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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 

the requirement for the degree of Doctor of Philosophy 
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Several methods of identification of HLPs in HDD have been put forth, including the 

methods of Robust Mahalanobis Distance (RMD) based on Minimum Regularized 

Covariance Determinant (MRCD) and Robust Principal Component Analysis 

(ROBPCA). However, they suffer from masking and swamping effects when the 

predictor variables are at least 700. In addressing this problem, a modification of HLPs 

detection method called Robust Mahalanobis Distance based on the combination of the 

Minimum Regularized Covariance Determinant and Principal Component Analysis 

(RMD-MRCD-PCA) is proposed. Empirical evidence from simulation studies and real 
data show that the RMD-MRCD-PCA method is very successful in the detection HLPs 

with negligible masking and swamping effects. 

Numerous classical methods, such as leave-one-out cross-validation (LOOCV) and K-

fold cross-validation (K-FoldCV) are developed to determine the optimal number of PLS 

components. Nonetheless, they are easily affected by HLPs. Thus, robust cross 

validation techniques, denoted as RMD-MRCD-PCA-LOOCV and RMD-MRCD-PCA-

K-FoldCV are proposed to remedy this problem. The results of the simulation study and 

real data sets indicate that the proposed methods successfully select the appropriate 

number of PLS components. 

The statistically inspired modification of partial least squares (SIMPLS) is the popular 

method to deal with multicollinearity in high dimensional data. Nonetheless, the 

SIMPLS method is vulnerable to the existence of HLPs. Hence, the robust weight based 

on RMD-MRCD-PCA of SIMPLS (RMD-MRCD-PCA-RWSIMPLS) is established to 

overcome this issue. Simulation experiments and real examples have demonstrated that 

the RMD-MRCD-PCA-RWSIMPLS is more efficient than the SIMPLS and the 

RWSIMPLS methods. 
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Partial least squares discriminant analysis (PLSDA) is the popular classifier for HDD. 

Nevertheless, the PLSDA is easily affected by the presence of HLPs. Hence, a robust 

weighted partial least squares discriminant analysis based on the weighting function of 

RMD-MRCD-PCA (RMD-MRCD-PCA-RWPLSDA) is proposed to close the gap in the 

literature. The results of the simulation study and real datasets show that the RMD-

MRCD-PCA-RWPLSDA method successfully and efficiently classifies the data into 
binary and multiple groups. 

Hotelling T2 based on PLS (T2-PLS) method has been proposed for variable selection 

technique in HDD. However, the T2-PLS is not resistant to the HLPs. To rectify this 

issue, the robust Hotelling T2 variable selection method, which is based on the RMD-

MRCD-PCA-RWSIMPLS, is proposed. The results of simulation study and real datasets 

indicate that the T2-RMD-MRCD-PCA-RWSIMPLS method successfully selects 

appropriate number of important variables to be included in the model with the least 

value of mean square error. 
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Beberapa kaedah pengecaman HLP dalam HDD telah dikemukakan, termasuk kaedah 

Jarak Mahalanobis Teguh (RMD) berdasarkan Penentu Kovarian Teratur Minimum 

(MRCD) dan Analisis Komponen Utama Teguh (ROBPCA). Walau bagaimanapun, 

mereka mengalami masalah kesan penyorokan dan limpahan apabila pembolehubah 

peramal sekurang-kurangnya 700. Dalam menangani masalah ini, kaedah pengesanan 

HLP baharu yang dipanggil Jarak Mahalanobis Teguh berdasarkan gabungan Penentu 

Kovarian Teratur Minimum dan Analisis Komponen Utama (RMD-MRCD-PCA) 

dicadangkan. Bukti empirikal daripada kajian simulasi dan data sebenar menunjukkan 
bahawa kaedah RMD-MRCD-PCA sangat berjaya dalam pengesanan HLP dengan 

kesan penyorokan dan kesan limpahan yang boleh diabaikan. 

 

 

Banyak kaedah klasik, seperti pengesahan silang leave-one out (LOOCV) dan 

pengesahan silang lipatan K (K-FoldCV) dibangunkan untuk menentukan bilangan 

komponen PLS yang optimum. Namun begitu, mereka mudah dipengaruhi oleh HLP. 

Oleh itu, teknik pengesahan silang yang teguh, yang ditandakan sebagai MRCD-PCA-

LOOCV dan MRCD-PCA-K-FoldCV dibangunkan untuk menyelesaikan masalah ini. 

