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Abstract
We consider a functional of the type F (u,Ω) =

∫︁
Ω F(Dku(x))dx on the Dirichlet class,

where F is a continuous function andΩ is an open bounded set ofRn with a Lipschitz
boundary. We prove that coercivity and mean coercivity are equivalent under growth
conditions, and further we prove that mean coercivity and quasiconvexity are
equivalent. Subsequently, we deduce that F (u,Ω) has a minimum under the
condition that the integrand F satisfies the growth condition and mean coercivity.

Keywords: Coercive; Mean coercive; Quasiconvex function; kth order partial
derivative; Variational integral

1 Introduction
In recent years, there has been a renewed interest in higher-order variational problems,
driven by their applications in diverse fields such as robotics, aviation, computer-aided de-
sign, and trajectory planning [1–5]. One such example is the uniform beam shape obtained
by finding the minimum potential energy in mechanics is a second-order variational prob-
lem [6]. The higher variational integral considered in this paper takes the following form:

F (u,Ω) =
∫︂

Ω

F
(︁
Dku(x)

)︁
dx, u ∈ W k,p

g (Ω,Rm), 1 < p < ∞, (1)

for n, m, k > 1, where Ω ⊂R
n is a bounded open set with a Lipschitz boundary, u : Ω →R

m,
F : Rmτ →R is a continuous function, τ =

(︁n+k–1
k

)︁
, and Dku denotes the partial derivatives

of order k. Here W k,p is the usual Sobolev space, and for a mapping g ∈ W k,p(Ω,Rm), we
denote W k,p

g (Ω,Rm) to be a Dirichlet class defined by

W k,p
g (Ω,Rm) =

{︁
g + ϕ : ϕ ∈ W k,p

0 (Ω,Rm)
}︁

. (2)

Here F satisfies the growth condition

F(ξ ) ≤ M(1 + |ξ |p), (3)

where ξ ∈R
mτ and M > 0.
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The direct method in the calculus of variations is a powerful abstract method for prov-
ing the existence of minimizer for variational problems based on the assumptions that
the integrand satisfies the growth and coercivity conditions, and the functional is sequen-
tially weakly lower semicontinuous [7–9]. It turns out that convexity (scalar case) or qua-
siconvexity (vectorial case) of the integrand is a necessary and sufficient condition for the
functional to be sequentially weakly lower semicontinuous [10–12].

For the case when k = 1, we say that F is coercive if

F
(︁
Du(x)

)︁ ≥ α1|Du(x)|p + β1, α1 > 0, β1 ∈R, u ∈ W 1,p
g (Ω,Rm).

In many cases, coercivity turns out to be restrictive and may not be satisfied [13]. However,
they satisfy a weaker condition known as mean coercivity condition defined as follows:

∫︂

Ω

F
(︁
Du(x)

)︁
dx ≥ α2

∫︂

Ω

|Du(x)|p + β2, α2 > 0, β2 ∈R, u ∈ W 1,p
g (Ω,Rm).

Considering functionals on the Dirichlet class W 1,p
g (Ω,Rm) = {g + ϕ : ϕ ∈ W 1,p

0 (Ω,Rm)},
where Ω ⊂ R

n and g ∈ W 1,p(Rn,Rm), Chen and Kristensen [13] established the equiva-
lence of coercivity and mean coercivity, which are also equivalent to a quasiconvexity con-
dition. In the study by Gmeineder and Kristensen [14] on minimizing variational integrals
of linear growth defined on the Dirichlet class of bounded variation maps, they showed
that the existence of minimizer is based on the mean coercivity of the maps, which in turn
is equivalent to the strong quasiconvexity of the variational integral. The strong quasi-
convexity is essential for proving the partial regularity of the minimizer. Apart from that,
coercivity and mean coercivity play a role in regularity theory, of which they are essential
in establishing higher integrability of minimizers [15, 16] and partial regularity [17, 18].

At the same time, in the study of plate and shell bending in elasticity [19], nonlinear wave
equations [20], and viscous effects in fluid mechanics [21], the mathematical models often
involve second or higher order partial derivatives. With regards to this, we study the re-
lation between coercivity, mean coercivity, and quasiconvexity to improve the variational
principle for solving problems with functionals involving higher order derivatives.

In Sect. 2, we give some notation and preliminary definitions. In Sect. 3, we prove the
equivalence of coercivity and mean coercivity under growth condition. Finally, we obtain
the equivalence of mean coercivity and quasiconvexity, which leads to the existence theo-
rem.

