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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of
the requirement for the degree of Doctor of Philosophy

CANONICAL GROUP QUANTIZATION ON NON-COTANGENT BUNDLE
PHASE SPACE AND ITS APPLICATION IN QUANTUM INFORMATION

THEORY

By

AHMAD HAZAZI BIN AHMAD SUMADI

November 2024

Chairman : Nurisya binti Mohd Shah, PhD

Institute : Mathematical Research

Spin quantization has always been an interesting intrinsic feature in quantum me-

chanics. This thesis discussed the holomorphic polarization method, motivated by

geometric quantization, in a new formulation of canonical group quantization on non-

cotangent bundle phase space to produce spin quantization. The first part focuses on

determining the one-dimensional complex projective space CP1 as a compact phase

space and a special unitary group of degree two SU(2) as its canonical group that is

not in the semi-direct product form. The emergence of the hidden discrete symme-

try which is not deducible from the Lie algebraic structure of SU(2) indicates that

it is the double-covering group. Thus its global structure is determined through the

lifting SU(2) action on the fibre bundle over phase space. The second part focuses

on the quantization process with the holomorphic wavefunction determined through

the holomorphic local section of the fibre bundle and the natural polarization arises

through the unitary irreducible representation of SU(2) that does not follow Mackey’s

induced representation theory. From the representation operators, a set of spin angular

momentum operators is generated as complex differential operators associated with a
i
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connection-type term l from action on holomorphic wavefunctions. Such representa-

tion operators’ matrix elements and characters are determined as Jacobi polynomials

and its application in describing the single-qubit pure state is discussed. In conclusion,

it is shown that the holomorphic polarization naturally emerged in the canonical group

quantization on non-cotangent bundle phase space and has its application in quantum

information theory which arises geometrically from the quantization problem.

Keywords: Canonical group quantization, holomorphic wavefunction, non-cotangent
bundle, qubit, spin quantization.

SDG: GOAL 9: Industry, Innovation and Infrastructure

ii



© C
OPYRIG

HT U
PM

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

PENGKUANTUMAN KUMPULAN BERKANONIK KE ATAS RUANG FASA
BERKAS TAK-KOTANGEN DAN APLIKASINYA DALAM TEORI

MAKLUMAT KUANTUM

Oleh

AHMAD HAZAZI BIN AHMAD SUMADI

November 2024

Pengerusi : Nurisya binti Mohd Shah, PhD

Institut : Penyelidikan Matematik

Pengkuantuman spin sentiasa menjadi ciri intrinsik yang menarik dalam mekanik

kuantum. Tesis ini mengkaji kaedah pengkutuban holomorfik, yang termotivasi oleh

pengkuantuman geometri, dalam formulasi baharu pengkuantuman kumpulan berkanonik

pada ruang fasa berkas tak-kotangen untuk menghasilkan pengkuantuman spin. Ba-

hagian pertama memfokuskan kepada penentuan ruang unjuran geometri kompleks

berdimensi satu CP1 sebagai ruang fasa klasik mampat dan kumpulan unitari istimewa

berdimensi dua SU(2) sebagai kumpulan berkanonik tepat baginya yang bukan dalam

bentuk hasil darab separa langsung. Kemunculan simetri diskrit tersembunyi yang

tidak terdeduksi daripada struktur aljabar Lie SU(2) menunjukkan bahawa ia adalah

kumpulan litupan berganda. Oleh itu struktur sejagatnya diperoleh melalui tindakan

angkatan SU(2) ke atas ruang berkas gentian. Bahagian kedua memfokuskan kepada

proses pengkuantuman dengan fungsi gelombang holomorfik ditentukan melalui ker-

atan setempat berkas gentian atas ruang fasa dan seterusnya menunjukkan bahawa

pengkutuban holomorfik muncul secara tabii melalui perwakilan unitari tak tertu-

runkan SU(2) yang tidak mematuhi teori perwakilan teraruh Mackey. Seterusnya, set
iii
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pengoperasi momentum sudut spin dijanakan dalam bentuk pengoperasi pembeza kom-

