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Abstract: The timely and reliable prediction of crop yields on a larger scale is crucial for ensuring a
stable food supply and food security. In the last few years, many studies have demonstrated that deep
learning can offer reliable solutions for crop yield prediction. However, a key challenge in applying
deep-learning models to crop yield prediction is their reliance on extensive training data, which are
often lacking in many parts of the world. To address this challenge, this study introduces TrAd-
aBoost.R2, along with fine-tuning and domain-adversarial neural network deep-transfer-learning
strategies, for predicting the winter wheat yield across diverse climatic zones in the USA. All methods
used the bidirectional LSTM (BiLSTM) architecture to leverage its sequential feature extraction capa-
bilities. The proposed transfer-learning approaches outperformed the baseline deep-learning model,
with mean absolute error reductions ranging from 9% to 28%, demonstrating the effectiveness of these
methods. Furthermore, the results demonstrate that the semi-supervised transfer-learning approach
using the two-stage version of TrAdaBoost.R2 and fine-tuning achieved a superior performance
compared to the domain-adversarial neural network and standard TrAdaBoost.R2. Additionally, the
study offers insights for improving the accuracy and generalizability of crop yield prediction models
in diverse agricultural landscapes across different regions.

Keywords: crop yield prediction; deep learning; transfer learning; TrAdaBoost; Bidirectional LSTM;
fine-tuning; food security

1. Introduction

Ensuring a stable food supply and food security relies heavily on the timely and
dependable prediction of crop yields at a larger scale [1–4]. Recent advancements in
computing resources and algorithms have enabled the use of more sophisticated data-
driven models, like deep learning, for various prediction problems. A large number of
studies have demonstrated that deep learning can offer reliable solutions for crop yield
prediction [5–8]. In particular, sequential models such as long short-term memory (LSTM),
bidirectional LSTM (BiLSTM), and 1D convolutional neural networks (1DCNNs) have
emerged as effective tools for predicting crop yields [9,10].
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A key challenge in applying deep-learning models to crop yield prediction is the
models’ dependence on large training data [6,10]. Insufficient data can lead to overfitting
and underfitting [11,12]. In the former condition, models cannot learn from the training
data, while, in the latter, models perform well on training data but poorly on unseen test
data. This limitation restricts their use in areas with limited historical yield data. Moreover,
a model trained on data from one region may not perform well in entirely new locations
because of the domain shift [13]. One of the reasons existing deep-learning-based crop
yield prediction research has predominantly focused on specific regions of the world is
the availability of abundant historical data in those areas [6]. Typically, remote sensing
and environmental data are paired with historical crop yield statistics for regional scale
crop yield prediction [14]. While remote sensing and environmental data are globally
available due to advancements in satellites and sensors, the target data—historical yield
statistics—often lack sufficient quantities and regular intervals in many countries.

Transfer learning emerges as a promising technique for overcoming the difficulties
of modelling in scenarios where data are scarce. Transfer-learning [15] techniques use
information gained in an area with sufficient data to improve the generalisation in an
area with limited training data. Transfer learning has proven effective in various tasks,
including image classification [12], crop mapping [16,17], vegetation monitoring [18], and
water resource management [19]. In crop yield prediction, researchers are exploring the
integration of transfer learning with deep learning to improve model generalizability. For
instance, Wang, Tran, Desai, Lobell and Ermon [13] successfully applied deep-learning
techniques and fine-tuning-based transfer learning to predict soybean yield in Brazil. The
study demonstrated the potential of deep learning and transfer learning for crop yield
prediction in data-scarce regions. Ma, et al. [20] addressed the generalizability issue of
machine-learning models for crop yield prediction by introducing an unsupervised domain
adaptation approach. Their unsupervised adaptive domain adversarial neural network,
coupled with multiple input variables, demonstrated remarkable performance in both local
and transfer settings, indicating its potential to enhance crop yield prediction across diverse
regions. Priyatikanto, et al. [21] investigated the generalizability and transferability of maize
yield prediction models across the US corn belt by employing three domain adaptation
algorithms: the domain adversarial neural network (DANN), Kullback–Leibler impor-
tance estimation procedure, and regular transfer neural network (RTNN). Among these
algorithms, the DANN exhibited promising results in model generalisation across regions.

