP (RNSM2LTAV-KAMP). Dalam skema pertama, algoritma

vektor dan pembezaan automatik dilaksanakan untuk mengurangkan kos komputasi.

Hasil berangka menunjukkan bahawa RNSMAV dengan KAMP dalam satu atau dua

lapisan tersembunyi, 5 atau 10 nod, dan kadar pembelajaran yang sesuai menawarkan

kejituan yang lebih unggul berbanding RNSMAV dengan TCM dan RNSMAV den-

gan KM. Skema kedua bergantung kepada fungsi asas Chelyshkov untuk penyelesa-

ian dan menggunakan algoritma mesin pembelajaran ekstrim untuk penentuan berat

rangkaian, telah menghasilkan kejituan yang tinggi dan masa pengiraan yang rendah.

Skema ketiga menggunakan penyelesai BFGS semasa proses pembelajaran, mencapai

keputusan berangka yang memuaskan dengan bilangan lelaran yang sedikit. Skema

terakhir menggunakan dua lapisan tersembunyi RNSMAV, dengan pengoptimuman

Adam, serta bilangan nod dan nilai kadar pembelajaran yang sesuai untuk menan-

gani masalah berkaitan dengan memori dan konsep fraktal. Penyelesaian berangka

yang diperolehi adalah konsisten dengan penyelesaian rujukan. Kesimpulannya, se-

mua skema yang dicadangkan memberikan hasil yang lebih tepat berbanding dengan

kaedah sedia ada, sambil mengekalkan kos pengiraan yang rendah.

SDG: Algoritma vektor, Lapisan tersembunyi, Persamaan pembezaan pecahan, Per-

samaan pembezaan pecahan fraktal, Rangkaian neural suap maju

iv

© C
OPYRIG

HT U
PM

ACKNOWLEDGEMENTS

In the name of Allah and with regards to Prophet Muhammad S.A.W for His blessing

for giving me strength and health to complete this research.

First and foremost, a thousand thanks to my supervisor, Associate Professor Dr.

Norazak Senu for his encouragement, patience, enthusiasm and immense knowledge.

His guidance has helped me constantly in conducting this research and in writing

this thesis. I am thankful to my co-supervisor, Dr. Ali Ahmadian for his absolute

support and guidance through idea, facts and publications of my research. Also to

other supervisory committee member, Professor Dr. Zanariah Abdul Majid and Dr.

Mohamat Aidil Mohamat Johari for helping me during the completion of this thesis.

In preparing this thesis, I share the credit of my work with my beloved family

because they continuously gave me strength and support to finish this project.

Last but not least, thanks to lecturers, friends and everyone, that have contributed

directly and indirectly in the duration of conducting this research.

v

© C
OPYRIG

HT U
PM

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been
accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The
members of the Supervisory Committee were as follows:

Norazak bin Senu, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Zanariah binti Abdul Majid, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

Mohamat Aidil bin Mohamat Johari, PhD
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Member)

Ali Ahmadian, PhD
Senior Lecturer
College of Engineering and Aviation
Central Queensland University
Australia
(Member)

ZALILAH MOHD SHARIFF, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 18 April 2024

vii

© C
OPYRIG

HT U
PM

TABLE OF CONTENTS

Page

i
iii
v

vi
xiii

 xvi
xx

ABSTRACT
ABSTRAK
ACKNOWLEDGEMENTS
APPROVAL
LIST OF TABLES
LIST OF FIGURES
LIST OF ABBREVIATIONS

CHAPTER

1 INTRODUCTION

1.1 Fractional Calculus 1
1.2 Fractal-Fractional Calculus 4
1.3 Artificial Neural Network 6

1.3.1 Basic Concepts 6
1.3.2 Learning Process 10
1.3.3 Activation Function 12
1.3.4 Automatic Differentiation 14
1.3.5 First-Order Optimization Methods 18
1.3.6 Broyden-Fletcher-Goldfarb-Shanno Optimization Method 21
1.3.7 Extreme Learning Machine Algorithm 23

1.4 Statement of the Problem 25
1.5 Objective of the Study 27
1.6 Scope of the Study 27
1.7 Significance of the Study 28
1.8 Organization of the Thesis 29

2 LITERATURE REVIEW 32

2.1 Introduction 32
2.2 History Overview of Fractional Calculus 32
2.3 The Emergence of Fractal-Fractional Calculus 34
2.4 ANN for Solving Differential Equations 37

2.4.1 Universal Approximators 37
2.4.2 ANN for Solving Ordinary Differential Equations 39
2.4.3 ANN for Solving Fractional Differential Equations 50
2.4.4 ANN for Solving Fractal-Fractional Differential Equations 56

2.5 Theoretical Difficulties on Convergence and Stability of ANN 60
2.6 Research Gap 66

x

1

© C
OPYRIG

HT U
PM

3 FEEDFORWARD NEURAL NETWORK WITH VECTORIZED
 ALGO RITHM FOR SOLVING FRACTIONAL DIFFERENTIAL

EQUATIONS ��

3.1 Introduction 70
3.2 Feedforward Neural Network 71

3.2.1 Architecture 71
3.2.2 Forward Propagation 73
3.2.3 Selection on Activation Function 74

3.3 Methodology for Solving FDEC Using FNNVA with First-Order Op-
timization 74
3.3.1 Method Formulation 75
3.3.2 Vectorized Algorithm 86
3.3.3 Algorithm for FNNVA Scheme 96

3.4 Problems Tested 97
3.5 Numerical Results 98
3.6 Discussion 125

4 FEEDFORWARD NEURAL NETWORK BASED ON
 CHELYSHKOV 3O/<NO0I$/6)OR 6O/9IN*)R$CTION$/

 DI))(R(NTI$/ (4U$TION6 13�

4.1 Introduction 136
4.2 A Single Hidden Layer of Feedforward Neural Network Based on

Chelyhskov Polynomial 139
4.3 Methodology for Solving FDEC using SHLFNNCP with Extreme

Machine Learning Algorithm 141
4.4 Algorithm for SHLFNNCP-ELM Scheme 147
4.5 Problem Tested 148
4.6 Numerical Results 152
4.7 Discussion 162

5 AN EXTENDED SINGLE HIDDEN LAYER OF FEEDFORWARD
N(URAL NETWORK FOR SOLVING FRACTIONAL
DIFFERENTIAL EQUATIONS

5.1 Introduction
5.2 Extended Single Hidden Layer of Feedforward Neural Network

167
168

5.2.1 Architecture 168
5.2.2 Selection on Activation Function 171

5.3 Proposed Scheme based on ESHLFNN with BFGS for Solving FDECF 173
5.3.1 Method Formulation 173
5.3.2 Vectorization 177
5.3.3 Learning Solver: Broyden-Fletcher-Goldfarb-Shanno Method 182
5.3.4 Algorithm for ESHLFNN-BFGS Scheme 184

5.4 Problems Tested 186
5.5 Numerical Results 188
5.6 Discussion 204

xi

1��

© C
OPYRIG

HT U
PM

6 FEEDFORWARD NEURAL NETWORK IN TWO HIDDEN

211

211

/$<ERS WITH VECTORIZED ALGORITHM FOR SOLVING
FRACTAL-FRACTIONAL DIFFERENTIAL EQUATIONS

6.1 Introduction
6.2 Feedforward Neural Network in Two Hidden Layers 212

6.2.1 Forward Propagation 213
6.2.2 Selection on Activation Function 214

6.3 Methodology for Solving FFDECP Using FNN2HLVA with Adam
Optimization 215
6.3.1 Method Framework 215
6.3.2 Vectorized Algorithm 222
6.3.3 Algorithm for FNN2HLVA-Adam Scheme 229

6.4 Problems Tested 230
6.5 Numerical Results 233
6.6 Discussion 250

7 CONCLUSIONS AND RECOMMENDATIONS 2��

7.1 Conclusion 255
7.2 Recommendation 258

BIBLIOGRAPHY 2��
APPENDICES 2��
BIODATA OF STUDENT 2�3
LIST OF PUBLICATIONS 2��

xii

© C
OPYRIG

HT U
PM

LIST OF TABLES

Table Page

3.1 Details of parameters in simple GD, MM and Adam. 86

3.2 Comparison of MAE and time taken for Problem 1 for a = 0.7 using
FNNVA-GD, FNNVA-MM and FNNVA-Adam with different num-
bers of nodes in one hidden layer and two hidden layers using l = 0.001.102

3.3 Comparison of MAE and time taken for Problem 1 for a = 0.7
using FNNVA-GD, FNNVA-MM and FNNVA-Adam with different
numbers of nodes in one hidden layer and two hidden layers using
l = 0.01. 103

3.4 Comparison of MAE and time taken for Problem 1 for a = 0.7 using
FNNVA-Adam with different numbers of nodes in one hidden layer
and two hidden layers using l = 0.1. 103

3.5 Numerical results of Problem 1 for a = 0.75 using FNNVA-Adam
(1HL10N2k) and FNNVA-Adam (2HL10N5k) with l = 0.1 and
l = 0.001 respectively. 104

3.6 Numerical results of Problem 1 for a = 0.9 using FNNVA-Adam
(1HL10N2k) and FNNVA-Adam (2HL10N5k) with l = 0.1 and
l = 0.001 respectively. 104

3.7 Comparison of numerical results of Problem 1 for a = 0.5 using
FNNVA-Adam (1HL10N2k) and FNNVA-Adam (2HL10N5k) with
NU and PSO-SA. 108

3.8 Comparison of MAE and time taken for Problem 2 using FNNVA-GD,
FNNVA-MM and FNNVA-Adam with two different numbers of nodes
in one hidden layer. All results were run up to 1000 iterations. 109

3.9 Comparison of numerical results of Problem 2 using FNNVA-
MM (1HL5N1k) and FNNVA-Adam (1HL5N1k) with ILT-LWOM,
HWCM, NN-IPA, ANN-BFGS and GA-PS. 111

3.10 Comparison of MAE and time taken for Problem 3 when a = 0.7 using
FNNVA-GD, FNNVA-MM and FNNVA-Adam with different num-
bers of nodes in one hidden layer and two hidden layers with l = 0.001.114

3.11 Comparison of MAE and time taken for Problem 3 when a = 0.7 using
FNNVA-GD, FNNVA-MM and FNNVA-Adam with different num-
bers of nodes in one hidden layer and two hidden layers with l = 0.01. 115

3.12 Comparison of MAE and time taken for Problem 3 when a = 0.7 using
FNNVA-Adam with different numbers of nodes in 1 hidden layer and
2 hidden layers with l = 0.1. 115

xiii

© C
OPYRIG

HT U
PM

3.13 Numerical results of Problem 3 for a = 0.75 using FNNVA-Adam
(1HL5N2k) and FNNVA-Adam (2HL10N5k) with l = 0.01. 116

3.14 Numerical results of Problem 3 for a = 0.9 using FNNVA-Adam
(1HL5N2k) and FNNVA-Adam (2HL10N5k) with l = 0.01. 116

3.15 Comparison of numerical results of Problem 3 for a = 0.5 and a = 0.7
between FNNVA-Adam (1HL5N2k), FNNVA-Adam (2HL10N5k)
and NU. 119