2 Preliminaries
Let R

n be the n-dimensional real Euclidean space x = (x1, . . . , xn) with norm of |x| =
(︁∑︁n

i=1(xi)2)︁ 1
2 . We denote by u = (u1, . . . , um) a vector valued function u : Ω → R

m and
by Dαu = (Dα1 u, . . . , Dαn u), where α = (α1, . . . ,αn) ∈ N

n and α1 + · · · + αn = |α|. For k ∈ N,
we define Dku = (Dαu)|α|=k .

In this study, W k,p(Ω,Rm) is the Sobolev space composed of functions u : Ω → R
m

whose all weak partial derivatives of order |α| ≤ k belong to Lp(Ω,Rm). For p ∈ (1,∞),
its norm is as follows:

∥u∥W k,p(Ω;Rn) =
(︂ ∑︂

0≤|α|≤k

∥Dαu(x)∥p
Lp(Ω,Rm)

)︂ 1
p .
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W k,p
0 (Ω,Rm) is the closure of C∞

0 (Ω,Rm) in W k,p(Ω,Rm). In addition, we consider
W k,p

g (Ω,Rm) to be the Dirichlet class defined by (2).
For 1 < p < ∞, we say that the sequence uh weakly converges to u if uh, u ∈ W k,p(Ω,Rm)

and

lim
h→∞

∫︂

Ω

[︁
uh(x) – u(x)

]︁
ϕ(x)dx = 0,

and

lim
h→∞

∫︂

Ω

[︁
Dαuh(x) – Dαu(x)

]︁
ϕ(x)dx = 0,

where |α| ≤ k, 1
p + 1

p′ = 1 and for all ϕ ∈ Lp′
(Ω,Rm). We denote this convergence by uh ⇀ u

in W k,p(Ω,Rm).
In the following, we extend the definition of coercivity and mean coercivity to k > 1.

Definition 1 Let F : Rmτ →R be a continuous function. We say that F is coercive if

F
(︁
Dku(x)

)︁ ≥ α1|Dku(x)|p + β1,

where α1 > 0, β1 ∈ R and for all u ∈ W k,p
g (Ω,Rm).

Definition 2 Let F : Rmτ →R be a continuous function. We say that F is mean coercive if

∫︂

Ω

F
(︁
Dku(x)

)︁
dx ≥ α2

∫︂

Ω

|Dku(x)|pdx + β2,

where α2 > 0, β2 ∈ R and for all u ∈ W k,p
g (Ω,Rm).

Definition 3 Let F : Rmτ →R be a continuous function. We say that F is quasiconvex if

F(ξ ) ≤ 1
meas(Ω)

∫︂

Ω

F
(︁
ξ + Dkϕ(x)

)︁
dx (4)

for all ξ ∈R
mτ and for all ϕ ∈ C∞

0 (Ω,Rm).

Proposition 1 ([22, 23]) The definition of quasiconvexity is independent of the choice of
the bounded open set Ω, that is, if (4) holds for some bounded open set Ω0 ⊂ R

n, then (4)
holds for any bounded open set.

3 Equivalence of coercivity and mean coercivity
In this section, we prove the equivalence of coercivity and mean coercivity. The following
lemma is crucial for proving that mean coercivity implies coercivity.

Lemma 1 Let Ω ⊂R
n be a bounded open set, ξ0 ∈ R

mτ and uj ⇀ 0 on W k,p(Ω,Rm). Then,
for 1 < p < ∞,

lim
j→∞

∫︂

Ω

[︂⃓
⃓ξ0 + Dkuj

⃓
⃓p – |ξ0|p

]︂
dx = 0. (5)
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Proof We take F(z) = |z|p, z ∈ R
mτ and (ηε)ε>0 to be a standard smooth mollifier on R

mτ .
Let Fε(z) = (ηε ∗F)(z) =

∫︁
Rmτ ηε(z–y)F(y)dy. Then Fε is smooth and convex, and lim

ε→0
Fε = F .