Keputusan kajian simulasi dan set data sebenar menunjukkan kaedah yang dicadangkan 

berjaya memilih bilangan komponen PLS yang sesuai 

 
 

Pengubahsuaian statistik kuasa dua terkecil separa (SIMPLS) ialah kaedah popular untuk 

menangani multikolineariti dalam data dimensi tinggi. Namun begitu, kaedah SIMPLS 

terdedah kepada kewujudan HLP. Oleh itu, pemberat teguh berdasarkan RMD-MRCD-

PCA SIMPLS (RMD-MRCD-PCA-RWSIMPLS) dibangunkan untuk mengatasi isu ini. 

Eksperimen simulasi dan contoh sebenar telah menunjukkan bahawa RMD-MRCD-

PCA-RWSIMPLS adalah lebih cekap daripada kaedah SIMPLS dan RWSIMPLS. 
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Analisis diskriminasi kuasa dua terkecil separa (PLSDA) ialah pengelas popular untuk 

HDD. Namun begitu, PLSDA mudah terjejas dengan kehadiran HLP. Oleh itu, analisis 

diskriminasi kuasa dua terkecil separa berpemberat teguh berdasarkan fungsi pemberat 

RMD-MRCD-PCA (MRCD-PCA-RWPLSDA) dicadangkan untuk merapatkan jurang 

dalam literatur. Hasil kajian simulasi dan set data sebenar menunjukkan kaedah RMD-

MRCD-PCA-RWPLSDA berjaya mengelaskan data kepada kumpulan binari dan 
kumpulan berbilang dengan cekap. 

 

 

Hotelling T2 berdasarkan kaedah PLS (T2-PLS) telah dicadangkan untuk teknik 

pemilihan pembolehubah dalam HDD. Walau bagaimanapun, T2-PLS tidak tahan 

terhadap HLP. Bagi mengatasi masalah ini, kaedah pemilihan pembolehubah Hotelling 

teguh T2, yang berdasarkan RMD-MRCD-PCA-RWSIMPLS, dibangunkan. Hasil kajian 

simulasi dan set data sebenar menunjukkan bahawa kaedah T2-RMD-MRCD-PCA-

RWSIMPLS berjaya memilih bilangan pembolehubah penting yang sesuai untuk 

dimasukkan ke dalam model dengan nilai min kuasadua ralat yang paling kecil. 
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1 

CHAPTER 1 

1 INTRODUCTION 

1.1 Background and Purpose 

The rapid development of computer technology and statistics has contributed to the 

generation of high-dimensional data (HDD). Some examples of HDD are images, 

curves, or movies such that a single observation has a dimension in hundreds, thousands, 
or even millions of variables to consider. A wide range of recent research has focused 

on high-dimensional data sets, for instance, in gene analyses, millions of genes are 

measured for a single individual (Boulesteix & Strimmer, 2007) while an image analysis 

contains thousands of resolution images in pixels with a small number of samples (Cao, 

2006). Other varied applications in high dimensional data are in chemometrics, fraud 

detection, climate studies, geography, and satellite processing. In other words, high-

dimensional data set signifies data with p >> n. This characteristic leads to a sparsity 

problem known as the curse of dimensionality phenomena (Mehmood & Ahmed (2016) 

and Bolon-Canedo et al. (2015)). In the curse of high dimensionality, conventional 

statistical methods do not work well, and most of them fail to perform especially when 

dealing with contaminated data or outliers. 

Several versions of outliers exist in regression problems, such as vertical outliers, 

residual outliers, and high leverage points.  Residual outliers refer to any observations 

that have a large residual while vertical outliers refer to observations that are extreme or 

are outlying in the Y-space.  On the other hand, high leverage points (HLPs) refer to 
observations which fall far from the majority of the explanatory variables or are outlying 

in the X-space.  HLPs show an abnormal behavior in the system and often bring or 

contain meaningful information to data (Yu & Aggarwal, 2001). The detection of high 

leverage points is very crucial, for example in a microarray data analysis to spot a 

malignant tumor in an MRI scan (Foss, 2010), in a business analysis to identify 

unforeseen models in a network traffic to indicate a hack (Agarwal & Mittal, 2012), and 

in classifying fraud detection in credit card transactions (Porwal & Mukund, 2019). 