pleks bersama dengan sebutan bak-kaitan l daripada tindakan pada fungsi gelombang

holomorfik. Unsur-unsur dan ciri-ciri matriks pengoperasi perwakilannya ditentukan

sebagai polinomial Jakobi dan aplikasinya dalam menjelaskan keadaan tulen qubit

tunggal turut dibincangkan. Kesimpulannya, ditunjukkan bahawa pengkutuban holo-

morfik muncul secara tabii dalam pengkuantuman kumpulan berkanonik pada ruang

fasa berkas tak-kotangen dan mempunyai aplikasinya dalam teori maklumat kuantum

yang muncul secara geometri daripada masalah pengkuantuman.

Kata Kunci: Pengkuantuman kumpulan berkanonik, fungsi gelombang holomorfik,
berkas tak-kotangen, qubit, pengkuantuman spin

MPL: MATLAMAT 9: Industri, Inovasi dan Infrastuktur
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CHAPTER 1

INTRODUCTION

1.1 A brief historical development of quantum theory

The quantum theory has undergone significant conceptual and mathematical advance-

ments over time. For more than a century, it has demonstrated remarkable success in

predicting a wide range of experimental outcomes with high accuracy. The first quan-

tum revolution in the 20th century led to the birth of groundbreaking technologies such

as the transistor, laser, spectrometer, atomic clock etc. In the 21st century, continued

progress has positioned quantum theory as the foundation of the cutting-edge science

and technology essential to modern society. The second quantum revolution is emerg-

ing, defined by advancements in quantum technologies such as quantum computing,

quantum sensing and metrology, quantum communication and security etc (Dowling

and Milburn, 2003). But underlying all of these deep technologies at the very foun-

dation level the quantum theory is based on the deep mathematical and conceptual

formulations that are full of polemics (Barret, 2019).

Historically, in 1900, Max Planck discovered that black body radiation could not be

explained by the previously existing classical physics. He proposed that energy is

emitted in discrete packets called quanta, introducing the idea that energy levels are

quantized. This discovery laid the foundation for quantum theory (Jammer, 1966).

After that, Werner Heisenberg made the first attempt to formulate the mathematical

foundation of quantum theory in his historic 1925 paper (where the year of 2025 is its

centenary and also the year that the United Nations proclaimed to be the International

Year of Quantum Science and Technology), then followed by Dirac (1925), Schrödinger

(1926), Bohr (1976), de Broglie (1987), Born and Jordan as discussed in Fedak and

Prentis (2009), and others as discussed in Waerden (1967); Mehra and Rechenberg

(1987). Essentially, the newly formulated quantum theory especially on the idea of

1
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Figure 1.1: The Solvay Conference on Electrons and Photons 1927

electrons and photons was discussed by all of those physicists, including others, at the

Solvay Conference 1927 (see Figure 1.1) (Clary, 2022). Furthermore, the development

of the mathematical foundation of quantum theory for a more axiomatic mathemati-

cally rigorous and conceptually coherent was developed by John von Neumann based

on algebra and analysis approaches (Neumann and Wheeler, 2018). Years later, Dirac

made a more concise algebraic approach known as Dirac (or canonical) quantization

(Dirac, 1958). Until now, his approaches played a pivotal role in developing other

quantization formulations including the one discussed in this study.

In brief, many quantization programs are proposed to formulate a quantum theory e.g.

Feynman-path integral quantization, Moyal quantization, stochastic quantization, geo-

metric quantization, Berezin quantization etc. From all those quantization programs

mentioned, they differ in the fundamental structures assumed on the classical phase

space for example its canonical commutation relation (CCR) of position q and mo-

mentum p (Ali and Englis, 2005). There is no one unique quantization program that

produces a well-defined quantum formulation by quantizing its classical structures.