Applying the mean value theorem to Fε and by the usual inner product of Euclidean space,
we get

Fε(ξ0 + Dkuj) – Fε(ξ0) = F ′
ε(t0) · Dkuj

=
(︁
ηε ∗ DF(t0)

)︁ · Dkuj

= (ηε ∗ p|t0|p–1t0) · Dkuj, (6)

where t0 is some number that lies between ξ0 and ξ0 + Dkuj. Taking ε → 0 from both sides
of (6), we get

F(ξ0 + Dkuj) – F(ξ0) = |ξ0 + Dkuj|p – |ξ0|p = p|t0|p–1t0 · Dkuj. (7)

Due to p|t0|p–1t0 ∈ Lp′ and uj ⇀ 0 on W k,p(Ω,Rm) with 1
p + 1

p′ = 1, invoking the definition
of weak convergence directly leads us to conclude

lim
j→∞

∫︂

Ω

[|ξ0 + Dkuj|p – |ξ0|p]dx = lim
j→∞

∫︂

Ω

p|t0|p–1t0 · Dkujdx = 0. □

We may now state the theorem.

Theorem 2 Let Ω ⊂R
n be a bounded open set with a Lipschitz boundary and F : Rmτ →R

be a continuous function satisfying the growth condition

F(ξ ) ≤ M
(︁
1 + |ξ |p)︁ ,

where M > 0. Let

F (u,Ω) =
∫︂

Ω

F
(︁
Dku(x)

)︁
dx, u ∈ W k,p

g (Ω,Rm).

Then, for an exponent 1 < p < ∞, the following two conditions are equivalent:
(i) F is coercive.
(ii) F is mean coercive.

Proof Coercivity implies mean coercivity is trivial, and the proof is omitted here. The con-
verse will be proved in two steps. In the first step, we show that mean coercivity derives
coercivity under a cube Q parallel to the axes. In the second step, we extend the cube Q to
the general domain Ω.

Step 1. Suppose that Q ⊂ R
n is a cube parallel to the axes and sequence uj ⇀ u in

W k,p
g (Q,Rm). Let Q0 ⊂⊂ Q be a cube and set R = 1

2 dist(Q0, ∂Q). Let N be a positive in-
teger and

Qi =
{︂

x ∈ Q : dist(x, Q0) <
iR
N

}︂
, i = 1, . . . , N .

Therefore, Q0 ⊂ Q1 ⊂ · · · ⊂ QN ⊂ Q.
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We introduce a cutoff function φi ∈ C∞
0 (Qi) such that

0 ≤ φi ≤ 1; φi =

⎧
⎨

⎩

1 in Qi–1

0 in Q – Qi

;

|Dlφi| ≤ c
(︂N + 1

R

)︂l
, l = 1, . . . , k,

where c > 0 is a constant. Let

vij = φi(uj – u), (8)

and we get

vij ⇀ 0 in W k,p
g (Q,Rm).

Assuming that ξ0 is a constant vector in R
mτ , we have

∫︂

Q
F(ξ0 + Dkvij)dx =

∫︂

Q–Qi

F(ξ0)dx +
∫︂

Qi–Qi–1

F(ξ0 + Dkvij)dx

+
∫︂

Qi–1

F
(︁
ξ0 + Dk(uj – u)

)︁
dx

≤
∫︂

Q–Q0

F(ξ0)dx +
∫︂

Qi–Qi–1

F(ξ0 + Dkvij)dx

+
∫︂

Q
F
(︁
ξ0 + Dk(uj – u)

)︁
dx. (9)

Taking the summation from i = 1 to i = N about (9), we get

N∑︂

i=1

∫︂

Q
F(ξ0 + Dkvij)dx ≤ N

∫︂

Q–Q0

F(ξ0)dx +
N∑︂

i=1

∫︂

Qi–Qi–1

F(ξ0 + Dkvij)dx

+ N
∫︂

Q
F
(︁
ξ0 + Dk(uj – u)

)︁
dx. (10)

We now estimate for the terms on the right-hand side of (10), beginning with the second
term:

N∑︂

i=1

∫︂

Qi–Qi–1

F(ξ0 + Dkvij)dx

≤
N∑︂

i=1

∫︂

Qi–Qi–1

M(1 + |ξ0 + Dkvij|p)dx

≤
N∑︂

i=1

∫︂

Qi–Qi–1

M2p–1(1 + |ξ0|p + |Dkvij|p)dx

≤
N∑︂

i=1

∫︂

Qi–Qi–1

c
[︂

1 + |ξ0|p +
k∑︂

l=1

|Dk–l(uj – u)|p
(︂N + 1

R

)︂lp]︂
dx

≤
∫︂

Q
c
[︂

1 + |ξ0|p +
k∑︂

l=1

|Dk–l(uj – u)|p
(︂N + 1

R

)︂lp]︂
dx, (11)
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where we use the Leibniz formula [24] and Minkowski’s inequality for |Dkvij|p, that is,

|Dkvij|p ≤
(︂ k∑︂

l=0

(︃
k
l

)︃

|Dk–l(uj – u)| · |Dkφi|
)︂p

≤
k∑︂

l=0

(︃
k
l

)︃p

|Dk–l(uj – u)|p · |Dlφi|p

≤
k∑︂

l=1

(︃
k
l

)︃p

|Dk–l(uj – u)|p
(︂N + 1

R

)︂lp

≤ c
k∑︂

l=1

|Dk–l(uj – u)|p
(︂N + 1

R

)︂lp
. (12)

Here
(︁k

l
)︁p ≤ 2kp ≤ c. Substituting (11) into (9) and dividing both sides of the inequality by

N , we obtain

1
N

N∑︂

i=1

∫︂

Q
F(ξ0 + Dkvij)dx

≤ F(ξ0)meas(Q – Q0) +
∫︂

Q
F
(︁
ξ0 + Dk(uj – u)

)︁
dx

+
c
N

∫︂

Q

[︂
1 + |ξ0|p +

k∑︂

l=1

|Dk–l(uj – u)|p
(︂N + 1

R

)︂lp]︂
dx. (13)

We next estimate the second term on the right-hand side of (13). Since F is continuous
and uj ⇀ u in W k,p

g (Q,Rm), we have

F
(︁
ξ0 + Dk(uj – u)

)︁ ≤ lim inf
j→∞

⃓
⃓F

(︁
ξ0 + Dk(uj – u)

)︁⃓⃓.

By Fatou’s lemma [25], we get

∫︂

Q
F
(︁
ξ0 + Dk(uj – u)

)︁
dx ≤

∫︂

Q
lim inf

j→∞
⃓
⃓F

(︁
ξ0 + Dk(uj – u)

)︁⃓⃓dx

≤ lim inf
j→∞

∫︂

Q

⃓
⃓F(ξ0 + Dk(uj – u))

⃓
⃓dx. (14)

Inequality (13) can be further rewritten as

1
N

N∑︂

i=1

∫︂

Q
F(ξ0 + Dkvij)dx

≤ F(ξ0)meas(Q) + lim inf
j→∞

∫︂

Q

⃓
⃓F

(︁
ξ0 + Dk(uj – u)

)︁⃓
⃓dx

+
c meas(Q)(1 + |ξ0|p)

N
+

c
N

∫︂

Q

k∑︂

l=1

|Dk–l(uj – u)|p
(︂N + 1

R

)︂lp
dx. (15)
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On the other hand, F is mean coercive, we have
∫︂

Q
F(ξ0 + Dkvij)dx ≥ α2

∫︂

Q
|ξ0 + Dkvij|pdx + β2

= α2

∫︂

Q–Qi

|ξ0|pdx + α2

∫︂

Qi–Qi–1

|ξ0 + Dkvij|pdx

+ α2

∫︂

Qi–1

|ξ0 + Dk(uj – u)|pdx + β2. (16)

Taking the summation from i = 1 to i = N , we get

N∑︂

i=1

∫︂

Q
F(ξ0 + Dkvij)dx

≥ α2

N∑︂

i=1

∫︂

Q–Qi

|ξ0|pdx + α2

N∑︂

i=1

∫︂

Qi–Qi–1

|ξ0 + Dkvij|pdx

+ α2

N∑︂

i=1

∫︂

Qi–1

|ξ0 + Dk(uj – u)|pdx + Nβ2. (17)

The first term on the right-hand side of (16) is rewritten as

N∑︂

i=1

∫︂

Q–Qi

|ξ0|pdx

=
N∑︂

i=1

∫︂

Q
|ξ0|pdx –

N∑︂

i=1

∫︂

Qi

|ξ0|pdx

=
N∑︂

i=1

∫︂

Q
|ξ0|pdx –

N∑︂

i=1

∫︂

Qi–Qi–1

|ξ0|pdx –
N∑︂

i=1

∫︂

Qi–1

|ξ0|pdx. (18)