These problems frequently arise in very high dimensional data sets. Therefore, high 

leverage points detection in HDD has become an issue of great importance to study 

although it has not received significant attention from statisticians. Accurate 

identification of high leverage points plays an important role in statistical analysis as 

incorrect detection of high leverage points will substantially affect the standard error of 
estimates and cause multicollinearity problems, masking and/or swamping of outliers, 

overfitting and/or underfitting of a model which will lead to a false prediction. Moreover, 

HLPs are responsible for detrimental effects on various statistical analysis such as in 

parameter estimation, classification and variable selection methods. This will lead to 

misleading conclusions and inaccurate predictions. Therefore, in this thesis, several 

alternatives robust methods have been developed to deal with HLPs. Thus, a few basic 

concepts and some commonly used methods need to be introduced in the following 

sections. 
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1.2 Mahalanobis Distance (MD) 

Mahalanobis Distance (Mahalanobis, 1936) is broadly used in a multivariate analysis to 

measure the gap between two individual points with several variables (Varmuza and 

Filzmoser, 2009). Let i = 1, 2,…, n, the 𝑖𝑡ℎ vector of explanatory variables can be written 

as ),1(),...,,,1( 21 ipipiii vxxxx  , where ipv  is a p-dimensional row vector. The 

mean vector v  is calculated as,  


n

i iv
n

v
1

1
 and the variance covariance matrix ̂  

is computed as:  













n

i i
T

i vvvv
n 1

)()(
1

1ˆ . 

Then, the Mahalanobis distance for each observation is defined as  

 T

iii vvvvMD )(ˆ)( 1   , i = 1, 2, 3, …, n  (1.1) 

And Mahalanobis (squared) distance is given by, 

 
T

iii vvvvMD )(ˆ)( 12  
, i = 1, 2, 3, …, n 

 
 

1.3 Minimum Covariance Determinant (MCD) 

Rousseeuw (1985) introduced the Minimum Covariance Determinant (MCD), which is 

a robust multivariate estimator.  These location and scatter estimates are very robust and 

affine equivariant.  

The MCD method is widely used by statistical practitioners, but it is not computationally 

efficient. To overcome this drawback, Rousseeuw and Driessen (1999) developed the 

Fast-Minimum Covariance Determinant algorithm.  

The main purpose of MCD is to find a subset of hh ,...,2,1  data points with the 

smallest determinant of the covariance matrix, where nh
n


2

 . A robust location 

estimator mcd̂  is an average of these h data points, while a robust scatter estimator, 

1ˆ mcd , is a covariance matrix of h data points multiplied by consistency factor, c . Croux 

and Haesbroeck (1999) noted that c  equals 
)( 2

2,2
2

pxF
p


 where 

n

hn 
 ; p is a 

dimension of data set; and nh 75.0  or 2/)1(  pnh . The asymptotic 
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efficiency of MCD is almost 50% when nh 75.0  or 2/)1(  pnh . Hubert et 

al. (2018) stated that the MCD location and scatter estimator have the highest breakdown 

values and thus become more robust. MCD estimators can be determined when ph 
; otherwise, the covariance matrix will be singular, and the determinant of the covariance 

matrix will be zero. The principal rule of thumb suggested by Rousseeuw et al. (1990) 

and Hubert et al. (2012) is to avoid the curse of dimensionality, and it requires pn 5  

1.4 Minimum Volume Ellipsoid (MVE) 

The minimum volume ellipsoid (MVE) is another robust multivariate estimator. 

Rousseeuw (1985) pointed out that the center of the minimal volume ellipsoid covers at 

least half of the h points of X, where h can be taken equal to 1
2








n
. The ellipsoid can 

be used as the corresponding covariance predictor. In most applications it is not feasible 

to consider all “halves” of data. Habshah, et al. (2009) revealed that the calculation of 

MVE can be started by drawing a sub sample of (p + 1) different observations, indexed 

by )...,,( 21 piiiJ  . Then the mean and covariance matrix are determined, 

respectively, given by: 





Ji

ij x
p

x
1

1
 and 




Ji

i
T

ij xxxx
p

C )()(
1

 

 

where jC  is non-singular. The corresponding ellipsoid should then be inflated or 

deflated to contain exactly h points, which corresponds to compute
T

JiJJij xxCxxMedm )()( 12  
. The volume of the resulting ellipsoid, 

corresponding to JJ Cm2
 is proportional to P

JJJJ mCCm )()det()det( 2  . It is 

repeated for many J so that the above determinant becomes the minimum and its 

corresponding values yield: 

JxXT )(  and JJp CmXC 212
5.0, )()(  

, where 

2
5.0,p

 is the median of the Chi-

squared distribution with p degrees of freedom. This correction factor is required to attain 

the consistency for multivariate normal data. 