However, there are other mathematical formulations of quantum theory based on geo-

metrical language not concerned with the quantization process. It is formulated in the

2
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language of Hamiltonian phase-space dynamics for instance the works done by Kibble

(1979); Ashtekar and Schilling (1995); Bengtsson et al. (2002); Brody and Hughston

(2001); Sanborn (2011) etc. Alternatively, there are also other formulations of a quan-

tum theory that are not based on the Hilbert space approach, e.g. quantum logic

schemes as proposed by Birkhoff and von Neumann (1936), C∗- and W∗- algebras as

discussed in Strocchi (2005); David (2014), categorical quantum mechanics as proposed

by Abramsky and Coecke (2009), topos-theoretic approaches as proposed by Doering

and Isham (2010) etc. The progress of the mathematical foundations of quantum the-

ory is still an interesting topic of discussion among both physicists and mathematicians.

Therefore, in this study, a particular quantization method developed by Isham (1984)

known as canonical group quantization (CGQ) is studied to obtain a spin quantization

through a non-cotangent bundle physical phase space.

1.2 Motivation

Spin quantization is always an interesting idea to deeply explore in quantum mechanics.

The notion of spin is an intrinsic form of angular momentum, which is different from the

idea of orbital angular momentum operators, that gives a radical departure from clas-

sical physics (Sakurai and Napolitano, 2011). The Stern–Gerlach experiment proves

the existence of electron spin angular momentum in 1922 in which silver atoms were

observed to possess two possible discrete angular momenta despite having no orbital

angular momentum (Estermann, 1959; Friedrich et al., 2003). The space of angular

momentum states of the spin electron, with the spin number s = 1
2 , has the space in

two-dimensional due to the spin-up |0⟩ ≡ 1
2 and spin-down |1⟩ ≡ −1

2 properties (see

Figure 1.2).

This experimental result shows that the electron spin is mathematically formulated as

3
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Ŝy
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Figure 1.2: Electron spin

a general spinor spin state in a linear combination form (Isham, 1995),

|ψ⟩ = α |0⟩+ β |1⟩ =

 α

β

 , (1.1)

such that α, β are complex coefficients, |0⟩ , |1⟩ are correspond to spin-up and spin-

down respectively, and ⟨ψ|ψ⟩ = |α|2 + |β|2 = 1. The observables are found by the

spin operators,

Ŝx =
ℏ
2
σx, Ŝy =

ℏ
2
σy, Ŝz =

ℏ
2
σz; (1.2)

where

σx =

0 1

1 0

 , σy =

0 −i

i 0

 , σz =

1 0

0 −1


are Pauli matrices. In compact form,

Ŝj =
ℏ
2
σj (j = 1, 2, 3), (1.3)

where {1, 2, 3} respectively correspond to {x, y, z} axes. It is called Pauli two-

4
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component formalism and satisfies the commutator algebra

[Ŝj , Ŝk] = iεjklŜl (1.4)

where εjkl is a total antisymmetric cyclic permutation

εjkl =


1; ijk ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}

−1; ijk ∈ {(3, 2, 1), (2, 1, 3), (1, 3, 2)}

0 otherwise.

(1.5)

The ladder operators Ŝ± = Ŝ1 ± iŜ2 of the spin are

Ŝ+ =

0 1

0 0

 and Ŝ− =

0 0

1 0

 , (1.6)

then together with Ŝ3 satisfies

[Ŝ+, Ŝ−] = 2Ŝ3 ; [Ŝ3, Ŝ+] = Ŝ+,

[Ŝ3, Ŝ−] = −Ŝ− ; [Ŝ2, Ŝ±] = [Ŝ2, Ŝ3] = 0.

(1.7)

From the definition of spinor, take z-component of spin represented as

Ŝz =
ℏ
2
σz; σz =

1 0

0 −1

 , (1.8)

acts on spinors |ψ⟩, it produces 2× 2 matrices. Ŝz has eigenvalues ±ℏ
2 corresponding

to vectors  1

0

 and

 0

1

 (1.9)

respectively. Moreover, with the advent of the field of quantum information theory

and quantum computation, the idea of intrinsic spin-12 degree of freedom of individual

electrons is expressed as a basic unit of quantum information known as a quantum bit

5
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Figure 1.3: Bloch sphere

(qubit) with a similar mathematical expression as (1.1) (Nielsen and Chuang, 2010).