Substituting (18) into (17) and dividing both sides by N , we have

1
N

N∑︂

i=1

∫︂

Q
F(ξ0 + Dkvij)dx

≥ α2|ξ0|p meas(Q) +
α2

N

N∑︂

i=1

∫︂

Qi–Qi–1

[︁|ξ0 + Dkvij|p – |ξ0|p
]︁
dx

+
α2

N

N∑︂

i=1

∫︂

Qi–1

[︁|ξ0 + Dk(uj – u)|p – |ξ0|p
]︁
dx + β2. (19)

Combining (15) and (19), we get

α2|ξ0|p meas(Q) +
α2

N

N∑︂

i=1

∫︂

Qi–Qi–1

[︁|ξ0 + Dkvij|p – |ξ0|p
]︁
dx

+
α2

N

N∑︂

i=1

∫︂

Qi–1

[︁|ξ0 + Dk(uj – u)|p – |ξ0|p
]︁
dx + β2
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≤ F(ξ0)meas(Q) + lim inf
j→∞

∫︂

Q

⃓
⃓F

(︁
ξ0 + Dk(uj – u)

)︁⃓⃓dx

+
c meas(Q)(1 + |ξ0|p)

N
+

c
N

∫︂

Q

k∑︂

l=1

|Dk–l(uj – u)|p
(︂N + 1

R

)︂lp
dx. (20)

We first estimate the second term on left-hand side of (20). By Lemma 1, we get

lim
j→∞

∫︂

Qi–Qi–1

[︁|ξ0 + Dkvij|p – |ξ0|p
]︁
dx = 0 (21)

and

lim
j→∞

∫︂

Qi–1

[︁|ξ0 + Dk(uj – u)|p – |ξ0|p
]︁
dx = 0. (22)

It follows from the Rellich–Kondrachov theorem that ∥Dluj – Dlu∥Lp(Ω,Rm) → 0 for l =
0, . . . , k – 1. Letting j → ∞ and N → ∞ on both sides of (20) and dividing both sides of
the inequality by meas(Q), we get

F(ξ0) ≥ α1|ξ0|p + β1,

where α1 = α2, β1 = β2 – lim inf
j→∞

∫︁
Q

⃓
⃓F

(︁
ξ0 + Dk(uj – u)

)︁⃓
⃓dx.

Step 2. We let δ > 0 and h be an integer and approximate Ω with a union of cubes Qs

parallel to the axes in R
n and whose edge length is 1/h. We denote this union by Hh and

choose h large enough so that

meas(Ω – Hh) ≤ δ where Hh :=
⋃︂

Qs.

We set

ξs :=
1

meas(Qs)

∫︂

Qs

Dku(x)dx.

Denote by ξ equal to ξs on the cube Qs. For fixed ε > 0, we choose small δ such that

(︂∑︂

s

∫︂

Qs

|Dku(x) – ξs|pdx
)︂ 1

p < ε.

Since F satisfies the mean coercivity, we have
∫︂

Qs

F(ξs + Dkvij)dx ≥ α2

∫︂

Qs

|ξs + Dkvij|pdx + β2,

where vij = φi(uj – u) as in (8). From step 1, we can deduce that

F(ξs) ≥ α1|ξs|p + β1. (23)

Taking the integral of both sides of (23) over Qs and summing it up, we have

∑︂

s

∫︂

Qs

F(ξs)dx ≥ α1
∑︂

s

∫︂

Qs

|ξs|pdx +
∑︂

s

∫︂

Qs

β1dx.
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So we obtain
∫︂

Hh

F(ξ )dx ≥ α1

∫︂

Hh

|ξ |pdx +
∫︂

Hh

β1dx. (24)

Dividing both sides of inequality (24) by meas(Hh), we have

F(ξ ) ≥ α1|ξ |p + β1.

It follows that F is coercive. □

4 Equivalence of mean coercivity and quasiconvexity
In this section, we prove the equivalence of mean coercivity and quasiconvexity.

Theorem 3 Let Ω ⊂R
n be a bounded open set with a Lipschitz boundary and F : Rmτ →R

be a continuous function satisfying the growth condition

F(ξ ) ≤ M(1 + |ξ |p), (25)

and

|F(ξ ) – F(η)| ≤ L(1 + |ξ |p–1 + |η|p–1)|ξ – η|, (26)

where ξ ,η ∈R
mτ , M > 0, and 0 < L < ∞. Let

F (u,Ω) =
∫︂

Ω

F
(︁
Dku(x)

)︁
dx, u ∈ W k,p

g (Ω,Rm). (27)

Then, for an exponent 1 < p < ∞, the following two conditions are equivalent:
(i) F is mean coercive.
(ii) F is quasiconvex.