1.5 Minimum Regularized Covariance Determinant (MRCD) 

There is a primary constraint in the MCD system to be applied to high dimensional data. 

For the MCD, the criterion of dimension p must satisfy p < h for any h-subset. This 

requirement must be fulfilled in order to obtain a non-singular covariance matrix. An 

improvement to the MCD is of high importance to make it work for high-dimension data. 
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Boudt et al. (2018) formulated a new modification of the MCD, the so-called minimum 

regularized covariance determinant (MRCD). The fundamental objective of the MRCD 

is to substitute a regularized covariance estimate for the MCD subset-based covariance. 

H-subset of MRCD that minimizes the determinant of regularized covariance of MRCD,

)(HK  is as shown below, 
 

   p

H
mrcd HKH

h

1
detminarg


   

 

where h  is set of all H subsets. K(H) represents a regularized covariance matrix in 

MRCD and can be written as 

  )(1)( HScTHK    

 

where 
))(())(()( 1 HmXHmXhHS H

T
H  

 is a sample covariance estimate 

based on subset H  with 
ph 

 submatrix of X  and can be denoted as HX
. The mean 

estimate of subset H  is 
T

HXhHm 1)( 
 with 

nhpn  ]2/)1[(
 where h 

is the number of observations in  subset H . 

T is a predetermined, symmetric, and positive definite target matrix. In other words, 

assume pIT   where pI  is an identity matrix with dimension pp  . The identity 

matrix is used as a target matrix because it has very good statistical properties and is 

well-conditioned in high dimensional data sets.  1,0  is a regularization intensity 

parameter and the consistency factor, c  is to obtain the consistency at the normal 

multivariate distribution and unbiased at small sample. The consistency factor used in 

the MRCD method is the same as the one used in the MCD procedure.  The value of    

is set such that K(H) is well-conditioned such that 1000
min

max 



, where max  and 

min  are the largest and the smallest eigenvalues of )(HSc , respectively. The 

eigenvalue of MRCD covariance is equals to  )1(   , and the regularization is 

used when needed. Then C-steps is applied until the estimated MRCD covariance 

converges. The C-step (Boudt et al., 2018) of MCD has been generalized to regularized 
covariance matrices in MRCD method. In MCD, The C-step theorem computes the mean 

and the covariance matrix of h-subset 1H , and then puts the observations with smallest 

Mahalanobis distance in a new subset 2H . The C-step theorem proves that the 

covariance determinant of 2H  is less than or equal to 1H . The generalized C-step 

theorem is discussed at length in this section. 
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The generalized C-steps (Boudt et al., 2018) theorem is summarized as follows:  

 

Starting from an h-subset 1H  compute  


1

1
1 Hi ix

h
m  and

    


iHi ii

T

ii mxmx
h

S
1

1 . The matrix   11 1 ScTK    is positive 

definite, hence invertible. Then compute,  

 

      nimxKmxid
T

ii ...,,11
1

111  

. 

Let 2H be an h-subset for which,  

 

    
 



2 1

11

Hi Hi

idid  

 

And compute      


2 2
2222

1
,

1
Hi Hi i

T

ii mxmx
h

Sx
h

m  and 

  .1 22 STK   The, 

 

   ,detdet 12 KK   

 

With equality if and only if 21 mm   and .21 KK   The iteration process in the C-

steps theorem stop if    0det 2 K  or    12 detdet KK  ; otherwise the iteration 

process continues until it converges. 

By using this generalized C-steps, the MRCD regularized covariance matrix is 

constructed to find the MRCD subset. 

1.6 Principal Component Analysis 

Principal Component Analysis (PCA) is an unsupervised dimension reduction 

procedure, and it is commonly used in multiple linear regression analyses. It was first 

established by Pearson (1901) before it becomes a prevalent method in many fields such 

as chemometrics, engineering, computer vision, face recognition Li et al. (2016) and 

other domains such as in gene selection and tumor classification as illustrated by Feng 

et al. (2019), and feature selection as shown by Hu et al. (2019). PCA analysis aims to 

find a small number of linear combinations of the predictors that can be used to 

summarize data without losing too much information. This statistical method transforms 

a broad set of correlated variables into a smaller number of uncorrelated factors called 

principal components. These orthogonal principal components solve the 

multicollinearity problem. 
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1.6.1 Data Matrix 

Let X  be pn  matrix where n  is a number of observations, ni ,...,3,2,1 , and p  

is a set of predictive variables ipii xxx ...,,, 21 . The set of X  represent a random 

observation of ipii xxx .,..,, 21 . The issue is selecting a subset of the predictive variables 

which contains most information of the data set. 