3.16 Comparison of MAE and time taken for Problem 4 using FNNVA-GD,
FNNVA-MM and FNNVA-Adam with different numbers of nodes in
one hidden layer. All results were run up to 1000 iterations. 120

3.17 Comparison of numerical results of Problem 4 between FNNVA-MM
(1HL5N1k), FNNVA-Adam (1HL5N1k), HWCM and ANN-BFGS. 122

4.1 Absolute errors of SHLFNNCP-ELM for Problem 1 using
N = 4,ms = 11 with different values of a . 154

4.2 Comparison of the absolute errors between SHLFNNCP-ELM
(N = 4,ms = 11) and OMCP using N = 8 for Problem 1 with a = 0.25. 154

4.3 Comparison of the absolute errors between SHLFNNCP-ELM
(N = 4,ms = 11) and OMCP using N = 8 for Problem 1 with a = 0.85. 155

4.4 Comparison of the absolute errors between SHLFNNCP-ELM
(N = 13,ms = 16) with FMWNN-PSOASA, LeNN and NN-IPA for
Problem 2 when a = 1.5. 156

4.5 Comparison of the numerical solution between SHLFNNCP-ELM
(N = 13,ms = 16) with MA for Problem 2 when a = 1.75. 156

4.6 Comparison of the approximate solution and absolute errors between
SHLFNNCP-ELM (N = 14,ms = 18) with LeNN for Problem 3. 157

4.7 Comparison of the numerical solution and absolute errors between
SHLFNNCP-ELM (N = 10,ms = 13) with CSM for Problem 4 when
k = 1. 157

4.8 Numerical solutions of SHLFNNCP-ELM using N = 10,ms = 13 for
Problem 4 with k = 0.1. 158

4.9 Numerical solutions of SHLFNNCP-ELM using N = 10,ms = 13 for
Problem 4 with k = 0.005. 158

4.10 Numerical solution of SHLFNNCP-ELM (N = 7,ms = 12) for Prob-
lem 4 when k = 0.07 in domain [0,1.5]. 159

4.11 Comparison of the absolute error between SHLFNNCP-ELM
(N = 3,ms = 11) with RKM and CM for Problem 5, Case 1 when p = 1.159

xiv

© C
OPYRIG

HT U
PM

5.1 Notations in the architecture of ESHLFNN. 170

5.2 Settings for argument in optimset used in ESHLFNN-BFGS scheme. 184

5.3 Numerical solution and absolute error obtained by ESHLFNN-BFGS
for Problem 1 with a = 0.75. 189

5.4 Numerical solution and absolute error obtained by ESHLFNN-BFGS
for Problem 1 with a = 0.95. 189

5.5 Comparison of L2-errors between ESHLFNN-BFGS and NSFR for
Problem 1 when a = 0.9. 192

5.6 Comparison of MAE between ESHLFNN-BFGS and MQ-RBF for
Problem 1 with different values of a . 192

5.7 Numerical solution and absolute error of ESHLFNN-BFGS for Prob-
lem 2. 192

5.8 Numerical solution and absolute error of ESHLFNN-BFGS for Prob-
lem 3 with a = 0.75. 195

5.9 Numerical solution and absolute error of ESHLFNN-BFGS for Prob-
lem 3 with a = 0.95. 195

5.10 Comparison of L2-errors between ESHLFNN-BFGS and NSFR for
Problem 3 when a = 0.5. 198

5.11 Comparison of the numerical solution and absolute error between
ESHLFNN-BFGS and NPCM for Problem 4. 198

5.12 Numerical solution and absolute error of ESHLFNN-BFGS for Prob-
lem 5 with a = 0.5. 200

5.13 Numerical solution and absolute error of ESHLFNN-BFGS for Prob-
lem 5 with a = 0.7. 200

5.14 Numerical solution and absolute error of ESHLFNN-BFGS for Prob-
lem 5 in domain [0,1.5] when a = 0.25. 203

6.1 Numerical comparison of solutions obtained by FNN2HLVA-Adam
with NS-LPI of Problem 1 at different values of a and b . 235

6.2 Comparison of the proposed scheme with NIT and ANN-GD for Prob-
lem 2 at a = 1 and b = 1. 244

B.1 Weight obtained for a = 0.25, a = 0.5 and a = 0.75. 279

B.2 Weight obtained for a = 0.8, a = 0.85 and a = 0.9. 279

xv

© C
OPYRIG

HT U
PM

LIST OF FIGURES

Figure Page

1.1 Artificial neuron/node. 6

1.2 Mathematical model of ANN. 7

1.3 Feedforward neural network. 8

1.4 Types of ANN based on layer. 9

1.5 Learning process in ANN. 12

1.6 Computational graph. 16

1.7 Computational graph with value at each node. 16

1.8 Computational graph. 17

1.9 Simple GD with (a) large learning rate and (b) small learning rate. 18

1.10 Momentum dampens the oscillation. 19

3.1 Schematic diagram of FNN in many hidden layers. 71

3.2 Example of convergence of network parameters. 105

3.3 Example of convergence of network parameters in vectorized form. 105

3.4 Convergence results for FNNVA-Adam (1HL10N2k) and FNNVA-
Adam (2HL10N5k) with l = 0.1 and l = 0.001 respectively for Prob-
lem 1 when a = 0.75. 106

3.5 Convergence results for FNNVA-Adam (1HL10N2k) and FNNVA-
Adam (2HL10N5k) with l = 0.1 and l = 0.001 respectively for Prob-
lem 1 when a = 0.9. 107

3.6 Convergence results of FNNVA-MM (1HL5N1k) and FNNVA-Adam
(1HL5N1k) with l = 0.1 for Problem 2. 110

3.7 Convergence results FNNVA-MM (1HL5N1k) for numerical compar-
ison in Table 3.9 for Problem 2. 112

3.8 Convergence results of FNNVA-Adam (1HL5N1k) for numerical com-
parison in Table 3.9 for Problem 2. 113

3.9 Convergence results for FNNVA-Adam (1HL5N2k) and FNNVA-
Adam (2HL10N5k) with l = 0.01 for Problem 3 when a = 0.75. 117

3.10 Convergence results for FNNVA-Adam (1HL5N2k) and FNNVA-
Adam (2HL10N5k) with l = 0.01 for Problem 3 when a = 0.9. 118

xvi

© C
OPYRIG

HT U
PM

3.11 Convergence results of FNNVA-MM (1HL5N1k) and FNNVA-Adam
(1HL5N1k) with l = 0.01 and l = 0.1 respectively for Problem 4. 121

3.12 Convergence results of FNNVA-MM (1HL5N1k) for numerical com-
parison in Table 3.17 for Problem 4. 123

3.13 Convergence results of FNNVA-Adam (1HL5N1k) for numerical com-
parison in Table 3.17 for Problem 4. 124

4.1 Schematic diagram of SHLFNNCP. 140

4.2 Graphical comparison of absolute error of SHLFNNCP-ELM
(N = 4,ms = 11) for Problem 1 when a = 0.4 and a = 0.8. 155

4.3 The comparison between the numerical solution obtained by
SHLFNNCP-ELM (N = 3,ms = 11) with exact solution for Problem
5, Case 1 when p = 1 in domain [0,6]. 160

4.4 The comparison between the numerical solution obtained by
SHLFNNCP-ELM (N = 3,ms = 11) with exact solution for Problem
5, Case 1 when p = 1 in domain [0,12]. 160

4.5 The comparison between the numerical solution obtained by
SHLFNNCP-ELM (N = 3,ms = 11) with exact solution for Problem
5, Case 2 when p = 2 in domain [0,6]. 161

4.6 The comparison between the numerical solution obtained by
SHLFNNCP-ELM (N = 3,ms = 11) with exact solution for Problem
5, Case 2 when p = 2 in domain [0,12]. 161

5.1 Schematic diagram of ESHLFNN. 169

5.2 Convergence of network parameters and error functions of ESHLFNN-
BFGS for Problem 1 with a = 0.75. 190

5.3 Convergence of network parameters and error functions of ESHLFNN-
BFGS for Problem 1 with a = 0.95. 191

5.4 Convergence of network parameters and error function of ESHLFNN-
BFGS for Problem 2. 193

5.5 Absolute error of ESHLFNN-BFGS for Problem 2 in the domain [0,3]. 194

5.6 Absolute error of ESHLFNN-BFGS for Problem 2 in the domain [0,6]. 194

5.7 Convergence of network parameters and error functions of ESHLFNN-
BFGS for Problem 3 with a = 0.75. 196

5.8 Convergence of network parameters and error functions of ESHLFNN-
BFGS for Problem 3 with a = 0.95. 197

5.9 Convergence of network parameters of ESHLFNN-BFGS for Problem 4.199

xvii

© C
OPYRIG

HT U
PM

5.10 Convergence of error function of ESHLFNN-BFGS for Problem 4. 199

5.11 Convergence of network parameters and error functions of ESHLFNN-
BFGS for Problem 5 with a = 0.5. 201

5.12 Convergence of network parameters and error functions of ESHLFNN-
BFGS for Problem 5 with a = 0.7. 202

5.13 Absolute error of ESHLFNN-BFGS for Problem 5 in domain [0,3]
when a = 0.25 204

6.1 Schematic diagram of FNN2HL. 213

6.2 Graphical comparison of solution given by FNN2HLVA-Adam and so-
lution given NS-LPI for Problem 1 at different values of a and b . 236

6.3 Convergence of the network parameters of FNN2HLVA-Adam with
different values of a and b for Problem 1. 237

6.4 Convergence of the error function of FNN2HLVA-Adam with different
values of a and b for Problem 1. 238

6.5 Graphical comparison of solutions obtained by FNN2HLVA-Adam for
Problem 1 at different values of a and b with exact solution. 239

6.6 Absolute error of FNN2HLVA-Adam when a = 1 and b = 1 for Prob-
lem 1. 239

6.7 Solutions obtained by FNN2HLVA-Adam of various b with fixed a
for Problem 1. 240

6.8 Solutions obtained by FNN2HLVA-Adam of various a with fixed b
for Problem 1. 241

6.9 Graphical comparison of solutions obtained by FNN2HLVA-Adam for
Problem 2 when a = 0.99 is fixed with exact solution. 242

6.10 Graphical comparison of solutions obtained by FNN2HLVA-Adam for
Problem 2 when a = 0.8,0.9 with exact solution. 242

6.11 Graphical comparison of solutions obtained by FNN2HLVA-Adam for
Problem 2 when a = 0.65,0.8 and 0.9 with exact solution. 243

6.12 Absolute error of FNN2HLVA-Adam when a = 1 and b = 1 for Prob-
lem 2. 243

6.13 Numerical results of FNN2HLVA-Adam for Problem 3 using a = 0.87
and b = 0.97 with comparison of NS-LPI. 245

6.14 Numerical results of FNN2HLVA-Adam for Problem 3 using a = 0.95
and b = 0.95 with comparison of NS-LPI. 246

xviii

© C
OPYRIG

HT U
PM

6.15 Convergence of network parameters for Problem 3 using a = 0.87 and
b = 0.97. 247

6.16 Convergence of network parameters for Problem 3 using a = 0.95 and
b = 0.95. 248

6.17 Numerical results of FNN2HLVA-Adam for a = 0.87 and b = 0.97
with NS-LPI for Problem 3. The CPU time is 1345.71s. 249