While unsupervised domain adaptation methods like the DANN offer promising
results in crop yield prediction without requiring labelled target data [20,21], they may
not generalise well to unseen target domains that significantly differ from the source
domain. Moreover, feature-based methods like the DANN are not applicable to domain
adaptation issues where there is a covariate shift [22]; i.e., when the source and target
domains share the same labelling functions, potentially impairing learning. Moreover,
limited yield data are available in many regions at infrequent intervals or for specific
locations. Thus, semi-supervised transfer-learning techniques might be more suitable in
such a scenario. Fine-tuning is one of the widely used semi-supervised transfer-learning
methods. However, they are also not without challenges and are susceptible to negative
transfer [23]. Simply applying all source domain data to the target domain for fine-tuning,
without proper selection, can lead to negative transfer learning.

TrAdaBoost [24], another semi-supervised transfer-learning approach, combines
adaptive-boosting and instance-weighting techniques. Adaptive boosting improves predic-
tion performance by combining multiple weak learners, while instance weighting assigns
different weights to samples from the source and target domains [25]. This approach re-
duces the influence of instances prone to negative transfer and allows the model to focus on
more reliable and relevant data. When predicting crop yields across significantly different
domains, TrAdaBoost can be a valuable tool to mitigate negative transfer and improve
model performance.
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This study investigates and compares the effectiveness of various unsupervised and
semi-supervised transfer learning (TL) methods for predicting crop yield. The main contri-
butions of the study are as follows:

• This study introduced deep-transfer learning (DTL) strategies that combine the TrAd-
aBoost algorithm with a BiLSTM model to predict crop yield in data-scarce regions.

• This paper quantitatively evaluates the impacts of four deep-transfer learning (DTL)
strategies: fine-tuning (FT), the domain-adversarial neural network (DANN), TrAd-
aBoost.R2, and a two-stage TrAdaBoost.R2 algorithm on crop yield prediction across
different climatic regions. These strategies leverage the sequential feature extraction
capabilities of BiLSTM for the task. While previous studies primarily employed multi-
layer perceptron networks as feature extractors in their models, our study opts for the
BiLSTM model as the base model, given the sequential nature of our input data.

The remainder of this paper is organised as follows: Section 2 details the proposed
method for yield prediction, including deep-transfer-learning techniques, the experimental
data, and implementation details. Our experimental results are presented in Section 3, and
a discussion of the results is presented in Section 4. Finally, Section 5 concludes the paper.

2. Materials and Methods
2.1. Study Area

In this study, winter wheat was selected as the study crop, and the winter-wheat-
growing regions in the USA were selected as study areas (Figure 1). Wheat ranks among
the top three most commonly consumed staple foods globally [26]. The USA was the
second largest wheat exporter in the world in 2021, accounting for 13.1 % of the total wheat
exported [27,28]. Moreover, the USA is the fourth largest wheat producer after China,
Russia, and India, and around 8.1% of the global wheat was produced here in 2021. Winter
wheat varieties, planted in the preceding fall, dominate US wheat production, representing
between 70–80% of total wheat production [29]. Prediction of wheat at a regional scale
before harvest and mapping the spatial distribution of the wheat area in the USA are
important for supply chain management in agribusiness, adapting crop management
practices and ensuring their and regional food security. In this study, predictions were
made at the county scale.
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Figure 1. Study area showing local and transfer location. The colored areas on the map denote the
study counties.

Transfer experiments were conducted between different climatic regions within the
USA. Köppen classification maps of the present day [30] were used to identify the climate
classes for each county. The Köppen–Geiger climate classification system categorises cli-
mates into six main groups based on monthly temperature and precipitation data. Each
group has further subdivisions representing variations within the main class. This classifi-
cation system is based on the idea that different climate zones support different types of
vegetation. For the transfer experiments, we selected counties within the arid and temper-
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ate climate classes as the local area (source domain) and counties within the climate class
cold and subclass “no dry season, hot summer” climate as the transfer area (target domain).
For the counties that fall under more than one zone in the above map, we classified them
as the class in which the majority of the area falls.

2.2. Dataset and Pre-Processing

This study utilises remote sensing and weather data as inputs to characterise crop
health and growth conditions. Previous studies have shown that time-series remote sensing
data and meteorological data are important predictors in regional-scale yield prediction
studies [14,31]. Similarly, in transfer learning across different ecological zones for yield
prediction, these variables have been found to be applicable [20].