1.6.2 Variance-Covariance Matrix 

The PCA procedure involves the covariance structure of data to obtain the values of 

eigenvalues and eigenvectors. Let ij  denotes the covariance between iX  and jX  

in the data matrix. The matrix ij  is written as   and known as a variance-covariance 

matrix. The values of the diagonal element in matrix   are the variances of iX . This 

covariance matrix   must be a symmetric and a square matrix. 

1.6.3 Linear Combination 

The principal components (PCs) of PCA are the linear combination of the original 

variables, ipii xxx ,...,, 21 , that can be expressed as  ii xa , where ia  is the scalar. A 

principal component is a normalized linear combination of the original predictors in a 

data set if 1 ia . 

1.6.4 Linear Independence 

The PCA method successfully solves the problem of correlated variables by choosing a 

set of orthogonal principal components (PCs). This is a potent mathematical property. 

All the principal components are independent of each other. The first principal 

component, PC1, is uncorrelated to PC2, and PC2 and PC3 are uncorrelated and so on. 

It can be proven by computing the product of 0j

T

i bb , where i, j = 1, 2, 3, …, p. The 

linear combination of variables for PCs is formulated as pipiii bxbxbxt  ...2211

, where i = 1, 2, 3, …, n, and pbbbb .,..,, 21  are the loading vectors, and p  is the 

number of predictor variables. 
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1.7 Partial Least Squares (PLS) 

Partial least squares (PLS) regression is a supervised multivariate technique to address 

the problem of multicollinearity in HDD. The general idea of PLS is to extract a set of 

orthogonal latent variables that account for most of the variation measured by the 

original variables to represent the data. These orthogonal latent variables are also known 

as PLS components and are very crucial for developing the best predicted PLS model. 

More formally, the PLS method is to relate a matrix X to a vector y or matrix Y, through 

a linear relationship,   XY , which maximizes the covariance between the 

predictor and response variables. The predictor and response variable in PLS can be 

modelled as X
TTPX   and Y

TUQY  , where X  and Y  are error 

matrices, T  and U  are score matrices of X and Y, respectively. P and Q are the loading 

matrices of X and Y, respectively. PLS has been shown to be an extremely versatile 

method for the analysis of multivariate data, and the number of applications is rapidly 

growing. Numerous extensions of PLS have been designed to address multivariate 

issues, such as regression, classification and variable selection. However, it is now 

evident that PLS is not robust in the sense that its estimate is easily affected by outliers 

and high leverage points.  

1.8 Motivation of the Study 

Mahalanobis distance is a popular technique to detect outliers in multivariate dataset by 

measuring the distance of an observation from a location with respect to a shape in the 

sample. However, the classical location and shape of Mahalanobis distance are not 

robust to outliers. Rousseeuw (1985) proposed a new robust method named minimum 

volume ellipsoid (MVE) to replace the classical location and scatter of Mahalanobis 

distance, but it is a highly biased-robust method. Minimum covariance determinant 

(MCD) is the first affine equivariant and highly robust estimators of multivariate location 

and scatter (Rousseeuw, 1985). It is very resistant to outlying observations that makes 
the MCD highly effective for outlier detection. The MCD was first introduced in 1984, 

but its main application started since the development of FastMCD by Rousseeuw & 

Driessen, (1999). The FastMCD involves the calculation of covariance matrix and its 

determinant based on h-subset of observations. Then the method was improvised by 

giving a zero-one weighting function to improve the efficiency of the FastMCD 

(Lopuhaä & Rousseeuw (1991) and (Lopuhaä, 1999). 

The robust FastMCD location and scatter estimates replace the classical estimates of 

Mahalanobis distance (Mahalanobis, 1936) thus it is known as robust Mahalanobis 

distance. There are many further research has been done in improving the MCD 

procedure for outlier detection such as minimum weighted covariance determinant 

(FAST-MWCD) by Roelant et al. (2009) and deterministic MCD (DetMCD) by Hubert 

et al. (2012). However, none of the approaches discussed are applicable to p >> n 

scenario, as the covariance matrix of the MCD is not invertible in high dimension cases. 