Remark 1 Replacing condition (26) with Lipschitz continuity or local Lipschitz continu-
ity still leads to the same conclusion. However, condition (26) does not necessitate the
function to be differentiable, thereby extending its applicability.

Proof (i) ⇒ (ii). It is noted that if inequality (4) holds for a bounded open set Q ⊂ Ω, then
it holds for any bounded open set. We therefore discuss one particular cube Q defined
below. We will show that the mean coercivity in Ω implies quasiconvexity in Q.

Let Q ⊂ R
n be a cube whose planes are parallel to the axes, and ξ ∈ R

mτ . Let ϕ ∈
W k,p

g (Q,Rm) be extended by periodicity from Q to R
n, that is, if the edge length of Q is d,

then

ϕ(x + dz) = ϕ(x) for every x ∈ Q and z ∈ Z
n.

Let ν be an integer and let

ϕν(x) :=
1
νk ϕ(νx).
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We have

ϕν⇀ 0 in W k,p
g (Q,Rm).

Defining us(x) := 1
k!ξ0xk , Dkus = ξ0, ξ0 is a constant vector in R

mτ , and letting

uν(x) :=

⎧
⎨

⎩

us(x), x ∈ Ω – Q,

us(x) +
1
νk ϕ(νx), x ∈ Q,

we have

uν⇀ us in W k,p
g (Ω,Rm).

Since F satisfies the growth condition and mean coercivity, there exists u0 ∈ W k,p
g (Ω,Rm)

such that

|F (u0,Rm)| < ∞.

We observe that

F (uν ,Ω) =
∫︂

Ω

F
(︁
Dkuν(x)

)︁
dx

=
∫︂

Ω–Q
F(ξ0)dx +

∫︂

Q
F
(︁
ξ0 + Dkϕ(νx)

)︁
dx

= F(ξ0) meas(Ω – Q) +
1
νn

∫︂

νQ
F
(︁
ξ0 + Dkϕ(y)

)︁
dy

= F(ξ0) meas(Ω – Q) +
∫︂

Q
F
(︁
ξ0 + Dkϕ(y)

)︁
dy, (28)

where we have used in the last equality the periodicity of ϕ. We can rewrite (28) as
∫︂

Q
F
(︁
ξ0 + Dkϕ(y)

)︁
dy – F(ξ0) meas(Q) =

∫︂

Ω

F
(︁
Dkuν(x)

)︁
dx –

∫︂

Ω

F(ξ0)dx. (29)

Using (26), we get

⃓
⃓
⃓

∫︂

Ω

(︁
F(Dkuν(x)

)︁
dx –

∫︂

Ω

F(ξ0)dx
⃓
⃓
⃓

≤
∫︂

Ω

⃓
⃓F

(︁
Dkuν(x)

)︁
– F(ξ0)

⃓
⃓dx

≤ c
∫︂

Ω

(1 + |ξ0|p–1 + |Dkuν(x)|p–1)|Dkuν(x) – ξ0|dx. (30)

We estimate the right-hand side of (30). By applying Hölder’s inequality, uν ∈ W k,p
g (Ω,Rm),

and Ω is bounded, we have
∫︂

Ω

(︁
1 + |ξ0|p–1 + |Dkuν(x)|p–1)︁dx

≤
(︂∫︂

Ω

(︁
1 + |ξ0|p–1 + |Dkuν(x)|p–1)︁

p
p–1 dx

)︂ p–1
p

(︂∫︂

Ω

1pdx
)︂ 1

p
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≤
(︂∫︂

Ω

(︁
1 + |ξ0|p + |Dkuν(x)|p)︁dx

)︂ p–1
p (︁

meas(Ω)
)︁ 1

p

< ∞. (31)

Thus we obtain that (1+ |ξ0|p–1 + |Dkuν(x)|p–1) ∈ Lp′
(Ω,Rm) with 1

p + 1
p′ = 1. Due to uν ⇀ us

in W k,p
g (Ω,Rm), invoking the definition of weak convergence leads us to conclusion

∫︂

Ω

(︁
1 + |ξ0|p–1 + |Dkuν(x)|p–1)︁ |Dkuν(x) – ξ0|dx ≤ ε as υ → ∞. (32)

Substituting (32) and (30) into (29) and letting υ → ∞, we can finally obtain
∫︂

Q
F
(︁
ξ0 + Dkϕ(y)

)︁
dy – F(ξ0) meas(Q) ≥ –ε.