Geometrically a single-qubit is formulated on the Bloch sphere (see Figure 1.3) which

is the Riemann sphere (or the extended complex plane) CP1 ≃ C× := C ∪ {∞} (Lee

et al., 2002). From (1.1) up to the global phase factor, its pure quantum state is defined

to be

|ψ⟩ = cos
θ

2
|0⟩+ eiϕ sin

θ

2
|1⟩ (1.10)

where 0 ≤ θ ≤ π; 0 ≤ ϕ ≤ 2π. Thus, the Riemann sphere is thought to be the internal

space of a single-qubit (or spin-12 ). A brief review of this is discussed in Chapter 2.

On the other hand, spin quantization can also be mathematically formulated in the realm

of geometric quantization (GQ) formulation. It is a very well-known studied example

of quantization on the non-cotangent bundle physical phase space that is of Riemann

sphere S2 which yields the spin-j systems (Woodhouse, 1997; Nair, 2016; Carosso,

2022). The family of symplectic 2-form of phase space S2 is

ω(k) =
ikℏdz ∧ dz̄
(1 + zz̄)2

; n ∈ Z, (1.11)

where through the Bohr-Sommerfeld condition, it allows for the prequantization of the

6
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S2,
1

2πℏ

∫
S2
ω = k (1.12)

where k is an integer. Since, ∫
S2
ω = 4πj2,

then

j =
ℏk
2
; k ∈ Z. (1.13)

where the only symplectic manifolds that can be quantized correspond to classical

systems whose angular momentum is an integer k multiple of ℏ
2 . The quantization is

completed by applying the holomorphic polarizationP spanned by basis ∂
∂z̄j

that yields

the (n+1)-dimensional Hilbert space Hn of the square-integrable wavefunction on S2.

The wavefunction is in the form of an inhomogeneous polynomial with {1, z, · · · , zn}

as a basis for the Hilbert space. The generator of the rotations about z-axis on the S2

is the Hamiltonian vector field of an observable J3 on S2. Hence the quantization of

this observable gives an operator as the standard spin z-operator Ŝ3 with eigenvalues

{−n, · · · , n} which n = 2j where j is identified as spin quantum number.

Therefore, a similar physical prescription of spin quantization in the standard quantum

mechanics view can be obtained geometrically in the GQ through the holomorphic

polarization method. Such a method is to be studied in the CGQ to produce a new

physical interpretation of spin quantization from the group-theoretical perspectives.

More ideas on holomorphic polarization will be reviewed at length in Chapter 2.

1.3 Problem statement and objectives

As discussed, the quantization process on Riemann sphere S2 in GQ involves holo-

morphic polarization method. Such a method reduces the quantum wavefunction

dependence to half the number of phase space coordinates of position q or momentum

p. The CGQ scheme proposed by Isham (1984) has an in-built polarization method that

is not dissimilar to the GQ through the cotangent bundle structure T ∗Q, where Q is a

7
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configuration space, of the phase space. In this case, the wavefunctions can be realized

as wavefunctions on half of the phase space coordinate, position q or momentum p, al-

most automatically through Mackey’s induced representation theory of the semi-direct

product canonical group. The development of CGQ has shown that (as discussed in

Chapter 2) it only works on the cotangent bundle phase space, unlike the GQ which

works on both cotangent and non-cotangent bundle phase spaces, respectively. There-

fore, the problem to be addressed is how to formulate the CGQ on a non-cotangent

bundle physical phase space. The driving questions that could be asked to construct

the premise of underlying formulations are as follows:

(i) Given a non-cotangent bundle physical phase space CP1, how can one determine

its appropriate canonical group to study its global kinematical symmetries?