The enhanced vegetation index (EVI) was the remote sensing data used in the study.
EVI is a measure of the greenness of vegetation and serves as an indicator of the quantity
of healthy vegetation [32]. EVI offers improved sensitivity in high-biomass regions and
reduces noise from the canopy background and atmosphere. It has a strong correlation
with gross primary production (GPP). The data for the indices were obtained from the
MOD13Q1 V6.1 product, a 16-day global 250 m vegetation index and reflectance product
of the moderate-resolution imaging spectroradiometer (MODIS). Only pixels with good-
quality data (DetailedQA = 0) were used to obtain the time-series data, ignoring data with
snow or cloud cover.

EVI is calculated as follows:

EVI = 2.5 × (NIR − Red)
NIR + C1 × Red − C2 × Blue + L

(1)

where NIR, Red, and Blue are reflectance acquired in the near-infrared (841–876 nm), red
(620–670 nm), and blue (459–479 nm) portions of the electromagnetic spectrum, respectively.
The variable L accounts for soil and canopy background effects, while C1 and C2 are
coefficients used to correct atmospheric influences. The standard values used are L = 1,
C1 = 6, and C2 = 7.5.

For weather information, we used Terraclimate [33], which is global weather data at
monthly intervals prepared by combining the WorldClim dataset with Climatic Research
Unit (CRU) Ts4.0 and the Japanese 55-year Reanalysis (JRA55) data. The spatial resolution
of the data is 1/24th degree (∼4.6 km). The data used in the study are downward surface
shortwave radiation, wind speed maximum temperature, and soil moisture. This climatic
variable showed a high correlation with crop yield [31]. All the above-mentioned input
data are available globally for any part of the world.

The study predicted the end-of-season yield for winter wheat in the study counties.
Winter-wheat-growing season in the study is from September–October to May–July in the
following year [34]. EVI and weather data from October of the plantation year to June of
the harvest year were selected as input data for the predictive models.

We employed Google Earth Engine (GEE) for data collection and pre-processing. The
model used monthly EVI and weather data as input. The 16-day EVI data were converted
to monthly time-series data using a weighted average scheme, where the weights were
based on the degree of temporal overlap. For each input feature, we used the crop map
to eliminate irrelevant observations from non-winter-wheat areas. Subsequently, within
each administrative unit (county), we extracted all relevant features and aggregated each
feature to the administrative division level by calculating the mean value of all extracted
pixels within that county.

Target yield data, consisting of county-level winter wheat yields, were obtained from
the National Agricultural Statistics Service (NASS) QuickStats database of the United
States Department of Agriculture [29]. These data were used to train and test the crop
yield prediction model. All yields were reported in units of metric tonnes per cultivated
hectare (t/Ha). Winter wheat yields in the transfer area have been generally higher than
in the local area during the study period. The Cropland Data Layer (CDL) was used to
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delineate the annual cultivation areas of winter wheat within each county. The CDL is an
annual georeferenced, crop-specific land cover map dataset produced by the USDA-NASS.
The CDL is derived from moderate-resolution satellite imagery combined with extensive
agricultural ground truth data [35] to achieve a spatial resolution of 30 m.

2.3. Transfer Learning

The idea of using knowledge from one task to improve learning on another is not
new and has existed under different names like inductive transfer [36], multi-task learn-
ing [37], and incremental/cumulative learning [38]. However, the rise of deep learning
has significantly increased the popularity of transfer learning. Deep neural networks
need massive datasets for training, which can be expensive and time-consuming to ac-
quire. Transfer learning helps address this challenge. The goal of transfer learning is
to learn knowledge using data from the source domain that can also be applied to the
target domain (Figure 2). Transfer-learning approaches can be broadly categorised into
four types: instance-based, parameter-based, relation-based, and feature-based [39]. The
instance-based transfer-learning approach adjusts the weights of certain data from the
source domain and combines them with a few labelled data from the target domain to make
predictions in the target domain. Parameter-based transfer learning takes some parameters
or prior distributions of hyperparameters from the pre-trained model from the source
domain as a starting point. The model’s parameters are then fine-tuned on the target data
to improve performance on the new task. Feature-based transfer-learning methods aim to
discover effective feature representations to minimise domain differences and reduce errors
in classification or regression models. Relational-based transfer learning is specifically
designed for tasks where data can be represented by relationships between entities. This
approach focuses on transferring the logical relationship or rules learned between domains.
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In this study, we used four transfer-learning approaches: instance-based TrAdaBoost.R2
and two-stage TrAdaBoost.R2, feature-based domain-adversarial neural network, and
parameter-based fine-tuning. Across all approaches, BiLSTM was utilised as the base model.

