
© C
OPYRIG

HT U
PMCRYPTANALYSIS OF POLYNOMIAL RECONSTRUCTION PROBLEM-

BASED CRYPTOSYSTEMS

By 

SITI NABILAH BINTI YUSOF 

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in 
Fulfilment of the Requirements for the Degree of Doctor of Philosophy 

December 2023 

         IPM 2023 11



© C
OPYRIG

HT U
PM

All material contained within the thesis, including without limitation text, logos, icons, 
photographs and all other artwork, is copyright material of Universiti Putra Malaysia 
unless otherwise stated. Use may be made of any material contained within the thesis for 
non-commercial purposes from the copyright holder. Commercial use of material may 
only be made with the express, prior, written permission of Universiti Putra Malaysia. 
 
Copyright © Universiti Putra Malaysia 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



© C
OPYRIG

HT U
PM

DEDICATIONS 
 

 

 

 

To: 
My beloved parents, 
Rasilah Said, Mak. 

Yusof Ahmad, Abah. 
... 

My family and friends. 
 



© C
OPYRIG

HT U
PM

i 
 

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 
the requirement for the degree of Doctor of Philosophy 

 

CRYPTANALYSIS OF POLYNOMIAL RECONSTRUCTION PROBLEM-
BASED CRYPTOSYSTEMS 

 

By 
 

SITI NABILAH BINTI YUSOF 
 

December 2023 
 
 

Chair  : Professor Muhammad Rezal bin Kamel Ariffin, PhD 
Institute  : Mathematical Research 
 
 
The Polynomial Reconstruction problem (PRP) was introduced as a new hard problem 
in post-quantum cryptography. Quantum Algorithm Zoo has referred to this problem. 
The PRP is formulated in a manner comparable to Reed-Solomon error correction codes. 
A univariate PRP cryptosystem was presented, and the designers utilized Lagrange 
interpolation in the decryption process. Nonetheless, the univariate PRP cryptosystem 
was cryptanalyzed entirely, allowing the plaintext message to be retrieved in polynomial 
time. A modified version of the univariate PRP cryptosystem, known as the bivariate 
PRP cryptosystem, was proposed. The bivariate PRP cryptosystem employed the 
Vandermonde method throughout the decryption procedure. According to the creators of 
the bivariate PRP cryptosystem, increasing the number of variables in a polynomial 
improves the cryptosystem's security. This research achieved four results, demonstrating 
that decryption failure can occur in univariate and bivariate PRP cryptosystems. 
Subsequently, we performed algebraic cryptanalysis on the bivariate PRP cryptosystem 
to determine whether it is secure against the Indistinguishable under Chosen-Plaintext 
Attack (IND-CPA) or capable of complete cryptanalysis. In the third finding, we 
established a condition where users could safely employ the bivariate PRP cryptosystem 
if the determinant for polynomial 𝑓(𝜆) = 0 mod 𝑞. In the final result, we presented an 
algebraic cryptanalysis of the multivariate PRP cryptosystem, demonstrating that the 
system can be IND-CPA insecure or fully cryptanalyzed. 

Keyword: Polynomial Reconstruction Problem, univariate, bivariate, multivariate, 
Indistinguishable Chosen-Plaintext Attack 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Doktor Falsafah 

 

KRIPTANALISIS TERHADAP SISTEM KRIPTO BERASASKAN MASALAH 
PEMBINAAN SEMULA POLINOMIAL 

 

Oleh 
 

SITI NABILAH BINTI YUSOF 
 

Disember 2023 
 
 

Pengerusi : Professor Muhammad Rezal bin Kamel Ariffin, PhD 
Institut  : Penyelidikan Matematik 
 