Therefore, Boudt et al. (2018) proposed a minimum regularized covariance determinant 

(MRCD) to overcome the curse of dimensionality issue. Afterwards, the robust 
Mahalanobis distance which is based on the MRCD (RMD-MRCD) is introduced. 
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However, the RMD-MRCD method indicates a decrease in its performance as the 

number of independent variables (p) increases. This shortcoming has motivated us to 

propose a robust Mahalanobis distance (RMD) based on the combined methods of the 

minimum regularized covariance determinant and the principal component analysis 

(RMD-MRCD-PCA). The RMD-MRCD-PCA is developed by incorporating the PCA 

method in the MRCD algorithm whereby this robust approach shrinks the covariance 
matrix to make it invertible and thus, can be employed to compute the RMD for high 

dimensional data. 

Multivariate partial least squares (PLS) regression is a very useful tool for the analysis 

of high-dimensional data. Choosing the number of PLS components (also known as 
latent variables or factors) is a vital step in developing the best model. Preserving too 

few components means that the calibration data are not well-fitted, and there is still 

information left that can be modelled and over-fitting results from selecting too many 

components. This means that although the calibration data are accurately defined, the 

model's ability to predict future samples will be subpar. Cross-validation (CV) is the 

most widely used method to find the PLS components. The CV is basically a leave-one-

out cross validation (LOOCV). It evaluates the prediction power of the predicted models 

according to the number of components included in the model. Nevertheless, when 

dealing with huge datasets, LOOCV can be computationally intensive and time 

consuming. This is due to the fact that LOOCV fits the model iteratively on the entire 

training set. The other problem with LOOCV is that it can be prone to high variance or 
overfitting, which means that it requires almost all of the training data to learn and only 

a single observation to evaluate. K-Fold cross validation (K-FoldCV) is designed to 

address the drawbacks of LOOCV. In K-FoldCV, the data are split into k randomly equal 

folds or groups. Then, in k different iterations, each of these folds is treated as a 

validation set. Both CVs stated above are evaluated using the classical mean square error 

(MSE), which is easily influenced by outliers and high leverage points. Thus, these 

weaknesses have inspired us to establish a robust weighted RMD-MRCD-PCA-LOOCV 

and robust weighted RMD-MRCD-PCA-K-FoldCV to determine the optimal number of 

PLS components. 

Multicollinearity often occurs when two or more predictor variables are correlated, 

especially for high dimensional data (HDD) where p>>n. The statistically inspired 

modification of the partial least squares (SIMPLS) is a very popular technique for 

solving a partial least squares regression problem due to its efficiency, speed, and ease 

of understanding. The execution of SIMPLS is based on the empirical covariance matrix 

of explanatory variables and response variables. Nevertheless, SIMPLS is very easily 

affected by outliers. In order to rectify this problem, a robust iteratively reweighted 
SIMPLS (RWSIMPLS) is introduced. Nonetheless, it is still not very efficient as the 

algorithm of RWSIMPLS is based on a weighting function that does not specify any 

method of identification of high leverage points (HLPs), i.e., outlying observations in 

the X-direction. HLPs have the most detrimental effect on the computed values of 

various estimates, which results in misleading conclusions about the fitted regression 

model. Hence, their effects need to be reduced by assigning smaller weights to them. As 

a solution to this problem, we propose an improvised SIMPLS based on a new weight 

function obtained from the RMD-MRCD-PCA diagnostic method of the identification 

of HLPs for HDD and name this method RMD-MRCD-PCA-RWSIMPLS. 
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This thesis also concerns constructing diagnostic plots to group observations into four 

types of data points, such as regular observations, good leverage points, vertical outliers, 

and bad leverage points. It is very important to classify the outliers into its correct 

category. For instance, good leverage points are not removed because removing the good 

leverage points decreases the efficiency of the estimator. The ROBPCA-diagnostic plot 

was the earliest graphical plot developed for HDD. It plots the outliers based on the score 
and the orthogonal distances. However, there are some drawbacks in ROBPCA method 

as the method suffers from swamping effect. Moreover, the classical Chi-squared which 

is easily influenced by the existence of outliers or HLPs was used as a cut-off point. 

Another diagnostic plot for HDD is the RWSIMPLS-plot to classify observations into 

four types of data points by plotting RWSIMPLS standardized residuals versus leverage 

values, i.e., the diagonal elements of the hat matrix that is used to identify HLPs. Any 

observation that corresponds to a leverage value larger than the cut-off point, i.e., 2p/n, 

is considered as HLPs. Using leverage values as diagnostic measure of detecting HLPs 

will produce unsatisfactory results. These limitations have inspired us to construct a new 

RMD-MRCD-PCA-RWSIMPLS diagnostic plot to classify observations into four data 

points, i.e., regular observations, vertical outliers, and good and bad leverage points.  