The TrAdaBoost algorithm, proposed by Dai, Yang, Xue and Yu [24], is a transfer-
learning algorithm originally developed for the classification field. It assumes that certain
source domain data may be effective for learning in the target domain, while others may
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not and could even be detrimental. It is based on “reverse boosting”. During each boosting
iteration, TrAdaBoost strategically adjusts instance weights. When a target instance is
misclassified, its weight is increased, encouraging the model to focus on these challenging
examples. Conversely, misclassified source instances experience a decrease in weight. This
approach helps TrAdaBoost identify and utilise source data points that are most relevant
to the target domain while disregarding those that are significantly different. Building
upon the principles of AdaBoost.R2 and TrAdaBoost, Pardoe and Stone [40] proposed
TrAdaBoost.R2, an instance-based regression transfer algorithm. This algorithm combines
the source and target datasets into a single set and handles the reweighting of each training
instance independently. TrAdaBoost.R2 can become susceptible to overfitting as the number
of boosting iterations increases and decreases in accuracy beyond a certain point. To address
this limitation, the authors also introduced the two-stage TrAdaBoost.R2 algorithm. Two-
stage TrAdaBoost.R2 assigns weights to the instances in two steps. In the first stage, the
algorithm gradually reduces the weights of source data points until reaching a threshold
determined by cross-validation. This effectively minimises the influence of potentially
irrelevant source data on the model. In stage 2, source instance weights are frozen, while
target instance weights are updated according to the standard AdaBoost.R2 procedure.
Importantly, only the hypotheses generated in the second stage are retained and used to
determine the output of the resulting model. To the best of our knowledge, this is the first
study in which these instance-based methods are applied for crop yield prediction.

Another transfer-learning strategy used in this study is fine-tuning [41]. Fine-tuning
involves pre-training a model on a data-rich source domain and then refining it with a
few labelled samples from a target domain. First, the base neural network is trained on
the source domain. Usually, the weights of some of the layers of the trained network are
frozen while others are made trainable. One common approach is to freeze the initial
few layers responsible for feature extraction of the trained deep-learning model while the
predictor part of the model is fine-tuned using data from the target domain. In this study, a
transferable BiLSTM model was constructed by keeping the weights of the BiLSTM layers
unchanged while fine-tuning the weights of the dense layers of the model.

The final transfer-learning method employed in this study is the DANN [42]. It is an
unsupervised technique designed to extract domain-invariant features, meaning features
that are relevant to the learning task and remain applicable even when the source and
target domains have different data distributions. DANN integrates an adversarial compo-
nent to align the feature distributions across domains, thereby enhancing the network’s
generalisation capabilities. DANN typically consists of three main components: the feature
extractor, domain classifier, and regressor. The feature extractor is responsible for learning
features from the input data. A domain classifier is a network that takes the extracted
features and attempts to predict whether the data originated from the source or target
domain. This is trained in an adversarial setting. By minimising the domain classifier’s
ability to distinguish between domains, the model attempts to make the features extracted
by the first component indistinguishable between domains. Finally, a regressor utilises the
extracted features to perform the main learning task, such as predicting yield.

2.4. BiLSTM Model

The BiLSTM model was selected as the base model in all the transfer-learning ap-
proaches. BiLSTM has proven effective in processing time-series remote sensing data for
various tasks, including crop detection [43], data imputation [44], and change detection [45].
BiLSTM is a recurrent neural network (RNN) used for processing sequential data [46,47].
It builds upon long short-term memory (LSTM) [48] and is designed to better capture
long-term dependencies by addressing the vanishing-gradient problem in RNNs. Unlike
standard LSTMs, which process data in a single direction, a BiLSTM model consists of two
LSTM components. One LSTM processes the data in the forward direction, while the other
processes it in the backward direction. This allows BiLSTM to effectively capture features
from sequential data. The model selected for this study consists of two Bidirectional LSTM
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(BiLSTM) layers followed by three Dense layers. Additionally, a Dropout layer is inserted
between each of the BiLSTM and Dense layers to help mitigate overfitting (Figure 3).
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2.5. Experimental Setup