 
Masalah Pembinaan Semula Polinomial (PRP) diperkenalkan sebagai masalah sulit baru 
di dalam kriptografi pasca kuantum. Masalah ini telah disebutkan di dalam Quantum 
Algorithm Zoo. PRP mempunyai perumusan yang setara dengan kod pembetulan ralat 
Reed-Solomon. Sistem kripto PRP univariat telah dicadangkan di mana sistem kripto ini 
menggunakan interpolasi Lagrange di dalam proses penyahsulitan. Walau 
bagaimanapun, sistem kripto PRP univariat telah dianalisis sepenuhnya di mana mesej 
teks asal boleh diperolehi dalam masa polinomial. Seterusnya, sistem kripto PRP bivariat 
telah dicadangkan di mana sistem kripto ini adalah versi diubah suai daripada sistem 
kripto PRP univariat. Sistem kripto PRP bivariat ini menggunakan kaedah Vandermonde 
di dalam proses penyahsulitan. Pereka sistem kripto PRP bivariat mengatakan bahawa 
dengan menambahkan bilangan pemboleh ubah di dalam polinomial akan meningkatkan 
tahap keselamatan sistem kripto. Di dalam penyelidikan ini, kami memperoleh empat 
hasil di mana kami berjaya menunjukkan bahawa kegagalan penyahsulitan boleh berlaku 
dalam kedua-dua sistem kripto univariat dan bivariat. Selain itu, analisis kriptografi 
algebra terhadap sistem kripto PRP bivariat di mana kami berjaya menunjukkan sama 
ada sistem kripto ini tidak selamat secara ketakbolehbezaan terhadap serangan teks asal 
terpilih (IND-CPA) atau boleh dianalisis sepenuhnya. Untuk hasil yang ketiga, kami 
menunjukkan satu keadaan di mana pengguna boleh menggunakan sistem kripto PRP 
bivariat dengan selamat jika mereka mendapat penentu menjadi 𝑓(𝜆) = 0 mod 𝑞. Akhir 
sekali, di dalam hasil yang ke empat, kami mencadangkan satu analisis kriptografi 
algebra terhadap sistem kripto PRP multivariat dan kami berjaya menunjukkan bahawa 
sistem ini sama ada tidak selamat secara IND-CPA atau boleh dianalisis sepenuhnya.  
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Kata kunci: Masalah Pembinaan Semula Polinomial, univariat, bivariat, multivariat, 
tidak selamat secara ketakbolehbezaan terhadap serangan teks asal terpilih 
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CHAPTER 1

INTRODUCTION

1.1 Introduction of Cryptography

Cryptography is a general term used to define the design and analysis of mechanisms
based on mathematical methods that give essential security services (Martin, 2012).
The word cryptography is from Latin where “crypt” means secret and “graphia”
means writing. This method has been used since the Spartans in ancient Greeks,
where they utilized the scytale. Stinson (2005) notes that cryptography aims to
allow communication between two people (Alice and Bob) in an insecure channel
so that an adversary, Eve, cannot comprehend what is being said. This channel can
be a computer network or telephone line.

The communication between Alice and Bob can be secured by using a cryptosystem
which is defined as follows:

Definition 1.1 (Stinson, 2005) A cryptosystem is a five-tuples (P,C ,K ,E ,D)
which satisfies the following conditions;

1. P is a finite set of possible plaintexts.

2. C is a finite set of possible ciphertexts.

3. K is a finite set of possible keys.

4. For each K ∈ K , there is an encryption rule eK ∈ E and a corresponding
decryption rule dK ∈ D . Each eK : P → C and dK : C → P are functions
such that dK(eK(x)) = x for every plaintext element x ∈ P .

The basic terminologies that are used in cryptography is as follows:

i) Plaintext is the original message.

ii) Ciphertext is the coded message.

iii) Cipher is an algorithm for transforming plaintext to ciphertext.

iv) Key is an information used in cipher known only to sender or receiver.

v) Encrypt is a process of converting plaintext to ciphertext.

vi) Decrypt is a process of recovering ciphertext to plaintext.
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There are two categories in cryptography which are symmetric-key cryptography
and asymmetric-key cryptography. Symmetric-key cryptography is where both
sender and recipient share the same key. For asymmetric-key cryptography is also
known as Public-Key (PK) cryptography, which involves two keys: the public-key is
used in the encryption process, and the private key is used in the decryption process.