This thesis also addresses the issue of classification of observations in the HDD. Linear 

discriminant analysis (LDA) is the most often applied classification rule under 

normality. In LDA, a separate covariance matrix is estimated for each group. However, 

if there are more variables than observations in a group, the typical covariance estimates 
are singular and can no longer be employed. Numerous improvements and 

regularizations of the LDA approach have been done to address the dimensionality issue. 

The earliest is the regularized discriminant analysis developed by Friedman in 1989 by 

adding a regularization parameter to minimize the classification rate. Kemsley (1996) 

suggested a combination of PLS and PCA with the LDA. Yu & Yang (2001) constructed 

a direct LDA (DLDA) by diagonalizing the two variance matrices (between-class 

variance and within-class variance) simultaneously. However, the LDA method 

possesses less classification accuracy (Ding & Gentleman, 2005). PLSDA was 

developed by Barker & Rayens (2003) and extended by Nocairi et al. (2005), then, the 

method was improved in 2007 by Indahl et al. The discriminant score is determined 

based on PLSDA scores. Nevertheless, Aminu & Ahmad (2020) claimed that the 

PLSDA method has no significant advantage over classical method for low dimension 
cases. It provides similar results as the classical approach of LDA. Furthermore, PLSDA 

is highly sensitive to the presence of outliers. Cao et al. (2011) developed a sparse 

version of the PLS which is an extension of the sparse partial least squares (SPLS) 

proposed by Cao et al. (2008). The method employs the sparse element (Lasso 

parameter) to reduce the dataset's dimension and only uses nonzero variables in the 

classification process. However, the Lasso parameter fails to locate HLPs and diminishes 

their effect. As a result, they cause the SPLSDA to compute a high misclassification rate. 

Moreover, the main purpose of the development of the SPLSDA is for variable selection 

procedures. Furthermore, the SPLSDA is not resistant to HLPs. Their work has inspired 

us to develop a robust weighted partial least squares discriminant analysis as a novel 

robust weighted classifier (RMD-MRCD-PCA-RWPLSDA) to remedy the problem of 
classification for high dimensional contaminated dataset. To the best of our knowledge, 

no one has attempted to develop such a method. 
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This thesis also focusses on the issue of variable selection in HDD. In high-dimensional 

data, the number of predictor variables is typically more extensive than the number of 

observations and is frequently correlated. However, it is assumed that only a small subset 

of these variables is relevant to the model. Therefore, choosing informative variables to 

be included in model building is critical, as an appropriate variable selection improves 

prediction and model understanding. Partial least squares (PLS) based variable selection 
is the most common approach to deal with this issue. Frank et al. (1987) proposed a 

backward variable elimination in PLS but there is no clear explanation how to group the 

explanatory variables before the PLS is fitted. Centner et al. (1996) suggested an 

uninformative variable elimination in PLS by adding artificial outlying points to the 

dataset whereby variables that are less influence than noisy variables are eliminated. 

However, adding artificial outlying variables could influence the model if outlying 

variables are not properly selected. Several other methods are developed to solve the 

issue of variable selection in the model such as genetic algorithm in PLS by Hasegawa 

et al. (1997) and iterative predictor weighting PLS by Forina et al. in (1999). However, 

when there are many predictor variables in a dataset, both approaches require a lot of 

time and effort. To remedy this problem, Mehmood (2016) proposed a Hotelling T2 

variable selection based on PLS (T2-PLS) which is less complicated and easier to 
compute. Nevertheless, the introduced method is NIPALS-based PLS, and the estimators 

rely on the classical mean and classical covariance, which are highly affected by the 

outlying observations. These weaknesses have motivated us to develop a new variable 

selection method by integrating a new weight function from RMD-MRCD-PCA in its 

establishment and call this method a robust Hotelling T2 denoted as T2-RMD-MRCD-

PCA-RWSIMPLS. 

1.9 Objective of Thesis 

The objectives of this research are as follows: 

 

1.  To extend a method for the identification of high leverage points in high 

dimensional data by incorporating the PCA approach and the RMD-MRCD 

method. 

2.  To formulate an efficient selection method of determining an optimal number 

of PLS latent variables by integrating the cross-validations approaches with a 

robust weighting function obtained from the RMD-MRCD-PCA. 

3.  To modify the existing robust partial least squares estimation method via the 

incorporation of the RMD-MRCD-PCA weighting function and to extend a 

diagnostic method of outliers classification in high dimensional data by 

employing the robust weight of the RMD-MRCD-PCA and the SIMPLS 
technique. 