In this study, the model trained using data from the local area was adapted for
prediction on the transfer area using transfer learning. The Koppen classification data
divided the wheat-growing counties of the USA into local and transfer areas. Details
regarding these areas are provided in the study area section. The years 2019 and 2020 were
selected as test years for evaluating the transfer-learning approaches. Data from 2008 to
the year preceding the test year were used for model training. The pre-processed dataset
consisted of a total of 6121 data points from the local area and 2225 data points from the
transfer area. Specifically, for the years 2019 and 2020, the number of data points from the
transfer area used to test the model were 104 and 197, respectively.

For the semi-supervised transfer-learning approaches (TrAdaBoost.R2, two-stage
TrAdaBoost.R2, and Fine-Tuning), a subset comprising 10% of the available input–target
pairs from the transfer area covering the training period was utilised for transfer learning.
In contrast, the unsupervised DANN approach utilised all unlabelled input features from
the transfer area within the training period. For instance, to predict yields for 2019, the
semi-supervised deep-transfer-learning models were trained using input–target data pairs
from 2008 to 2018 from the local area, along with 10% of the input–target data pairs from
the transfer area for the same period. Meanwhile, the DANN model used input–target
data pairs from 2008 to 2018 from the local area and all unlabelled input variables from the
transfer area during the same period.

We also compared the results of the transfer-learning approach with those of the base
Bi-LSTM model and a Random Forest model trained exclusively on local area data and
then directly applied to predict yield in the transfer area. Random Forest [49] is a widely
used algorithm that has been found to provide robust performance across a range of tasks,
including crop yield prediction [31].

To identify optimal hyperparameters for each model, we employed a grid search
technique, and data from 2008 to 2018 were used. The hyperparameter search space and
selected hyperparameter for different models are presented in Table 1. The models were
implemented within the Python 3.10.6 environment, utilising the TensorFlow framework.
The ADAPT [50] library was also used for implementing transfer-learning approaches.
Training leveraged a high-performance computing (HPC) server featuring an Intel Xeon
Gold 6238R processor clocked at 2.2GHz with 28 cores, 180GB RAM (Six Channel), and a
robust NVIDIA Quadro RTX 6000 Passive GPU, boasting 4608 cores, 576 Tensor Cores, and
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24GB of memory. The experiment for each model was repeated ten times, and the mean
results are presented in the paper.

Table 1. Hyperparameter for different models.

Method Parameter Search Space Selected Parameters

DANN

Lambda 0.0001, 0.001, 0.01, 0.1, 1, 2, 5 0.01

Learning rate 0.01, 0.001, 0.0001 0.0001

Epoch 50, 100, 150, 200 150

Batch size 50, 100 50

TrAdaBoost.R2, two-stage
TrAdaBoost.R2

Learning rate 0.01, 0.001 0.01

Epoch 100, 150 100

Batch size 50,100 100

Fine-tuning

Epoch (main) 50, 100, 150 100

Learning rate (main) 0.01, 0.001, 0.0001 0.001

Batch size (main) 50, 100 100

Epoch (fine tune) 50, 100, 200, 400, 800 100

Learning rate (fine tune) 0.01, 0.001, 0.0001 0.001

Batch size (Fine tune) 20, 50, 100 20

Random Forest

Number of Trees 10, 100, 200, 500 100

Bootstrap True, False True

Max depth None, 10, 20 None

Minimum sample leaf 1, 2, 4 2

Minimum sample split 2, 5, 10 5

2.6. Performance Evaluation

In this experiment, we utilised the coefficient of determination (R2) and mean absolute
error (MAE) to assess the performance of the model. The R2 is expressed as a fraction and
represents the degree of agreement between the true value and the predicted value, mea-
suring the proportion of variance in the dependent variable explained by the independent
variable. MAE is the average absolute difference between the predicted values and the
actual value.

MAE =
1
n∑n

i=1

∣∣Yi − Ŷi
∣∣ (2)

R2 = 1 − ∑n
i=1

(
Yi − Ŷi

)2

∑n
i=1

(
Yi − Y

)2 (3)

where Yi denotes the actual yield values, Ŷi represents the predicted yield values, and Ȳ
denotes the mean of the actual yield values.