1.2 Symmetric-Key Cryptography

The digital data in our computer consists of binary strings. The symmetric-key
cryptography algorithm can convert one binary string into another binary string
where the process is shown as follows:

1. A sequence of plaintext bits is taken as input.

2. Perform a series of operations on these bits.

3. Output a sequence of bits that produces the ciphertext.

There are two types of symmetric-key cryptography: stream ciphers and block
ciphers. Stream ciphers transform plaintext to ciphertext one bit at a time, where the
algorithm picks one bit of plaintext, operates a series of operations, and produces
one bit of ciphertext (Schneier, 2007). Block ciphers work by taking a block of
plaintext bits, processing them through a sequence of operations to produce a block
of ciphertext bits. This allows the plaintext to be converted to the ciphertext one
block at a time.

1.3 Public-Key Cryptography

In 1969, James Ellis initially discovered the concept of public-key cryptography
while working at the British Government Communications Headquarters (GCHQ)
(Silverman et al., 2008). His discovery was categorized as confidential material by
the British government and released his discovery after his death in 1997. Whitfield
Diffie and Martin Hellman published their well-known paper in 1976 entitled “New
Directions in Cryptography”, where the paper showed the public-key encryption
system concept.

The publication of Diffie-Hellman was significant because it introduced the basic
definition and objectives of a new field of mathematics or computer science where
the existence of these fields relied on the existing of digital computer. This
publication also contributed to the definition of public-key cryptography and its
associated components: one-way function and trapdoor information. We provide the
mathematical formulation of public-key cryptography where there are spaces of key

2



© C
OPYRIG

HT U
PM

K , plaintext P and ciphertext C . An element of k of the key space K represents a
pair of keys where

k = (kpriv,kpub).

kpriv and kpub represent as private key and public key respectively. There is a
corresponding encryption function for each kpub which is

ekpub
: P → C .

Next, the corresponding decryption function for each kpriv is

dkpriv : C → P.

If the pair (kpub,kpriv) is in the key space K , then

dkpriv(ekpub
(m)) = m, ∀m ∈ P.

The definitions of one-way function and trapdoor information are as follows:

Definition 1.2 (One-Way Function)(Menezes et al., 2018) One-way function is a
function f from a set X to a set Y if f (x) is “easy” to compute for all x ∈ X but for
“essentially all” elements y ∈ Im( f ) it is “computationally infeasible” to find any
x ∈ X such that f (x) = y.

Definition 1.3 (Trapdoor Information)(Menezes et al., 2018) Trapdoor information
is a secret information hidden within an algorithm.

The application of public-key cryptography is based on trapdoor one-way function
which is defined as follows:

Definition 1.4 (Trapdoor One-Way Function)(Menezes et al., 2018) A trapdoor
one-way function is a one-way function f : X → Y with the additional information
which is the trapdoor information where it becomes feasible to discover for any given
y ∈ Im( f ), an x ∈ X such that f (x) = y.

3
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Figure 1.1: Demonstration of one-way function (Hoffstein et al., 2008).

Notice from Figure 1.1, the words ”easy” and ”hard” to compute relies on the time
complexity of an algorithm to solve a certain mathematical hard problem. Time
complexity and Big-O notation are defined as follows:

Definition 1.5 (Time Complexity)(Sipser, 2021) Time complexity of an algorithm
measures the total of time taken by an algorithm to compute as a function with the
length of n string representing the input. The time complexity of an algortihm is
usually espressed by using Big-O notation.

Definition 1.6 (Big-O Notation)(Rubinstein-Salzedo, 2018) Given two functions
f (x) and g(x), let say that f (x) = Og(x) if there is some constant C > 0, which
does not rely on x, hence

| f (x)| ≤Cg(x)

for all x.