Taking into account the fact that ε is arbitrarily small, we get
∫︂

Q
F
(︁
ξ0 + Dkϕ(y)

)︁
dy ≥ F(ξ0) meas(Q).

(ii) ⇒ (i). We assume that F is quasiconvex and let

G(Dku) = F(Dku) – γ |Dku|p, (33)

where γ is to be determined later. We next show that G is also quasiconvex. For ξ ∈ R
mτ ,

ϕ ∈ W k,p
g (Ω,Rm), we have

∫︂

Ω

G
(︁
ξ + Dkϕ(x)

)︁
dx =

∫︂

Ω

F
(︁
ξ + Dkϕ(x)

)︁
dx – γ

∫︂

Ω

|ξ + Dkϕ(x)|pdx

≥
∫︂

Ω

F(ξ )dx – γ

∫︂

Ω

|ξ |pdx + γ

∫︂

Ω

[|ξ |p – |ξ + Dkϕ(x)|p]dx, (34)

where we have invoked the quasiconvexity of F . Take appropriate γ < ∞ such that

γ

∫︂

Ω

[︁|ξ |p – |ξ + Dkϕ(x)|p]︁dx > 0. (35)

From (34), we have
∫︂

Ω

G
(︁
ξ + Dkϕ(x)

)︁
dx ≥

∫︂

Ω

F(ξ )dx – γ

∫︂

Ω

|ξ |pdx =
∫︂

Ω

G(ξ )dx. (36)

Thus G is quasiconvex. By (33), we get
∫︂

Ω

F
(︁
ξ + Dkϕ(x)

)︁
dx ≥ γ

∫︂

Ω

|ξ + Dkϕ(x)|pdx +
∫︂

Ω

F(ξ )dx – γ

∫︂

Ω

|ξ |pdx.

Taking α2 = γ , β2 =
∫︁
Ω

[F(ξ ) – γ |ξ |p]dx, we have

∫︂

Ω

F
(︁
ξ + Dkϕ(x)

)︁
dx ≥ α2

∫︂

Ω

|ξ + Dkϕ(x)|pdx + β2.

This completes the proof. □
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From Theorem 2 and Theorem 3, we can obtain an existence theorem.

Proposition 4 Let 1 < p < ∞, Ω ⊂ R
n be a bounded open set with a Lipschitz boundary,

and let F : Rmτ →R be a continuous function satisfying the growth condition

F(ξ ) ≤ M(1 + |ξ |p)

and mean coercivity

∫︂

Ω

F
(︁
Dku(x)

)︁
dx ≥ α2

∫︂

Ω

|Dku(x)|pdx + β2.

Further, assume that

|F(ξ ) – F(η)| ≤ L(1 + |ξ |p–1 + |η|p–1)|ξ – η|,

where α2 > 0, β2 ∈ R, ξ ,η, u ∈ W k,p
g (Ω), M > 0, and 0 < L < ∞. Then

F (u,Ω) =
∫︂

Ω

F
(︁
Dku(x)

)︁
dx

admits at least one minimizer.

Proof The proof follows from Theorem 2, Theorem 3, and the general existence theorem.
□

5 Conclusion
In this paper, we studied the equivalence of coercivity, mean coercivity, and quasiconvex-
ity of integrands for functionals of the type F (u,Ω) =

∫︁
Ω

F
(︁
Dku(x)

)︁
dx on the Dirichlet

class, thus improving the variational principle for solving problems with functionals in-
volving higher order derivatives and integrands satisfying the standard growth condition.
This equivalence is significant as it allows the use of mean coercivity, which is often eas-
ier to verify in practical applications. Consequently, this result supports the existence of
minimizers for variational problems under broader conditions, making it a powerful tool
in the study of higher-order variational integrals.

For future work, one can consider other growth conditions such as nonpolynomial
growth and controlled growth (for functionals involving lower order terms) to establish
the equivalence between the corresponding mean coercivity condition and quasiconvex-
ity. Following this, further study can also be conducted to investigate the regularity and
stability of solutions when the growth rate varies.
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