6.18 Numerical results of FNN2HLVA-Adam for a = 0.9 and b = 0.9 with
NS-LPI for Problem 3. The CPU time is 1445.29s. 249

A.1 Computational Graph for trial solution A.2 in 1 hidden layer. 271

A.2 Computational graph for first order derivative of trial solution A.1 with
respect to x in 1 hidden layer. 273

xix

© C
OPYRIG

HT U
PM

LIST OF ABBREVIATIONS

AD Automatic Differentiation

Adam Adaptive Moment Estimation Method

ADM Adomian Decomposition Method

AGM Akbari-Ganji’s Method

AI Artificial Intelligence

ANN Artificial Neural Network

ANN-SQP Artificial Neural Network with Sequential Quadratic Programming

BeNN Bernstein Neural Network

BFGS Broyden–Fletcher–Goldfarb–Shanno

ChNN Chebyshev Neural Network

CF Caputo-Fabrizio

DBF Deep Belief Network

DNN Deep Neural Network

ELM Extreme Learning Machine Algorithm

ESHLFNN Extended Single Hidden Layer of Feedforward Neural Network

FC Fractional Calculus

FDM Finite Difference Method

FEM Finite Element Method

FFD Fractal-Fractional derivative

xx

© C
OPYRIG

HT U
PM

FDE/FDEs Fractional Differential Equation/Fractional Differential Equations

FFDE/FFDEs Fractal-Fractional Differential Equation/Fractal-Fractional Differential
Equations

FDEC/FDEsC Fractional Differential Equation in Caputo sense/Fractional Differential
Equations in Caputo sense

FDECF/FDEsCF Fractional Differential Equation in Caputo-Fabrizio sense/Fractional
Differential Equations in Caputo-Fabrizio sense

FFDECP/FFDEsCP Fractal-Fractional Differential Equation in Caputo sense with power law
kernel/ Fractal-Fractional Differential Equations in Caputo sense with
power law kernel

FPDEs Fractional Partial Differential Equations

FPDEsC Fractional Partial Differential Equations in Caputo sense

FNN Feedforward Neural Network

FNNVA Feedforward Neural Network with Vectorized Algorithm

FNN2HLVA Feedforward Neural Network in Two Hidden Layers with Vectorized
Algorithm

GA Genetic Algorithm

GA-PS Genetic Algorithm Hybrid with Pattern Search Technique

IVP Initial-Value Problem

LeNN Legendre Neural Network

LM Levenberg-Marquardt Algorithm

ML Machine Learning

MM Momentum Method

MEMS Microelectromechanical System

ODE/ODEs Ordinary Differential Equation/Ordinary Differential Equations

PS Pattern Search Technique

PSO-SA Particle Swarm Optimization Algorithm with Simmulated Annealing

xxi

© C
OPYRIG

HT U
PM

R-L Riemann-Liouville

RNN Recurrent Neural Network

RMSProp Root Mean Squared Propagation

GD Simple Gradient Descent

SHLFNNCP Single Hidden Layer of Feedforward Neural Network Based on
Chelyshkov Polynomial

VIM Variational Iteration Method

xxii

© C
OPYRIG

HT U
PM

CHAPTER 1

INTRODUCTION

1.1 Fractional Calculus

Fractional calculus (FC) is one of the branches of mathematics that deals with the

theory and application of derivatives and integrals of arbitrary order (real or complex

numbers) (Miller and Ross, 1993). It can be considered a modern version of mathe-

matical knowledge as it overcomes the limitations of traditional or classical calculus,

which is limited to dealing with integer-order derivatives and integrals. Although

the extension of order may seem straightforward, the theory in FC is fundamentally

different from traditional calculus, making it exclusive in applications.

Differing from traditional calculus, FC consists of an abundance of definitions.

Here, the definitions represent the mathematical formulation of fractional operator

that define as fractional differentiation or fractional integration. One of the attractive

features in FC lies behind the fractional operator itself, which able to capture memory

or hereditary effect when the transition of non-integer order takes place (Ford and

Simpson, 2001). This property often related to the behaviour of process in a system

in which the output let say Y (t), at the current time t, is depend on the process

occured in {t,Y (t)} for entire time history, t 2 [t0, t] (Tarasov, 2018). This concept is

mathematically termed as nonlocal property, differing from traditional calculus, which

is local and independent on the behaviour of a system in the history.

1

© C
OPYRIG

HT U
PM

The foundation of knowledge in FC crucially depends on several basic functions com-

monly encountered in the definition of derivatives and integrals of arbitrary order.

Here, the definition of the Gamma function is presented.

Definition 1.1 (Gamma Function) (Milici et al., 2018).

Gamma function or second Euler integral play the most important role in the theory of

differentiation and integrals in FC. It has the following definition

G(q) =
Z •

0
e�ttq�1dt. (1.1)

By presenting the Gamma function, it is now possible to highlight some definitions

related to fractional integrals and derivatives used in this research. To begin, let’s

introduce the classical definition of fractional integral known as Riemann-Liouville

(R-L) fractional integral, presented as follows:

Definition 1.2 (Riemann-Liouville Fractional Integral) (Podlubny, 1998).

Let (a,b) is a finite interval in the real axis R. Then, the Riemann-Liouville fractional

integral with order a > 0 is defined as

aJa
x g(x) =

1
G(a)

Z x

a
(x� t)a�1g(t)dt, (1.2)

where G(·) denotes the Gamma function.

This definition serves as the cornerstone for most of the fractional derivatives that

exist in FC, such as the Riemann-Liouville (R-L) fractional derivative and the Caputo

fractional derivative.

2

© C
OPYRIG

HT U
PM

Definition 1.3 (Riemann-Liouville Fractional Derivative) (Podlubny, 1998).

Let (a,b) is a finite interval in the real axis R. Then, the Riemann-Liouville fractional

derivative with order a > 0 is defined as

aDa
x g(x) =

dm

dtm

⇥
aJm�a

x g(x)
⇤

=
1

G(m�a)

dm

dtm

Z x

a
(x� t)m�a�1g(t)dt, (1.3)

where m�1 < a  m, m 2 N.

Definition 1.4 (Caputo Fractional Derivative) (Li and Zeng, 2015).

Let (a,b) is a finite interval in the real axis R. Then, the Caputo fractional derivative

with order a > 0 is defined as

C
a Da

x g(x) = aJ(m�a)
x

h
g(m)(x)

i

=
1

G(m�a)

Z x

a
(x� t)m�a�1gm(t)dt, (1.4)

where m�1 < a  m, m 2 N.

Caputo and Fabrizio (2015) develop a new fractional derivative that have non-singular

exponentional decaying kernel known as Caputo-Fabrizio (CF) fractional derivative.

The main purpose of this new derivative is to get rid of the singularity of Caputo

fractional derivative that often become challenges when designing numerical approxi-

mation at the endpoint of the singularity.

Let H1(a,b) = {g|g 2 L2(a,b) and g0 2 L2(a,b)} where L2(a,b) is the space of

square integrable functions on interval (a,b). Then, CF fractional derivative defined

as follows:

3

© C
OPYRIG

HT U
PM

Definition 1.5 (Caputo-Fabrizio Fractional Derivative) (Caputo and Fabrizio,

2015).

Let g(t) 2 H1(a,b) and a 2 (0,1). Then, the Caputo-Fabrizio fractional derivative

with order a is defined as

CF
a Da

x g(x) =
M(a)

1�a

Z x

a
g0(t)e

✓
�a x� t

1�a

◆

dt, (1.5)

where M(a) is normalization function such that M(0) = M(1) = 1.

1.2 Fractal-Fractional Calculus

Despite the existence of the ground-breaking theory related on fractional derivative,

there is another idea known as the fractal derivative or Hausdorff derivative (Chen,

2006). Fractal derivative or Hausdorff derivative can be defined by transforming the

classical space-time derivative that scaled with integer dimension (g, t) to a fractal

time (g, tb) where b denotes fractal dimension in time (Allwright and Atangana, 2018;

Chen, 2006). Mathematically, this can be defined as:

dg
dtb = lim

t!s

g(t)�g(s)
tb � sb , b > 0. (1.6)

The fractal derivative can also can be defined into fractal space-time (gn , tb) which can

be defined as

dgn

dtb = lim
t!s

gn(t)�gn(s)
tb � sb , n > 0, b > 0. (1.7)

where n denotes fractal dimension in space. From the definition above, the fractal

derivative differs from the traditional integer-order derivative in that the former

4

© C
OPYRIG

HT U
PM

represents the ratio of change of two quantities in fractal space, whereas the latter

represents the change of a function (dependent variable) with the change of another

quantity (independent variable) in ordinary space. In comparison with fractional

derivatives, fractal derivatives are local operators, while fractional derivatives are

global, as there is no convolution integral in (1.6) and (1.7).

Atangana (2017) combine the concept of fractal derivative and fractional deriva-

tive into single operator known as fractal-fractional derivative (FFD). One of the

fractal-fractional derivative used in this study is defined in the following definition:

Definition 1.6 (Fractal-Fractional Derivative in Caputo sense with power law ker-

nel) (Atangana, 2017).

Let g(x) is a differentiable function in interval (a,b). If g(x) is fractal differentiable

with order b on interval (a,b), then, fractal-fractional derivative of order a in Caputo

sense with power law kernel defined as

FFDCP
a Da,b

x g(x) =
1

G(m�a)

Z x

a
(x� t)m�a�1 dg

dtb dt, (1.8)

where
dg
dtb = lim

x!t

g(x)�g(t)
xb � tb , m�1 < a  m, and 0 < m�1 < b  m, m 2 N.

Since g is differentiable over (a,b), then

dg
dtb = lim

x!t

g(x)�g(t)
xb � tb ,

=
g0(t)

b tb�1 ,

= g0(t)
t1�b

b
. (1.9)

5

© C
OPYRIG

HT U
PM

1.3 Artificial Neural Network

ANN is an abstract computational model in machine learning that imitates the learning

process in the organisational structure of the human brain (Guresen and Kayakutlu,

2011). It was created in 1943 by neuroscientist Warren S. McCulloch and logician

Walter Pitts, who described the concept of ANN as a network of neuron cells in the

brain that receive inputs, process the inputs, and produce outputs (McCulloch and Pitts,

1943). The basic components of ANN is called as artificial neuron or node. It consists

of input, summing junction, activation function, bias and output as shown in Figure

1.1.

Figure 1.1: Artificial neuron/node.

1.3.1 Basic Concepts

Figure 1.2 shows a mathematical model of ANN. The circle and arrow denote the node

and input flow respectively. Let x1, x2 and x3 be the input of the ANN. While w1, w2

and w3 are the connection weights. There also a bias denoted by b. The node for the

input is labelled as a1, a2 and a3 with just acceptance of the input from the outside.