(ii) If the canonical group is determined, can one possibly show the holomorphic

polarization naturally arises through the unitary irreducible representation of

such a canonical group?

(iii) If possible, can one get the different quantizations through inequivalent represen-

tations of the canonical group to produce spin quantizations?

In the current literature of CGQ formulations, it does not adequately address those

formulated questions, for example by Isham (1984) himself and others like Bouketir

and Zainuddin (1999); Bouketir (2000); Reyes-Lega and Benavides (2010); Silva and

Jacobson (2021) etc.

Therefore the objectives are as follows:

(i) To determine the non-cotangent bundle physical phase space and compute its

appropriate canonical group.

(ii) To construct the holomorphic wavefunction from the local holomorphic section

of the associated vector bundle over phase space.

(iii) To obtain the holomorphic polarization by computing the unitary irreducible

representations of the canonical group and generating its spin angular momentum

operators.

8
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(iv) To produce the matrix elements and characters of the representation operators and

analyse their application in quantum information theory.

1.4 Scope of the research

The scope of research is limited to the new formulation of the CGQ method on CP1

as the whole compact phase space, rather than the configuration space, and the de-

termination of its appropriate non-semidirect product canonical group and its unitary

representations by not utilizing Mackey’s induced representation theory. Secondly, the

natural holomorphic polarization method is studied from the construction of holomor-

phic wavefunction on half of the coordinates on CP1 through the unitary representation

to generate a set of angular momentum. Thirdly, the representation operators are deter-

mined as matrix elements in the form of Jacobi polynomials. Finally, the application of

the result to describe a single-qubit pure state and its quantum logic gates geometrically

in quantum information theory is discussed. Any other methods are not within the

scope of the thesis and their exclusion is a limitation of this study.

1.5 Significance of the research

This study will be the first attempt to formulate the CGQ on a non-cotangent bundle

phase space by treating CP1 as a whole compact phase space, instead of configuration

space, along with its non-semidirect product canonical group for which the unitary

irreducible representation not utilizing the Mackey’s induced representation theory

as proposed by Isham (1984). The focus of this study is the natural holomorphic

polarization to yield spin quantization through the unitary representation and generate

a set of spin angular momentum operators. The significance of this formulation is

how the symmetry canonical group and its unitary representations can be a tool for

describing single-qubit geometry and its quantum logic gates. Then, in general, one

can use the unitary representation classifications to geometrically describe multiple

qubit or qudit states as discussed in quantum information and quantum computation.
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1.6 Thesis outlines

This thesis is outlined into seven chapters, and the discussions in each chapter are

restricted and centralized to the problem statements and objectives formalized in the

present chapter. Chapter 2 discusses the literature review of the CGQ formulations on

the various configuration spaces in the past and emphasis is given on the case of the

2-sphere to show the research gap related to this study.

Chapter 3 discusses the mathematical tools and a new methodology proposed in the

CGQ method to quantize non-cotangent bundle physical phase space. Then followed

by Chapter 4 where the first part of the results, which is the classical part of the theory,

emphasizes the construction of the non-cotangent bundle classical phase space. In par-

ticular, the determination of a compact manifold to be a non-cotangent bundle physical

phase space and its kinematical global symmetries through the determination of the

canonical groups.

Chapter 5 discusses the second part of the result, which is the quantum mechanical part

of quantization formulation. Starting from the determination of holomorphic wavefunc-

tion through the holomorphic section bundle over phase space. Then, the computation

of the notion of spin angular momentum operators and their algebraic structures and

the discussion on the matrix elements and characters of the representation connected

with the Jacobi polynomials.

Chapter 6 is the application of results in Chapter 5 in the field of quantum information

theory. The discussion emphasized describing the notion of the qubit pure state in terms

of the holomorphic wavefunction and its quantum logic gates, and also the three-level

quantum systems (or qutrit) through the different values of representation classification.

Lastly, Chapter 7 is the conclusion of this study and suggestions for future research.
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