4.  To improve a robust classification method based on the integration of PLSDA 

and robust weighting function of RMD-MRCD-PCA in the presence of high 

leverage points for binary and multiple classes. 

5.  To extend a robust Hotelling T2 variables selection method by incorporating a 

new weight function constructed from a newly developed method of 

identification of outliers in HDD (RMD-MRCD-PCA) and robust SIMPLS 

(RWSIMPLS).  
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1.10 Scope and Limitation of Study 

The analysis of high dimensional data has become increasingly important in many 

disciplines such as chemometrics, climate studies, fraud detection, geography and 

satellite processing. It forms major statistical challenges as such data leads to sparsity 

problem known as curse of dimensionality phenomena. With the increase of 

dimensionality and in the presence of outliers, the analysis becomes very complicated, 

time consuming and computationally intense. Hence the scope of this thesis concentrates 

on the establishment of several robust methods in HDD.  

The detection of high leverage points in high-dimensional data is crucial, particularly 

because the high dimensions of HDD lead to a sparsity problem known as the curse of 

dimensionality. The occurrence of outliers in the X direction, as well as multicollinearity 

among the predictors, are the two key concerns with this sparsity problem. However, no 

research focusing on the identification of HLPs has been conducted. Therefore, there are 

not many real data sets available in high dimensions that are appropriate for our research. 

The simulation experiments for HDD require a significant amount of computer time and 

can be expensive. Thus, the Monte Carlo simulations of the proposed methods are 

conducted using limited dimensions of the dataset and due to an inadequately high 

performing computer, some of our experiments were only repeated for 500 iterations. 

1.11  Outline of the Thesis 

Following the objectives and scopes of study, the contents of this thesis are organized 

into eight chapters. The arrangement of thesis chapters is designed to align with each 

objective, ensuring a coherent sequence in the outline. 

Chapter Two discusses the literature reviews on outliers and high leverage points 

detection techniques for low and high dimension cases, the weighting functions and the 

optimum number of latent variables selection methods in PLS and the types of PLS 

methods are also reviewed. The classification methods for high dimension situations are 

deliberated. Finally, the variable selection methods are discussed. 

Chapter Three discusses the high leverage points detection based on the MRCD-PCA 

estimators of location and scatter matrix. The proposed method is the integration of 

reduction method PCA and the robust Mahalanobis distance based on MRCD (RMD-

MRCD-PCA). The RMD-MRCD-PCA algorithm is presented. Monte Carlo simulation 

and real data examples were used to demonstrate the performance of the proposed robust 

Mahalanobis distance based on the MRCD-PCA estimator. The existing methods of 
RMD-MRCD and the ROBPCA are used for comparison. The three real data examples 

are Octane data, Biscuit dough and Glass spectra dataset. 
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Chapter Four discusses the proposed optimal number of latent variable selection in PLS 

based on the weight of RMD-MRCD-PCA and the cross validations (LOOCV and K-

FoldCV) procedures. The MRCD-PCA-LOOCV and MRCD-PCA-K-FoldCV 

algorithms are presented. This proposed method is evaluated using Monte Carlo 

simulations and 2 real life data (Fish and Biscuit dough dataset). 

Chapter Five discusses the new improvised robust SIMPLS method based on the 

weighting function of RMD-MRCD-PCA (RMD-MRCD-PCA-RWSIMPLS). Monte 

Carlo simulation and two real datasets are used to evaluate the performance of the 

diagnostic algorithm (RMD-MRCD-PCA-RWSIMPLS) and the existing methods, i.e., 

classical SIMPLS and RWSIMPLS. The real datasets are Octane and Gasoline. 

Chapter Six discusses the new robust classification procedure based on the weight of 

RMD-MRCD-PCA and partial least squares discriminant analysis (PLSDA) under HLPs 

contamination dataset. The RMD-MRCD-PCA-RWPLSDA is evaluated on the Monte 

Carlo simulation and three real datasets (Covid 19, Colon and Coffee) 

Chapter Seven discusses the new robust Hotelling T2 based on the RMD-MRCD-PCA-

RWSIMPLS variable selection approach. The proposed T2-RMD-MRCD-PCA-

RWSIMPLS is compared with other three existing methods T2-PLS, Chi-PLS and UVE-

PLS by using Monte Carlo simulation methods and two real datasets (Gasoline and Fish) 

Chapter Eight provides the summary, conclusions, recommendations, and possible 

future research areas. 
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