6

© C
OPYRIG

HT U
PMFigure 1.2: Mathematical model of ANN.

The following process, known as forward propagation is take place inside ANN:

i. The connection weight is multiplied to the input before reached to the node.

a1 = w1x1, (1.10)

a2 = w2x2, (1.11)

a3 = w3x3, (1.12)

ii. The collection of this weighted input are added to become weighted sum plus

bias, which computed as follows:

v = a1 +a2 +a3 +b,

= w1x1 +w2x2 +w3x3 +b. (1.13)

This equation can be summarized in matrix form:

v = wx+b. (1.14)

where

w =
⇥
w1 w2 w3

⇤
x =

2

4
x1
x2
x3

3

5 (1.15)

7

© C
OPYRIG

HT U
PM

iii. Applies the activation function to the weighted sum:

o = f(v). (1.16)

where f(·) is the activation function.

A single node is insufficient for the practical problems, and networks with a large

number of nodes are frequently used. The way in which nodes are connected deter-

mines how computations proceed and constitutes an important early design decision

by neural network developer. This designation of ANN called as architecture of neural

network. One of the example of the architecture of neural network can be shown in

Figure 1.3.

Figure 1.3: Feedforward neural network.

The group of the leftmost node is called the input layer. The input layer’s nodes just

act as a route for input signals to be sent to subsequent nodes. Here, the weighted sum

and activation function are not calculated. The output layer, in contrast, refers to the

collection of nodes at the rightmost position. The final output of the neural network is

produced by these nodes. While hidden layers are those layers that exist between input

and output layers which cannot be observed outside of the ANN.

8

© C
OPYRIG

HT U
PM

In the early development of ANN, they had a very simple architecture with only an

input layer and an output layer, which are called single layer ANN. The input layer

does not count as a layer since it does not involve any mathematical computation in the

node, rather than just receiving values from the outside. When hidden layers are added

to this network, it produces a multilayer ANN. This network consists of an input layer,

hidden layer(s), and an output layer. An ANN that has a single hidden layer is called

a shallow neural network. A multilayer ANN that contains two or more hidden layers

is called a deep neural network (DNN). The summary of the classification of ANNs

based on layers can be seen in Figure 1.4.

Figure 1.4: Types of ANN based on layer.

Additionally, ANN can be categorized based on how connections travel within linked

nodes. One example is the feedforward neural network (FNN), as shown in Figure 1.3.

During the data’s journey, nodes in a layer receive input data from the previous layer

and feed their output to the next layer. In FNN, there cannot be any route for data to

travel to nodes in the same layer or the previous layer. Another type of ANN based on

interconnection is known as a recurrent neural network (RNN). In this type of ANN,

9

© C
OPYRIG

HT U
PM

the output of nodes in a layer is allowed to flow through any layer. In other words, the

data can travel freely either along the forward path or the backward path in any linked

layer. RNN can be powerful, but they can also be extremely complicated. In fact, there

are many types of ANNs, such as Hopfield networks, cellular neural networks, finite

element neural networks, and so on (Yadav et al., 2015).

1.3.2 Learning Process

Learning process or training process in ANN involves several key steps:

i. Preparation of input data: The first step is to prepare the input data by collecting

or generating a dataset that consists of sample data and corresponding target

outputs. If the target output is provided, then the learning process is said to be

supervised learning while if the target output is not provided the learning is said

to be unsupervised learning (Kim, 2017).

ii. Network initialization: The next step is to define the architecture of the neural

network, involving the number of layers, the number of neurons in each layer,

and the types of connections between them. The network’s parameters, such

as weights and biases, are typically initialized with random numbers or using

specific initialization techniques.

iii. Forward propagation: During this stage, the input data passes across the net-

work, layer by layer, to produce an output. The activation function of each node

in the network is applied to the weighted sum of its inputs. Forward propagation

has been explained in Figure 1.2.

10

© C
OPYRIG

HT U
PM

iv. Error computation: After forward propagation has been completed, the net-

work’s output is compared with the desired outputs from the training data. An

error function is then used to measure the difference between the predicted and

true outputs. Various types of error functions are available, such as the squared

error function, mean squared error function, and others (Calin, 2020; Zurada,

1992).

v. Backpropagation: Backpropagation is technique to compute the gradients of the

error function with respect to network parameters. The gradients are calculated

by propagating the error backward through the network, using the basic chain

rule. It can be implemented through automatic differentiation that will be dis-

cussed later.

vi. Parameter adjustment: The goal of the learning process in ANN is to minimize

the error function by adjusting the network parameters. This situation is referred

to as an optimization process in which minimization takes place. The network

parameters that yield the minimum error function are called the argmin, as they

are the arguments to the error function that give the minimum. To achieve this,

the obtained gradient information is used to update the network’s parameters.

There are many types of optimization algorithms such as first-order optimization

techniques, second-order optimization and heuristic optimization (Kochenderfer

and Wheeler, 2019).

vii. Epoch or iteration: The iteration is repeated from steps iii to steps vi to allow

network refine the parameters.

11

© C
OPYRIG

HT U
PM

viii. Hyperparameter tuning: A hyperparameter is a parameter explicitly defined by

the user to control the learning process. It is typically set manually, either by

rule of thumb or through trial and error, to achieve the best optimal results in

the training process. An example of a hyperparameter is the learning rate in

first-order optimization techniques.

These steps are an overview of the common basic learning process that takes place in

ANN. The algorithm can differ in key steps v, vii, and viii depending on the type of

optimization used. The general basics of the learning process in ANN can be shown in

Figure 1.5.

Figure 1.5: Learning process in ANN.

1.3.3 Activation Function

An activation function, also known as a transfer function, is a function that applied

to the weighted sum of the input of a node to yield an output (Chakraverty and Mall,

2017). It incorporates non-linearity into the network, allowing it to learn intricate

patterns and make accurate predictions. The activation function is typically employed

after the linear transformation of the input data by the node’s weights and biases to

determine the node’s output. There are a lot of different types of activation functions

in the literature, but the most common ones are listed as follows:

12

© C
OPYRIG

HT U
PM

i. Identity function:

f(x) = x. (1.17)

ii. Sigmoid function:

f(x) = 1
1+ e�x . (1.18)

iii. Hyperbolic tangent function:

f(x) = ex � e�x

ex + e�x . (1.19)

iv. Orthogonal polynomials:

• Legendre polynomial defined on the interval [�1,1] can be determined with

the aid of the following recurrence formula:

Li+1(z) =
2i+1
i+1

zLi(z)�
i

i+1
Li�1(z), i = 1,2, ..., (1.20)

where L0(z) = 1 and L1(z) = z.

• Chebyshev polynomial defined on the interval [�1,1] can be determined

with the aid of the following recurrence formula:

Ti+1(z) = 2zTi(z)�Ti�1(z), i = 1,2, ..., (1.21)

where T0(z) = 1 and T1(z) = z.

In actual practice, selecting an activation function depends on the nature of the prob-

lem. Each of them have their advantages and disadvantages, and it is usual practice

to experiment with a variety of activation functions in order to identify the one that is

most suitable for a certain task. For example, sigmoid function is continously differ-

13

© C
OPYRIG

HT U
PM

entiable, which gradient-based optimization procedure are applicable to implement it

to ANN during training process.

1.3.4 Automatic Differentiation

Basically, derivatives can be computed in three ways which are manual differentiation,

numerical differentiation and symbolic differentiation. Manual differentiation involves

finding the derivative of a function by explicitly applying differentiation rules and

algebraic manipulations to the function. It is usually done manually by hand. While

numerical differentiation approximate the derivative of a function by using numerical

techniques, such as finite differences. It involves discrete data points or values of

a function to estimate the derivative. Symbolic differentiation involves finding the

derivative of a function by manipulating its symbolic representation with the help of

computer algebra systems.

Most of the learning process in ANN required the evaluation of gradient of an

error function. Manual differentiation is obviously not practical and time consuming

especially when deals with complicated functions. In comparison to the other options,

numerical differentiation is the simplest way to implement but can be highly incorrect

due to round-off and truncation errors. Besides it is not efficient and not appropriate

for evaluating gradients in training of ANN that deals with many parameters (Jerrell,

1997). Symbolic differentiation aims to cover the weaknesses of the previous two

methods, but often having an “expression swelling”, where it refers to the phe-

nomenon where the size or complexity of an expression grows significantly when

differentiate (Corliss, 1988).

14

© C
OPYRIG

HT U
PM

Automatic differentiation (AD) is another alternative of technique used to com-

pute the derivatives of functions. It play an important role in many optimization

algorithms and machine learning frameworks since it provides an efficient and accu-

rate computation of gradients. AD can be defined as compositions of a finite set of

elementary operations for which derivatives are known and combining the derivatives

of the constituent operations through the chain rule gives the derivative of the overall

composition (Baydin et al., 2018; Griewank and Walther, 2008). It is simple since it

just involved the application of chain rule of basic elementary operation, i.e. addition,

subtraction, division and multiplication and also elementary function, i.e. exponential,

sin, cos and etc. It consists of two mode, the first one is forward mode AD and the

other one is reverse-mode AD. In fact, backpropagation is the specialized version of

reverse-mode AD (Baydin et al., 2018).

Consider example f (x,y,z) = (x + y)z. The general procedure on performing

reverse-mode AD as follows:

Step 1: Identify the function that need to be differentiate and variables in the main

function. Here the function have three independent variables x,y and z.

Step 2: Identify the elementary operations and functions involve inside the main func-

tion. Inside function f , there is two elementary operations which are addition between

variable x and y and multiplication between x+ y and z.

Step 3: Choose one elementary operations involving variables in the function and then

introduce new intermediate variables this operation. We let q = x+ y where q is a new

15

© C
OPYRIG

HT U
PM

variable.

Step 4: This intermediate variable take part in another elementary operation with other

variables in the function. Then, assign the result to yet another new intermediate vari-

able. Here, let f = qz where f is another intermediate variable.

Step 5: Perform Step 4 until the last variable in the function operate with the last

intermediate variable. Here, f is our last new intermediate variable.

Step 6: Sketch computational graph that has two elements: input variables and interior

nodes representing operations as shown in Figure 1.6.

Figure 1.6: Computational graph.

Step 7: Let x = �2, y = 5 and z = �4. Perform forward propagation as shown in

Figure 1.7.

Figure 1.7: Computational graph with value at each node.

16

© C
OPYRIG

HT U
PM

Step 8: Take the derivative of the last intermediate variable with respect to itself which

the value is 1 as shown in Figure 1.8.

Figure 1.8: Computational graph.

Step 9: Finally, the derivative of f with respect to x,y and z can be performed by using

chain rule.

The proposed steps provide a general overview of computing derivatives using

reverse-mode AD. During the training process in ANN, the derivative of the error

function with respect to the network parameters can be found through this procedure.

Analogous to ANNs, the function f in the previous example represents the error

function, where x, y, and z are the network parameters. In real situations, the form of

the error function becomes very complex as the number of hidden layers increases.