3. Results

In this study, various transfer-learning techniques were employed with BiLSTM mod-
els for winter wheat yield prediction across different climatic zones in the USA. The
performance of these methods was evaluated based on MAE and R2 values over the years
2019 and 2020. The boxplot (Figure 4) illustrates the distribution of winter wheat yields for
local and transfer areas over the 13-year period (2008–2020). The transfer area exhibited
generally higher winter wheat yields than the local area.
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Table 2 summarises the results obtained from different transfer-learning approaches.
The mean of R2 for the test years for the baseline BiLSTM model without using transfer
learning was 0.19, and the MAE was 0.55. The R2 value implies that the model explains
only 19% of the variance in yield in the transfer location, suggesting the model may not be
used directly for yield prediction in the transfer location. The Random Forest model also
showed poor performance in the transfer location, with a mean MAE of 0.55 and an R2 of
0.24, indicating a limited predictive capability for yield in that region.

Table 2. R2 and MAE of different models in transfer location for test years.

Transfer Method
2019 2020

MAE R2 MAE R2

Random Forest 0.56 0.28 0.55 0.20
1 Bi-LSTM Model Without TL 0.53 0.22 0.57 0.16
2 Fine tuning 0.45 0.45 0.41 0.55
3 DANN 0.47 0.41 0.52 0.26
4 TrAdaBoost.R2 0.45 0.41 0.46 0.49
5 Two-stage TrAdaBoost.R2 0.41 0.51 0.42 0.53

The unsatisfactory performance of the models without transfer learning suggests that
the relationship learned between the input features and crop yield in the local area is not
generalisable to the target domain. The low-dimensional visualisation of the input data of
local and transfer locations using t-distributed stochastic embedding (t-SNE) [51] shows
distinct clusters for the data for the local and transfer area (Figure 5a), suggesting different
distributions of input variables in the local and transfer area. The distribution of yield
in the transfer and local area also differs (Figure 5b). The mean, median, and standard
deviation across all years and counties within the local area are 3.22 t/ha, 3.26 t/ha, and
1.23 t/ha, respectively, while those for the transfer area are 3.74 t/ha, 3.70 t/ha, and
0.96 t/ha, respectively.
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Figure 5. Distribution of data in local and transfer area. (a) T-SNE plot of input variables, and
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Compared to the baseline Bi-LSTM model and Random Forest model without transfer
learning, all transfer-learning approaches showed improvements in both the MAE and R2

values (Table 2). The DANN improved the results for both years with a mean MAE of 0.50
and R2 of 0.34 for test years. All semi-supervised transfer-learning approaches demonstrate
notable improvement in performance. In particular, fine-tuning and the two-stage TrAd-
aBoost.R2 approach achieved the best and had similar performance. Fine-tuning achieved
a mean MAE of 0.43 and a mean R2 of 0.50, and the two-stage TrAdaBoost.R2 achieved
a mean MAE of 0.42 and a mean R2 of 0.52. The standard TrAdaBoost.R2 technique also
achieved a comparable performance to both methods, with a mean MAE of 0.46 and a mean
R2 of 0.45. Therefore, for the same base model and hyperparameter setting, the two-stage
TrAdaBoost.R2 performs better than TrAdaBoost.R2 for crop yield prediction. Moreover,
compared to other models, the two-stage TrAdaBoost.R2 had a consistent performance
through the years. However, the computational time for the two-stage TrAdaBoost.R2 is
significantly higher than that of other approaches.