Symbolic differentiation is not practical for this situation as it takes much longer and

faces the issue of “expression swelling”. Breaking down the complexity of the error

function into simple functions that involve basic operations may help expedite the

computation.

17

© C
OPYRIG

HT U
PM

1.3.5 First-Order Optimization Methods

First-order optimization methods are one of the most widely used algorithms to opti-

mize ANN. These methods update the network parameters in ANN iteratively based

on the gradient of error function with respect to network parameters . The learning rate

is the most important parameter in this method that determines the size of the update

taken. Denoting n as a step taken, l is the learning rate, E is the error function and w

is the network weights, simple gradient descent (GD) can be formulated as follows

wn+1 = wn �l ∂E
∂wn , (1.22)

where l > 0 is learning rate.

If the learning rate is too small, then simple GD will have to go through many

iterations to converge, which will take a long time. In the other way around, it makes

simple GD diverge with larger values thus fail to reach the minimum. Both situation

can be seen in Figure 1.9.

(a) (b)

Figure 1.9: Simple GD with (a) large learning rate and (b) small learning rate.

Simple GD with momentum or momentum method (MM) is a method that helps ac-

celerate simple GD in the relevant direction and dampens oscillations as can be seen

in Figure 1.10. By adding a fraction of the update vector of the past time step to the

18

© C
OPYRIG

HT U
PM

current update vector, the momentum formula update formula is

vn+1 = gvn �l ∂E
∂wn , (1.23)

wn+1 = wn + vn+1. (1.24)

The momentum term that denoted by g is usually set to 0.9 (Ruder, 2016). When this

value become zero, it will return back to simple GD.

Figure 1.10: Momentum dampens the oscillation.

Simple GD and MM update the w with the constant or same learning rate. The adaptive

subgradient method, or Adagrad, use different learning rate for network parameters

based on the historical gradients. The Adagrad update formula is

vn = vn�1 +

✓
∂E
∂wn

◆2
, (1.25)

wn+1 = wn � lp
vn + e

∂E
∂wn , (1.26)

where e is small number usually chosen as 1 ⇥ 10�8 to avoid division by zero

(Kochenderfer and Wheeler, 2019). From this formula, the learning rate has been

change in such a way that it will decrease due to the summation of the previous

square gradient for every iteration. However, the value of the square root at the

denominator will be accumulated which then become large causes the learning rate

become infinitesimally small. Thus the algorithm not able to make adjustment on the

network parameters.

19

© C
OPYRIG

HT U
PM

Root mean squared propagation or RMSProp extends Adagrad to avoid the ef-

fect of a monotonically decreasing learning rate. RMSProp maintains a decaying

average of squared gradients, thus the formula can be updated as follows:

vn = s1vn�1 +(1�s1)

✓
∂E
∂wn

◆2
, (1.27)

wn+1 = wn � lp
vn + e

∂E
∂wn , (1.28)

where s1 2 (0,1) is the forgetting factor which control the exponential decay rate, v

is second moment of the gradient that initialized to be zero and e is small number to

avoid division by zero.

The adaptive moment estimation method, or Adam also adapts learning rates

that stores both an exponentially decaying squared gradient like RMSProp, but also an

exponentially decaying gradient like momentum. Initializing the gradient and squared

gradient to zero introduces a bias. A bias correction step helps alleviate the issue. The

Adam formula are:

Biased decaying momentum : vn = s1vn�1 +(1�s1)
∂E
∂wn , (1.29)

Biased decaying squared gradient : un = s2un�1 +(1�s2)

✓
∂E
∂wn

◆2
, (1.30)

corrected decaying momentum : v̂n =
vn

1�s1
, (1.31)

corrected decaying squared gradient : ûn =
un

1�s2
, (1.32)

new update : wn+1 = wn � lp
ûn + e

v̂n, (1.33)

where s1,s2 2 (0,1) is the decay rates for the moment estimates and v and u biased

estimate for the first moment and second moment of the gradient which both initialized

20

© C
OPYRIG

HT U
PM

to be zero.

1.3.6 Broyden-Fletcher-Goldfarb-Shanno Optimization Method

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is one of the quasi-Newton

algorithm categorized under second-order optimization methods. Compared from

first-order optimization methods discussed in the previous section, second-order

optimization methods provide additional second-order information for better training

trajectory across the local curvature of error function in order to make the right

step size to reach a local minimum. The fundamental of quasi-Newton methods is

based on Newton method where the computation of true Hessian matrix or square

matrix of second-order partial derivatives of a scalar-valued function is replaced by

an approximation of Hessian to make it more practical in terms of simplicity and

computational time.

Consider a vector function f : Rn ! Rm with m � n. The goal is to minimized

the vector function to find the optimal parameter, w⇤ from weights, w = [w1,w2, ...wn]

such that

w⇤ = argmin
w

{F(w)}, (1.34)

where

F(w) =
1
2

m

Â
i=1

(fi (w))2 =
1
2
||f(w)||2 = 1

2
fT(w)f(w). (1.35)

Provided that f has continous partial derivatives, the Taylor series for f can be written

21

© C
OPYRIG

HT U
PM

as

f(w+h) = f(w)+J(w)h+ higher order terms, (1.36)

where J(w) 2 Rm⇥n is the Jacobian. This matrix contain the first partial derivatives of

the function components,

J(w)i j =
∂ fi

∂w j
(w). (1.37)

As can be seen in (1.35), F : Rn ! R. Then, the first derivative or gradient of F is

given by

∂F
∂w j

(w) =
m

Â
i=1

fi(w)
∂ fi

∂w j
(w), (1.38)

that can be rewrite as

∂F
∂w

(w) = J(w)T f(w), (1.39)

also from (1.38), the second derivative of F is given by

∂ 2F
∂w j∂wk

(w) =
m

Â
i=1

✓
∂ fi

∂w j
(w)

∂ fi

∂wk
(w)+ fi(x)

∂ 2 fi

∂w j∂wk
(w)

◆
, (1.40)

that can be rewrite as Hessian matrix, H

H = J(w)T J(w)+
m

Â
i=1

fi(w)f00i (w). (1.41)

The weight updating formula for the Newton method is given as

wk+1 = wk �lH(wk)
�1 ∂F

∂wk
(wk), (1.42)

where l is the learning rate is set by default as 1. However, computing the inverse

22

© C
OPYRIG

HT U
PM

Hessian is very expensive.

The variants under second-order optimization lies on updating this approxima-

tion of Hessian matrix, in replace with the exact Hessian matrix. Besides, the matrix

must be symmetric and positive definite so that it is nonsingular (Rafati and Marica,

2020; Tan and Lim, 2019). Since H(wk) = Hk, it can be computed at each iteration

through the following approximation

Hk = Hk�1 +
ff T

f T d
� Hk�1d (Hk�1d)T

d T Hk�1d
(1.43)

where d = wk �wk�1 = and f =
∂F
∂wk

(wk)�
∂F

∂wk�1
(wk�1). By finding this inverse,

the following update of wk+1 in (1.42) can be obtained.

Alternatively, the inverse of Hessian matrix also can be approximate directly

through BFGS. Let H(wk)
�1 = Qk. The inverse Hessian matrix can computed at each

iteration through

Qk =

I � df T

f T d

!
Qk�1

I � fd T

f T d

!
+

df T

f T d
, (1.44)

Substituting into the update equation in (1.42) yields

wk+1 = wk �lQk
∂F
∂wk

(wk). (1.45)

1.3.7 Extreme Learning Machine Algorithm

Extreme Learning Machine algorithm (ELM) is a ML algorithm that introduced by

Huang et al. (2006), provide an en extremely fast and efficient scheme as it categorize

23

© C
OPYRIG

HT U
PM

under optimization free approach. The objective of ELM is to find the weights and

biases from the hidden layer to the output layer, while the other network parameters

are randomly initialized and remain fixed. ELM is non-iterative process that involve

the implementation of Moore-Penrose generalized inverse during finding the unknown

network parameters.

Let input x = (x1, ...,xi)T , where xi denotes the input value, o j denotes the jth

output of the FNN, ki is the ith weight between the output and the hidden layer, ai is

the weight between input layer and hidden layer and bi is the bias in ith hidden layer,

then FNN can be expressed as:

N

Â
i=1

kig(wix j +bi) = o j, j = 1, ...,d. (1.46)

If target t = (t1, ..., td)T , where t denotes the target with N hidden nodes and d is the

number of training data, the aim of ELM is to minimize error between target and output

of the FNN by minimizing the following objective function:

E =
d

Â
j=1

(o j � t j)
2. (1.47)

According to Huang et al. (2006), FNN with one hidden layer able to approximate all

training data with zero error,

d

Â
j=1

����o j � t j
����= 0, (1.48)

so there exist a set of wi, bi and ki that satisfy

N

Â
i=1

kig
�
wix j +bi

�
= t j, j = 1, ...,d. (1.49)

24

© C
OPYRIG

HT U
PM

The above formula can be reformulated as linear system

Hk = T, (1.50)

where

H(w1, ...,wN ,b1, ...,bN ,x1, ...,xd) =

2

64
g(w1x1 +b1) · · · g(wNx1 +bN)

... · · · ...
g(w1xd +b1) · · · g(wNxd +bN)

3

75 , (1.51)

k =

2

64
k1
...

kN

3

75 , T =

2

64
t1
...

tN

3

75 . (1.52)

It cannot guarantee that the matrix H are non-degenerate or square matrix, thus it is

impossible to find its inverse. Hence by using minimal norm least square solution of

the system. Then, the following solution of k can be obtained

k = H†T. (1.53)

where H† is the Moore-Penrose generalized inverse matrix.

1.4 Statement of the Problem

Selecting appropriate configurations in architecture of FNN, such as the number of hid-

den layers, when solving differential equations may enhance solution accuracy. How-

ever, it is noteworthy that these investigations have mainly concentrated on ODEs.

The question of whether including more than one hidden layer in FNN is necessary for

solving FDEs remains unanswered.

25

© C
OPYRIG

HT U
PM

Besides, a critical concern when working with FNN with more than one hidden

layer is computational time, due to the iterative looping statements used in computer

programs. The increased number of hidden layers results in a significant increase in

execution time, often lasting for hours.

In aspect of optimization, there is less concern on realizing the capability of

first-order optimization method on solving FDEs. Since there are many types of them,

it is necessary to select only several its variant and compare their performances. This

style of study has not yet been performed in any previous of studies, not only in ODEs

but also in FDEs.

Next, a specific variant of second-order optimization methods, namely the BFGS

method, has proven effective in solving FDEs in the Caputo sense when employed

with FNNs in a single hidden layer. However, the effectiveness of this optimization

method in solving FDEs remains a subject of inquiry when dealing with FNNs

equipped with two hidden layers.

So far, the suggested optimizations are iterative. An alternative is the ELM, a

non-iterative approach demonstrating significant results in terms of accuracy and

computational efficiency in solving ODEs. However, the potential of ELM in

solving FDEs using FNN remains unexplored. Additionally, the combined impact of

implementing orthogonal polynomials as a hidden layer along with ELM for solving

FDEs is unknown and requires further exploration.

26

© C
OPYRIG

HT U
PM

1.5 Objective of the Study

In this study, the aim of the research is to propose several schemes based on one of the

variants in ANN known as FNN to solve FDEs and FFDEs. Several objectives of this

research are highlighted as follows:

i. To develop FNN with vectorized algorithm (FNNVA) for solving FDEs in Ca-

puto sense (FDEsC) using first-order optimization techniques.

ii. To construct a single hidden layer of FNN based on Chelyshkov Polynomial

(SHLFNNCP) for solving FDEs in Caputo sense (FDEsC) using ELM.

iii. To design extended single hidden layer of FNN (ESHLFNN) for solving FDEs

in Caputo-Fabrizio sense (FDEsCF) using BFGS method.

iv. To extend FNN in two hidden layers with vectorized algorithm (FNN2HLVA)

for solving FFDEs in Caputo sense with power law kernel (FFDEsCP) using

adaptive moment estimation method (Adam).

1.6 Scope of the Study

This research is focused to solve initial value problem (IVP) for both FDEs and FFDEs.

In the aspect of ANN architecture, this research consider fully connected feedforward

neural network, in which the information or value from the input layer is in forward

pass. There is no path of value going to the node on the same layer or previous layer.

Besides, unsupervised learning is considered as there is no targeted solution consid-

ered.

27

© C
OPYRIG

HT U
PM

1.7 Significance of the Study

The proposed schemes prioritize speed and efficiency in addressing FDEsC and

FFDEsCP by emphasizing a vectorized algorithm. This algorithm employs vector

and matrix computations to reduce computational load, particularly in FNN parts like

forward propagation, avoiding conventional looping statements. Additionally, the

incorporation of Hessian information via the BFGS method, as the third objective,

aims to speed up the training process by reducing the required iterations. Notably,

the scheme associated with the second objective eliminates the need for an iterative

optimization procedure in adjusting network parameters, leading to a clear reduction

in computational time. In summary, these schemes offer time savings and user-friendly

solutions for solving FDEs and FFDEs.

Furthermore, traditional numerical methods typically provide a discrete solu-

tion, requiring repetitive algorithm runs for different step sizes, which obviously

time inefficient process. The proposed schemes in all objectives, however, naturally

generate continuous solutions. These solutions extend beyond discretized points,

encompassing values within reasonable absolute error from the exact solution.

Consequently, researchers avoid the time-consuming repetition of procedures.

Last but not least, the implementation of proposed scheme for all the objectives

are not restricted for only specific type of problems but it also can be extended to

various type of them such as multi-order FDEs or system of FFDEs. Consequently,

this versatility allows researchers to save a considerable amount of time and effort,

28

© C
OPYRIG

HT U
PM

as they need only understand and implement one method to address various types

of problems, as opposed to grappling with different numerical techniques for each

distinct problem they encounter.

1.8 Organization of the Thesis

The thesis is organized as follows:

In Chapter 2, a historical reviews of fractional calculus is presented. Then, the

emergence of fractal-fractional calculus is described. Next, a review regarding on

ANN on solving differential equation is briefly discussed. The topic covers thereotical

studies involving ANN as a universal approximator, ANN on solving ODEs, ANN for

solving FDEs and ANN for solving FFDEs. The theoretical difficulties regarding on

the convergences and stability of ANN is also highlighted. Finally, research gap is

discussed.

Chapter 3 describes the new numerical scheme based on FNN to solve FDEsC

using selected first-order optimization techniques which are simple GD, MM and

Adam. At the first stage, architecture of FNN with many hidden layers is exposed.

Then, the methodology of the scheme is briefly discussed through two stages: method

formulation and vectorized algorithm. The method formulation involved the form

of FDEC that will be solved, the approximation of Caputo fractional derivatives and

learning algorithm. The vectorized algorithm is then designed to make the training

process work efficiently. Four problems involving FDEsC then are listed. Finally,

the designed scheme is implement on these problems to show the effectiveness of

29

© C
OPYRIG

HT U
PM

the designed scheme through investigation on different number of nodes, hidden

layer, learning rate and first-order optimization techniques that has been extensively

discussed based on the presented numerical results.

Chapter 4 discusses the newly single hidden layer of FNN based on Chelyshov

polynomial for solving FDEsC using ELM. A basic preliminaries involve in this

chapter is listed at the beginning of this chapter including the definition of Chelyshkov

polynomials and some properties of the Caputo derivative. The architecture of this

type of FNN that make use Chelyshkov polynomials as activation function is then

presented. The methodology for solving specific type of FDEC using the proposed

scheme is then briefly explained. To investigate the applicability and performance of

the proposed method, five real world application problems are solved. The discussion

has been discussed at the end of the chapter based on the numerical results obtained.

Chapter 5 introduces a new scheme based on extended single layer of FNN for

solving FDEsCF using BFGS method. At first, an architecture of extended single

layer of FNN with appropriate selection of activation function is presented. Then,

the proposed scheme is ddiscussed through three stages. At first stage, the method

formulation involving type of FDECF, construction of approximation solution and

approximation of Caputo-Fabrizio derivative is derived. Then, the vectorization is

derived for forward propagation, approximate solution and error function. In the last

stage, the learning solver that use BFGS method is described. Finally, five problems

are presented and tested with the scheme alongside with the discussion.

30

© C
OPYRIG

HT U
PM

Chapter 6 present new numerical scheme based on FNN in two hidden layer

using Adam to solve FFDEsCP. At initial stage, the architecture of FNN in two hidden

layer is presented. This include the forward propagation and activation function

used in the architecture. Then, the methodology involving method framework and

vectorized algorithm is briefly explained. Three problems involving FFDEsCP

are presented to investigate the applicability of the proposed scheme. Finally, the

numerical results is provided and discussed.

Finally, the overall discussion and finding in the thesis is concluded in the Chapter

7. At first, several conclusions can be drawn from this work is highlighted. Then,

some potential future works that could be expanded further are suggested to interested

researcher in the recommendation section.

31

© C
OPYRIG

HT U
PM

REFERENCES

Akgül, A. (2021). Analysis and New Applications of Fractal Fractional Differential
Equations With Power Law Kernel. Discrete & Continuous Dynamical Systems-S,
14(10):3401.

Akgül, A., Inc, M., Karatas, E., and Baleanu, D. (2015). Numerical Solutions of
Fractional Differential Equations of Lane-Emden Type by an Accurate Technique.
Advances in Difference Equations, 2015(1):1–12.

Al-Sharif, M., Ahmed, A., and Salim, M. (2020). An Integral Operational Ma-
trix of Fractional-Order Chelyshkov Functions and Its Applications. Symmetry,
12(11):1755.

Allwright, A. and Atangana, A. (2018). Fractal Advection-Dispersion Equation for
Groundwater Transport in Fractured Aquifers With Self-Similarities. The European
Physical Journal Plus, 133:1–20.

Arshad, S., Saleem, I., Akgül, A., Huang, J., Tang, Y., and Eldin, S. M. (2023). A
Novel Numerical Method for Solving the Caputo-Fabrizio Fractional Differential
Equation. AIMS Math, 8:9535–9556.

Aruldoss, R. and Balaji, K. (2022). Numerical Inversion of Laplace Transform via
Wavelet Operational Matrix and Its Applications to Fractional Differential Equa-
tions. International Journal of Applied and Computational Mathematics, 8(1):1–17.

Atangana, A. (2017). Fractal-Fractional Differentiation and Integration: Connecting
Fractal Calculus and Fractional Calculus to Predict Complex System. Chaos, Soli-
tons & Fractals, 102:396–406.

Atangana, A. and Baleanu, D. (2016). New Fractional Derivatives with Nonlocal
and Non-Singular Kernel: Theory and Application to Heat Transfer Model. arXiv
preprint arXiv:1602.03408.

Atangana, A. and Qureshi, S. (2019). Modeling Attractors of Chaotic Dynamical Sys-
tems With Fractal–Fractional Operators. Chaos, Solitons & Fractals, 123:320–337.

Bagley, R. L. and Torvik, P. J. (1983). Fractional Calculus-A Different Approach to the
Analysis of Viscoelastically Damped Structures. American Institute of Aeronautics
and Astronautics, 21(5):741–748.

Barron, A. R. (1993). Universal Approximation Bounds for Superpositions of a Sig-
moidal Function. IEEE Transactions on Information Theory, 39(3):930–945.

Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind, J. M. (2018). Automatic
Differentiation in Machine Learning: A Survey. Journal of Marchine Learning
Research, 18:1–43.

Bengio, Y. (2012). Practical Recommendations for Gradient-Based Training of Deep
Architectures. Springer, Berlin, Heidelberg.

Berg, J. and Nyström, K. (2018). A Unified Deep Artificial Neural Network Approach
to Partial Differential Equations in Complex Geometries. Neurocomputing, 317:28–
41.

260

© C
OPYRIG

HT U
PM

Brouers, F. et al. (2014). The Fractal (BSf) Kinetics Equation and Its Approximations.
Journal of Modern Physics, 5(16):1594.

Brouers, F. and Sotolongo-Costa, O. (2006). Generalized Fractal Kinetics in Com-
plex Systems (Application to Biophysics and Biotechnology). Physica A: Statistical
Mechanics and its Applications, 368(1):165–175.

Burden, R. L., Faires, J. D., and Burden, A. M. (2015). Numerical Analysis. Cengage
learning.

Burnett, D. (1987). Finite Element Analysis: From Concepts to Applications Solutions
Manual. Addison-Wesley Longman.

Cai, W., Chen, W., and Xu, W. (2018). The Fractal Derivative Wave Equation: Appli-
cation to Clinical Amplitude/velocity Reconstruction Imaging. The Journal of the
Acoustical Society of America, 143(3):1559–1566.

Calin, O. (2020). Deep Learning Architectures. Springer.

Cao, J., Wang, Z., and Xu, C. (2020). A High-Order Scheme for Fractional Ordinary
Differential Equations With the Caputo–Fabrizio Derivative. Communications on
Applied Mathematics and Computation, 2(2):179–199.

Caputo, M. and Fabrizio, M. (2015). A New Definition of Fractional Derivative With-
out Singular Kernel. Progress in Fractional Differentiation & Applications, 1(2):73–
85.

Chakraverty, S. and Mall, S. (2017). Artificial Neural Networks for Engineers and
Scientists: Solving Ordinary Differential Equations. CRC Press.

Chelyshkov, V. S. (2006). Alternative Orthogonal Polynomials and Quadratures. Elec-
tron. Trans. Numer. Anal, 25(7):17–26.

Chen, W. (2006). Time–Space Fabric Underlying Anomalous Diffusion. Chaos, Soli-
tons & Fractals, 28(4):923–929.

Chen, W., Sun, H., Zhang, X., and Korošak, D. (2010a). Anomalous Diffusion Mod-
eling by Fractal and Fractional Derivatives. Computers & Mathematics with Appli-
cations, 59(5):1754–1758.