Figure 6 presents the spatial distribution of the mean of the absolute error for the
winter wheat yield prediction in the years 2019 and 2020. Darker colours indicate larger
absolute errors for each model. The spatial distribution of the absolute error shows clusters
of highly erroneous counties in the DANN method. The two-stage TrAdaBoost.R2 and
fine-tuning methods show a lower absolute error across all the study areas. Similarly, in the
scatterplot (Figure 7), both the two-stage TrAdaBoost.R2 and fine-tuning methods exhibited
the highest level of agreement between the reported and predicted yield. The scatterplot
also reveals that the DANN generally exhibited underprediction. The mean yields for the
transfer location in the test years 2019 and 2020 were 4.0 t/ha and 3.8 t/ha, respectively,
which is substantially higher than the mean yield in the local area during the study period
(3.26 t/ha). The difference in yield distribution in the transfer and local areas is also evident
in the boxplot presenting the yield in the transfer and local areas (Figure 4). Since the
DANN was not trained on yield data from the transfer location, this likely explains the
underprediction. However, to a lesser extent, fine-tuning also showed underprediction,
indicating that it was similarly unable to adequately learn the yield distribution from the
limited data available from the transfer location. The two-stage TrAdaBoost.R2 exhibited
the least occurrence of this issue. The scatterplot of TrAdaBoost.R2 (Figure 7(b1,b2)) shows
several points arranged in a straight line parallel to the reported yield axis. This pattern
indicates that, for a range of different reported yields, the model predicted similar yields,
suggesting an issue of overfitting.
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To investigate the impact of BiLSTM layers on learning transferable features by the
transfer model, we conducted two-stage TrAdaBoost.R2 experiments without incorporating
BiLSTM layers. The experiment employed the architecture comprising the final three Dense
layers (including the output layer) with Dropout layers between them. We run these
experiments 10 times and averaged the results. As depicted in Table 3, transfer models
with BiLSTM layers outperformed those without, both in terms of MAE and R2 for the test
years. Additionally, we tried using two more Dense layers instead of a BiLSTM layer, but
the performance was significantly worse, so we did not include those results.

Table 3. Comparison of performance of two-stage TrAdaBoost.R2 with and without BiLSTM layers.

Transfer Method
2019 2020

MAE R2 MAE R2

1 Two-stage TrAdaBoost.R2 with BiLSTM
component in the base layer 0.41 0.51 0.42 0.53

2 Two-stage TrAdaBoost.R2 without
BiLSTM component in the base layer 0.49 0.33 0.55 0.29

4. Discussion

While deep learning and machine learning offer powerful tools for modelling complex,
nonlinear relationships between input features and crop yield [5,14], these models are often
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limited by their domain-specific nature. As a result, they may not generalise well to different
regions with varying data distributions. For instance, the study by Ma, Zhang, Yang and
Yang [20] observed a decline in the performance of RF and MLP models when trained
on data from a specific region and applied to a different region. A similar observation
was found in our study, where models trained without transfer learning (base RF and
Bi-LSTM) showed poor performance when applied to the transfer location. We employed
transfer learning techniques to address this limitation, which demonstrated significant
improvements in model performance with reductions in MAE ranging from 9% to 28%.

The results showed that the fine-tuning and two-stage version of TrAdaboost.R2
exhibited superior performance for crop yield prediction in areas with limited training data.
Fine-tuning utilises feature extractors trained on different data, enabling the model to adapt
efficiently to new tasks or domains by leveraging existing knowledge [41]. TrAdaboost.R2,
which is an instance-based transfer learning method, iteratively assigns weights to the data
points based on their contribution to prediction. However, the instance-based Kullback-
Leibler Importance Estimation Procedure showed inferior performance for the maise yield
prediction in transfer locations, likely due to overfitting [21]. In our study, the scatterplot
of TrAdaBoost.R2 (Figure 7(b1,b2)) shows a pattern indicative of the model overly fitting
the training data. The two-stage version of TrAdaBoost.R2 likely addresses the overfitting
concerns raised by using a staged approach for updating weights. Unsupervised domain
adaptation has also proven to be effective for yield prediction in prior studies [52]. However,
the DANN method did not perform satisfactorily in our study, particularly for the year
2020. This could be attributed to a greater domain shift in our dataset, as indicated by
the lower R2 values of the base models in our study compared to the R2 values of the
base models in the transfer locations reported in those studies. Also, limited historical
yield statistics are available in many regions, so effectively using the available data with a
semi-supervised transfer learning method is reasonable.

The robustness of this study lies in its application of an advanced feature extractor,
the BiLSTM, unlike previous studies that have mostly relied on the multilayer perceptron.
The study demonstrated that the Two-stage Tradaboost model with a Bi-LSTM base layer
outperformed the MLP-based version in terms of R2 and MAE across both test years (Table 3),
indicating superior feature learning capabilities of the Bi-LSTM in this context. The transfer
learning model with BiLSTM achieved a 16% and 23% reduction in MAE compared to
the transfer learning model with MLP for the two test years. Advanced deep learning
models, such as LSTM and 1D-CNN, have already demonstrated their effectiveness in yield
prediction, outperforming MLP based approaches [6,9,13,53]. The findings of our study
suggest that these techniques can provide superior feature representation, in the context
of transfer learning for yield prediction as well. Particularly, BiLSTM provides a deeper
understanding of context by processing sequences in both directions and then combining
these analyses into a single, enhanced representation [44,47]. Additionally, we employed
Köppen climate classification data to select distinct areas for source and target locations.

Furthermore, the study indicated that combining fine-tuning with the instance-based
two-stage TrAdaBoost.R2 method can lead to a robust transfer-learning approach for yield
prediction. The two-stage TrAdaBoost.R2 method assigns weights to source data based on
its contribution to the prediction, rather than treating all data equally. This approach is
particularly valuable when extracting information from multi-source domains with distinct
characteristics. Fine tuning updates the model’s parameters (weights) using data from the
transfer location. Both approaches were found to be effective in our study, and we could
potentially combine them to complement each other.

However, it is also important to acknowledge that there are challenges in implementing
the approach proposed in this study in certain regions. Firstly, we used MODIS data with
a spatial resolution of 250 m for vegetation indices, which is suitable for county-level
yield prediction in countries with larger agricultural farms. However, these data may
suffer from mixed pixel issues [54] in areas with smaller farms, which is common in many
developing countries. One potential solution to this issue is to utilise higher-resolution data
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such as Sentinel and Landsat imagery. Another challenge is that this method also requires
crop-type data to extract input variables from the area of a particular crop class only. While
this study utilises the Cropland Data Layer, such data are not available in many countries.
Experimentation with global low-resolution data and static crop-type maps in areas where
there is not a significant deviation in farming practices could be a potential solution. It
is also important to note that the target region is significantly affected by cloud cover.
Consequently, a considerable portion of the data has been removed, leading to data loss.
Approximately 35% of the data points from the study area were excluded from this study
due to missing EVI values for one or more of the analysed months. Future studies should
quantify the impact of noisy remote sensing data and explore alternative strategies like
using the interpolation or imputation of missing data techniques to mitigate these data gaps.
Additionally, this study integrated remote sensing and weather data for yield prediction.
Other variables, such as soil fertility, crop cultivar types, and management practices, may
not be fully captured by remote sensing data but these factors could improve the accuracy
of yield predictions, particularly when modelling larger areas with distinct agricultural
domains. Finally, exploring differences in feature interactions between local and transfer
locations would be an interesting area for future research using explainability techniques
and other analytical methods. Such studies could help identify which features generalise
well across domains and which require domain adaptation techniques to enhance model
performance in transfer-learning scenarios.

5. Conclusions

The scarcity of historical crop yield data poses a significant challenge for developing
machine-learning models for accurate yield prediction. Moreover, ML models trained on
data from one location often fail to predict satisfactorily when applied directly to geograph-
ically distinct areas with different environmental conditions. This study proposes different
deep-transfer-learning strategies for crop yield prediction, leveraging satellite-derived vege-
tation indices and meteorological variables in conjunction with a BiLSTM model. The study
develops the instance-based two-stage TrAdaBoost.R2 and TrAdaBoost.R2, parameter-
based fine-tuning, and feature-based DANN with BiLSTM as the base model and provides
a comprehensive quantitative evaluation. The effectiveness of the proposed approach is val-
idated by implementing it in diverse climatic zones within the United States. In conclusion,
the proposed deep-transfer-learning strategies show promise in improving the crop yield
prediction accuracy in regions with limited historical data. The results also demonstrate
that the semi-supervised transfer-learning approach using the two-stage TrAdaBoost.R2
and fine-tuning achieved a superior performance compared to the DANN and vanilla TrAd-
aBoost.R2. Future studies should evaluate the applicability of this method. This includes
incorporating data from different countries and applying it to entirely new geographic
regions. Further, a hybrid transfer-learning approach that incorporates parameter updates
and instance selection is suggested. As the diversity of source data increases and a more
robust methodology is adopted, the transfer-learning approach is expected to become even
more powerful in overcoming data scarcity limitations and achieving robust crop yield
predictions across various agricultural landscapes.
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