Chen, W., Zhang, X.-D., and Korošak, D. (2010b). Investigation on Fractional and
Fractal Derivative Relaxation-Oscillation Models. International Journal of Nonlin-
ear Sciences and Numerical Simulation, 11(1):3–10.

Corliss, G. F. (1988). Application of Differentiation Arithmetic. Academic Press,
Boston.

Cybenko, G. (1989). Approximation by Superpositions of a Sigmoidal Function.
Mathematics of Control, Signals and Systems, 2(4):303–314.

Datta, L. (2020). A Survey on Activation Functions and Their Relation With Xavier
and He Normal Initialization. arXiv preprint arXiv:2004.06632.

261

© C
OPYRIG

HT U
PM

Debnath, L. (2004). A Brief Historical Introduction to Fractional Calculus. Interna-
tional Journal of Mathematical Education in Science and Technology, 35(4):487–
501.

Deshi, A. and Gudodagi, G. (2021). Numerical Solution of Bagley–Torvik, Nonlin-
ear and Higher Order Fractional Differential Equations using Haar Wavelet. SeMA
Journal, 79(4):663–675.

Diethelm, K. (2010). The Analysis of Fractional Differential Equations: An
Application-Oriented Exposition Using Differential Operators of Caputo Type. Lec-
ture Notes in Mathematics. Springer Berlin Heidelberg.

Diethelm, K., Ford, N. J., and Freed, A. D. (2002). A Predictor-Corrector Approach for
the Numerical Solution of Fractional Differential Equations. Nonlinear Dynamics,
29(1):3–22.

Domingues, J. C. (2005). Landmark Writings in Western Mathematics 1640-1940.
Elsevier Science.

Dormand, J. R. (1996). Numerical Methods for Differential Equations: A Computa-
tional Approach, volume 3. CRC press.

Dufera, T. T. (2021). Deep Neural Network for System of Ordinary Differential Equa-
tions: Vectorized Algorithm and Simulation. Machine Learning with Applications,
5:100058.

Emden, R. (1907). Gaskugeln: Anwendungen der mechanischen Wärmetheorie auf
kosmologische und meteorologische Probleme. BG Teubner.

Euler, L. (1738). De progressionibus transcendentibus seu quarum termini generales
algebraice dari nequeunt. Commentarii Academiae Scientiarum Petropolitanae,
5:36–57.

Fitt, A., Goodwin, A., Ronaldson, K., and Wakeham, W. (2009). A Fractional Dif-
ferential Equation for a MEMS Viscometer Used in the Oil Industry. Journal of
Computational and Applied Mathematics, 229(2):373–381.

Ford, N. J. and Simpson, A. C. (2001). The Numerical Solution of Fractional Differ-
ential Equations: Speed Versus Accuracy. Numerical Algorithms, 26(4):333–346.

Fouladi, S., Ebadi, M., Safaei, A. A., Bajuri, M. Y., and Ahmadian, A. (2021). Effi-
cient Deep Neural Networks for Classification of COVID-19 Based on CT Images:
Virtualization via Software Defined Radio. Computer Communications, 176:234–
248.

Fourier, J. B. J., Darboux, G., et al. (1822). Théorie analytique de la chaleur, volume
504. Didot Paris.

Glorot, X. and Bengio, Y. (2010). Understanding The Difficulty of Training Deep
Feedforward Neural Networks. Journal of Machine Learning Research - Proceed-
ings Track, 9:249–256.

262

© C
OPYRIG

HT U
PM

Gómez-Aguilar, J. and Atangana, A. (2021). New Chaotic Attractors: Application
of Fractal-Fractional Differentiation and Integration. Mathematical Methods in the
Applied Sciences, 44(4):3036–3065.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT press.

Griewank, A. and Walther, A. (2008). Evaluating Derivatives: Principles and Tech-
niques of Algorithmic Differentiation. SIAM.

Guirao, J. L., Sabir, Z., Raja, M. A. Z., and Baleanu, D. (2022). Design of Neuro-
Swarming Computational Solver for the Fractional Bagley–Torvik Mathematical
Model. The European Physical Journal Plus, 137(2):245.

Guresen, E. and Kayakutlu, G. (2011). Definition of Artificial Neural Networks With
Comparison to Other Networks. Procedia Computer Science, 3:426–433.

Haber, E. and Ruthotto, L. (2017). Stable Architectures for Deep Neural Networks.
Inverse Problems, 34(1):014004.

Hamid, M., Usman, M., Haq, R., and Wang, W. (2020). A Chelyshkov Polyno-
mial Based Algorithm to Analyze the Transport Dynamics and Anomalous Diffu-
sion in Fractional Model. Physica A: Statistical Mechanics and Its Applications,
551:124227.

Hayou, S., Doucet, A., and Rousseau, J. (2019). On the Impact of the Activation
Function on Deep Neural Networks Training. Proceedings of Machine Learning
Research, 97:2672–2680.

He, J.-H. (2018). Fractal Calculus and Its Geometrical Explanation. Results in Physics,
10:272–276.

Heydari, M. H., Atangana, A., and Avazzadeh, Z. (2021). Chebyshev Polynomials for
the Numerical Solution of Fractal–Fractional Model of Nonlinear Ginzburg–Landau
Equation. Engineering with Computers, 37(2):1377–1388.

Hoffer, E., Banner, R., Golan, I., and Soudry, D. (2018). Norm Matters: Efficient and
Accurate Normalization Schemes in Deep Networks. Advances in Neural Informa-
tion Processing Systems, 31.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer Feedforward Net-
works Are Universal Approximators. Neural Networks, 2(5):359–366.

Hornik, K., Stinchcombe, M., and White, H. (1990). Universal Approximation of
an Unknown Mapping and Its Derivatives Using Multilayer Feedforward Networks.
Neural Networks, 3(5):551–560.

Hu, Z. and Tu, X. (2015). A New Discrete Economic Model Involving Generalized
Fractal Derivative. Advances in Difference Equations, 2015:1–11.

Huang, G., Huang, G.-B., Song, S., and You, K. (2015). Trends in Extreme Learning
Machines: A Review. Neural Networks, 61:32–48.

Huang, G.-B., Zhu, Q.-Y., and Siew, C.-K. (2006). Extreme Learning Machine: Theory
and Applications. Neurocomputing, 70(1-3):489–501.

263

© C
OPYRIG

HT U
PM

Izadi, M. (2020). Fractional Polynomial Approximations to the Solution of Fractional
Riccati Equation. Punjab University Journal of Mathematics, 51(11).

Izadi, M. (2021). Comparison of Various Fractional Basis Functions for Solving
Fractional-Order Logistic Population Model. Facta Universitatis, Series: Mathe-
matics and Informatics, 35(4):1181–1198.

Jafarian, A., Mokhtarpour, M., and Baleanu, D. (2017). Artificial Neural Network Ap-
proach for a Class of Fractional Ordinary Differential Equation. Neural Computing
and Applications, 28(4):765–773.

Jafarian, A., Nia, S. M., Golmankhaneh, A. K., and Baleanu, D. (2018). On Artificial
Neural Networks Approach With New Cost Functions. Applied Mathematics and
Computation, 339:546–555.

Jerrell, M. E. (1997). Automatic Differentiation and Interval Arithmetic for Estimation
of Disequilibrium Models. Computational Economics, 10:295–316.

Karlsson, L. and Bonde, O. (2020). A Comparison of Selected Optimization Methods
for Neural Networks. Degree Project in Technology.

Kazemi, B. F. and Jafari, H. (2017). Error Estimate of the MQ-RBF Collocation
Method for Fractional Differential Equations With Caputo–Fabrizio Derivative.
Mathematical Sciences, 11(4):297–305.

Kilbas, A. A., Srivastava, H. M., and Trujillo, J. J. (2006). Theory and Applications of
Fractional Differential Equations. Elsevier Science.

Kim, P. (2017). Matlab Deep Learning. Apress Berkeley, CA.

Kochenderfer, M. J. and Wheeler, T. A. (2019). Algorithms for Optimization. Mit
Press.

Kosmidis, K. and Macheras, P. (2018). On the Dilemma of Fractal or Fractional Ki-
netics in Drug Release Studies: A Comparison Between Weibull and Mittag-Leffler
Functions. International Journal of Pharmaceutics, 543(1-2):269–273.

Kumar, S., Kumar, A., and Odibat, Z. M. (2017). A Nonlinear Fractional Model to De-
scribe the Population Dynamics of Two Interacting Species. Mathematical Methods
in the Applied Sciences, 40(11):4134–4148.

Lagaris, I. E., Likas, A., and Fotiadis, D. I. (1998). Artificial Neural Networks for
Solving Ordinary and Partial Differential Equations. IEEE Transactions on Neural
Networks, 9(5):987–1000.

Lane, H. J. (1870). On the Theoretical Temperature of the Sun, Under the Hypothesis
of a Gaseous Mass Maintaining Its Volume by Its Internal Heat, and Depending
on the Laws of Gases as Known to Terrestrial Experiment. American Journal of
Science, 2(148):57–74.

Laplace, P. S. (2012). A Philosophical Essay on Probabilities. Courier Corporation.

LeCun, Y., Bottou, L., Orr, G. B., and Müller, K. R. (2002). Efficient Backprop.
Springer, Berlin, Heidelberg.

264

© C
OPYRIG

HT U
PM

Lee, H. and Kang, I. S. (1990). Neural Algorithm for Solving Differential Equations.
Journal of Computational Physics, 91(1):110–131.

Li, C. and Zeng, F. (2015). Numerical Methods for Fractional Calculus, volume 24.
CRC Press.

Liang, Y., Allen, Q. Y., Chen, W., Gatto, R. G., Colon-Perez, L., Mareci, T. H., and Ma-
gin, R. L. (2016). A Fractal Derivative Model for the Characterization of Anomalous
Diffusion in Magnetic Resonance Imaging. Communications in Nonlinear Science
and Numerical Simulation, 39:529–537.

Malek, A. and Beidokhti, R. S. (2006). Numerical Solution for High Order Differ-
ential Equations Using a Hybrid Neural Network—Optimization Method. Applied
Mathematics and Computation, 183(1):260–271.

Mall, S. and Chakraverty, S. (2013). Comparison of Artificial Neural Network Archi-
tecture in Solving Ordinary Differential Equations. Advances in Artificial Neural
Systems, 2013.

Mall, S. and Chakraverty, S. (2014). Chebyshev Neural Network Based Model for
Solving Lane–Emden Type Equations. Applied Mathematics and Computation,
247:100–114.

Mall, S. and Chakraverty, S. (2016). Application of Legendre Neural Network for
Solving Ordinary Differential Equations. Applied Soft Computing, 43:347–356.

Mall, S. and Chakraverty, S. (2017). Single Layer Chebyshev Neural Network Model
for Solving Elliptic Partial Differential Equations. Neural Processing Letters,
45(3):825–840.

Mall, S. and Chakraverty, S. (2018). Artificial Neural Network Approach for Solving
Fractional Order Initial Value Problems. arXiv preprint arXiv:1810.04992.

McCulloch, W. S. and Pitts, W. (1943). A Logical Calculus of the Ideas Immanent in
Nervous Activity. The Bulletin of Mathematical Biophysics, 5(4):115–133.

Meade Jr, A. J. and Fernandez, A. A. (1994). The Numerical Solution of Linear Or-
dinary Differential Equations by Feedforward Neural Networks. Mathematical and
Computer Modelling, 19(12):1–25.

Mechee, M. S. and Senu, N. (2012). Numerical Study of Fractional Differential
Equations of Lane-Emden Type by Method of Collocation. Applied Mathematics,
3(8):851–856.

Mekkaoui, T., Atangana, A., and Araz, S. İ. (2021). Predictor–Corrector for Non-
Linear Differential and Integral Equation With Fractal–Fractional Operators. Engi-
neering with Computers, 37(3):2359–2368.

Michoski, C., Milosavljević, M., Oliver, T., and Hatch, D. R. (2020). Solving Differ-
ential Equations Using Deep Neural Networks. Neurocomputing, 399:193–212.

Milici, C., Drăgănescu, G., and Machado, J. T. (2018). Introduction to Fractional
Differential Equations. Springer Cham.

265

© C
OPYRIG

HT U
PM

Miller, K. S. and Ross, B. (1993). An Introduction to The Fractional Calculus and
Fractional Differential Equations. Wiley.

Minai, A. A. and Williams, R. D. (1993). On the Derivatives of the Sigmoid. Neural
Networks, 6(6):845–853.

Nottale, L. (1988). On Time in Microphysics. Academie des Sciences Paris Comptes
Rendus Serie Sciences Mathematiques, 306(5):341–346.

Odibat, Z. and Momani, S. (2008). Modified Homotopy Perturbation Method: Ap-
plication to Quadratic Riccati Differential Equation of Fractional Order. Chaos,
Solitons & Fractals, 36(1):167–174.

Pakdaman, M., Ahmadian, A., Effati, S., Salahshour, S., and Baleanu, D. (2017). Solv-
ing Differential Equations of Fractional Order Using an Optimization Technique
Based on Training Artificial Neural Network. Applied Mathematics and Computa-
tion, 293:81–95.

Panghal, S. and Kumar, M. (2021a). Optimization Free Neural Network Approach for
Solving Ordinary and Partial Differential Equations. Engineering with Computers,
37(4):2989–3002.

Panghal, S. and Kumar, M. (2021b). ZNeural network method: delay and system of
delay differential equations. Engineering with Computers, 38(Suppl 3):2423–2432.

Parisi, D. R., Mariani, M. C., and Laborde, M. A. (2003). Solving Differential Equa-
tions With Unsupervised Neural Networks. Chemical Engineering and Processing:
Process Intensification, 42(8-9):715–721.

Pinkus, A. (1999). Approximation Theory of the MLP Model in Neural Networks.
Acta Numerica, 8:143–195.

Podlubny, I. (1998). Fractional Differential Equations: An Introduction to Fractional
Derivatives, Fractional Differential Equations, to Methods of Their Solution and
Some of Their Applications. Elsevier.

Podlubny, I., Magin, R. L., and Trymorush, I. (2017). Niels Henrik Abel and the birth
of fractional calculus. Fractional Calculus and Applied Analysis, 20(5):1068–1075.

Qu, H. and Liu, X. (2015). A Numerical Method for Solving Fractional Differential
Equations by Using Neural Network. Advances in Mathematical Physics, 2015:1–
12.

Rafati, J. and Marica, R. F. (2020). Quasi-Newton Optimization Methods for Deep
Learning Applications. Deep Learning Applications, 1098:9–38.

Raissi, M., Perdikaris, P., and Karniadakis, G. (2019). A Deep Learning Framework
for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential
Equations. J. Comput. Phys, 378:686–707.

Raja, M. A. Z., Khan, J. A., and Qureshi, I. M. (2010a). A New Stochastic Approach
for Solution of Riccati Differential Equation of Fractional Order. Annals of Mathe-
matics and Artificial Intelligence, 60(3):229–250.

266

© C
OPYRIG

HT U
PM

Raja, M. A. Z., Khan, J. A., and Qureshi, I. M. (2010b). Heuristic Computational Ap-
proach Using Swarm Intelligence in Solving Fractional Differential Equations. In
Proceedings of the 12th Annual Conference Companion on Genetic and Evolution-
ary Computation, pages 2023–2026.

Raja, M. A. Z., Khan, J. A., and Qureshi, I. M. (2011). Solution of Fractional Order
System of Bagley-Torvik Equation Using Evolutionary Computational Intelligence.
Mathematical Problems in Engineering, 2011.

Raja, M. A. Z., Manzar, M. A., and Samar, R. (2015). An Efficient Computational
Intelligence Approach for Solving Fractional Order Riccati Equations Using ANN
and SQP. Applied Mathematical Modelling, 39(10-11):3075–3093.

Raja, M. A. Z., Samar, R., Manzar, M. A., and Shah, S. M. (2017). Design of Unsuper-
vised Fractional Neural Network Model Optimized With Interior Point Algorithm
for Solving Bagley–Torvik Equation. Mathematics and Computers in Simulation,
132:139–158.

Rostami, F. and Jafarian, A. (2018). A New Artificial Neural Network Structure for
Solving High-Order Linear Fractional Differential Equations. International Journal
of Computer Mathematics, 95(3):528–539.

Ruder, S. (2016). An Overview of Gradient Descent Optimization Algorithms. arXiv
preprint arXiv:1609.04747.

Samko, S. G., Kilbas, A. A., Marichev, O. I., et al. (1993). Fractional Integrals and
Derivatives, volume 1. Gordon and Breach Science Publishers, Yverdon Yverdon-
les-Bains, Switzerland.

Shah, F. A., Abass, R., and Debnath, L. (2017). Numerical Solution of Fractional Dif-
ferential Equations Using Haar Wavelet Operational Matrix Method. International
Journal of Applied and Computational Mathematics, 3(3):2423–2445.

Shloof, A., Senu, N., Ahmadian, A., Pakdaman, M., and Salahshour, S. (2022). A New
Iterative Technique for Solving Fractal-Fractional Differential Equations Based on
Artificial Neural Network in the New Generalized Caputo Sense. Engineering with
Computers, 39(1):505–515.

Sirignano, J. and DGM, K. S. (2017). A Deep Learning Algorithm for Solving Partial
Differential Equations. ArXiv e-prints.

Sun, H., Meerschaert, M. M., Zhang, Y., Zhu, J., and Chen, W. (2013). A Fractal
Richards’ Equation to Capture the Non-Boltzmann Scaling of Water Transport in
Unsaturated Media. Advances in Water Resources, 52:292–295.

Talaei, Y. and Asgari, M. (2018). An Operational Matrix Based on Chelyshkov Polyno-
mials for Solving Multi-Order Fractional Differential Equations. Neural Computing
and Applications, 30(5):1369–1376.

Tan, H. H. and Lim, K. H. (2019). Review of Second-Order Optimization Techniques
in Artificial Neural Networks Backpropagation. In IOP Conference Series: Materi-
als Science and Engineering, page 012003. IOP Publishing.

267

© C
OPYRIG

HT U
PM

Tarasov, V. E. (2018). No Nonlocality. No Fractional Derivative. Communications in
Nonlinear Science and Numerical Simulation, 62:157–163.

Toh, Y. T., Phang, C., and Loh, J. R. (2019). New Predictor-Corrector Scheme for Solv-
ing Nonlinear Differential Equations With Caputo-Fabrizio Operator. Mathematical
Methods in the Applied Sciences, 42(1):175–185.

Torvik, P. J. and Bagley, R. L. (1984). On the Appearance of the Fractional Derivative
in the Behavior of Real Materials. Journal of Applied Mechanics, 51(2):294–298.

Tsoulos, I. G., Gavrilis, D., and Glavas, E. (2009). Solving Differential Equations With
Constructed Neural Networks. Neurocomputing, 72(10-12):2385–2391.

Tulbure, A.-A., Tulbure, A.-A., and Dulf, E.-H. (2022). A Review on Modern Defect
Detection Models Using DCNNs–Deep Convolutional Neural Networks. Journal of
Advanced Research, 35:33–48.

Verma, A. and Kumar, M. (2021). Numerical Solution of Bagley–Torvik Equa-
tions Using Legendre Artificial Neural Network Method. Evolutionary Intelligence,
14:2027–2037.

Vidal, R., Bruna, J., Giryes, R., and Soatto, S. (2017). Mathematics of Deep Learning.
arXiv preprint arXiv:1712.04741.

Wang, L., Zeng, X., Yang, H., Lv, X., Guo, F., Shi, Y., and Hanif, A. (2021). Inves-
tigation and Application of Fractal Theory in Cement-Based Materials: A Review.
Fractal and Fractional, 5(4):247.

Yadav, N., Yadav, A., and Kumar, M. (2015). An Introduction to Neural Network
Methods for Differential Equations. Springer Dordrecht.

Yang, Y., Hou, M., and Luo, J. (2018). A Novel Improved Extreme Learning Machine
Algorithm in Solving Ordinary Differential Equations by Legendre Neural Network
Methods. Advances in Difference Equations, 2018(1):1–24.

Yazdi, H. S., Pakdaman, M., and Modaghegh, H. (2011). Unsupervised Kernel Least
Mean Square Algorithm for Solving Ordinary Differential Equations. Neurocom-
puting, 74(12-13):2062–2071.

Yun, C., Sra, S., and Jadbabaie, A. (2018). Small Nonlinearities in Activa-
tion Functions Create Bad Local Minima in Neural Networks. arXiv preprint
arXiv:1802.03487.

Zahra, W. K., Elkholy, S. M., et al. (2012). The Use of Cubic Splines in the Numerical
Solution of Fractional Differential Equations. International Journal of Mathematics
and Mathematical Sciences, 2012:1–16.

Zúñiga-Aguilar, C., Coronel-Escamilla, A., Gómez-Aguilar, J., Alvarado-Martı́nez,
V., and Romero-Ugalde, H. (2018). New Numerical Approximation for Solving
Fractional Delay Differential Equations of Variable Order Using Artificial Neural
Networks. The European Physical Journal Plus, 133(2):1–16.

268

© C
OPYRIG

HT U
PM

Zúñiga-Aguilar, C., Gómez-Aguilar, J., Romero-Ugalde, H., Escobar-Jiménez, R.,
Fernández-Anaya, G., and Alsaadi, F. E. (2021). Numerical Solution of Fractal-
Fractional Mittag–Leffler Differential Equations With Variable-Order Using Artifi-
cial Neural Networks. Engineering with Computers, 38:2669–2682.

Zúñiga-Aguilar, C., Romero-Ugalde, H., Gómez-Aguilar, J., Escobar-Jiménez, R.,
and Valtierra-Rodrı́guez, M. (2017). Solving Fractional Differential Equations
of Variable-Order Involving Operators With Mittag-Leffler Kernel Using Artificial
Neural Networks. Chaos, Solitons & Fractals, 103:382–403.

Zurada, J. (1992). Introduction to Artificial Neural Systems. West Group.

269