Remark 1.1 For all x ∈ R, however we will use slightly more weakly to mean for all
adequately large x, i.e., there exists some H so that | f (x)| ≤Cg(x) for all x ≥ H.

From Definition 1.6, as stated by Hoffstein et al. (2008), assume that we wish to
solve a mathematical problem where the input can be vary. We want to know how
long it takes to solve the problem based on the size of the input. Due to the fact
that bits are the unit of measurement for storage required to store an input, they are
typically used to determine the size of an input. The following are the definitions
describe how to solve a mathematical problem in polynomial time, exponential time,
and subexponential time.

Definition 1.7 (Polynomial Time)(Hoffstein et al., 2008) A problem is said to be
solvable in polynomial time is when there is a constant k ≥ 0 where k represents as
the input size such that if the input is O(n) bits long where n represents as the length
of the input, then the number of steps to solve the problem is O(nk).

4
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Definition 1.8 (Exponential Time)(Hoffstein et al., 2008) A problem is said to be
solvable in exponential time is when there is a constant c > 0 such that for input
of size O(n) bits where n represents as the length of the input, then there exists an
algorithm that needs O(ecn) steps to solve the problem.

Definition 1.9 (Subexponential Time)(Hoffstein et al., 2008) A problem is said to
be solvable in subexponential time when the number of steps needed to solve the
problem for a given input with the size of O(n) bits is in O(eεn) where 0 < ε < 1.

Based on the definitions above, if the mathematical problems are solvable in
polynomial time, it is considered “easy”. However, if the mathematical problems
must be solved in exponential time, then it is considered “hard”.

1.4 Post-Quantum Cryptography

Public-key cryptography plays a crucial role in the security of open computer
networks, especially the Internet (Buchmann et al., 2017). As public-key
cryptography is essential to cyber security, an alternative public-key cryptosystem
that is secure from the attack of quantum computers needs to be developed. In 1994,
Shor’s algorithm was developed, successfully executing the integer factorization
and discrete logarithm problems in polynomial time (Shor, 1994). This algorithm
proved that the classical cryptographic schemes such as Rivest, Shamir and Adleman
(RSA) Cryptosystem and Diffie Hellman Key Exchange Algorithm that depend on
such hard mathematical problems would be insecure from the attack of quantum
computer.

As mentioned in Alagic et al. (2019), we should be prepared with the adjustment
towards post-quantum cryptography as early as ten years from now since we know
that the technology keeps on enhancing. Although the replacement for the existing
standardized public-key algorithm has yet to be fully ready, we need to focus
imperatively on maintaining cryptography agility.

In 2011, a website known as Quantum Algorithm Zoo was created. This website
lists many favourable hard mathematical problems considered quantum resistant
(Jordan, 2011). The Quantum Algorithm Zoo presented a large-scale catalogue of
quantum algorithms which summarize algorithms that can be studied and utilized
(Weigold et al., 2021).

The National Institute of Standards and Technology (NIST) called for a quantum-
resistant algorithm (Alagic et al., 2019; Song and Zhao, 2017). The chosen
public-key cryptosystems will designate one or more algorithms for each digital

5
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signature, encryption, and key-establishment. The aim for these algorithms is to
protect the sensitive information in the government of United States well into the
predictable future, including after the arrival of a quantum computer.

The post-quantum cryptography standardization process is the response from
NIST to the evolution of quantum computers. These machines exploit quantum
mechanical development to solve hard mathematical problems that are difficult
to be solved by conventional computers. If a large-scale quantum computer is
built, then the public-key cryptography currently standardized by NIST can be
broken. The development of quantum computers will impact the symmetric-key
cryptosystem but will not drastically impact it. Post-quantum cryptography aims
to create a secure system from the attack of quantum computer (Gaborit et al., 2018).

Nowadays, post-quantum cryptography algorithms are focused on these five
approaches which are listed in Table 1.1.

6
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1.5 Polynomial Reconstruction Problem (PRP)

In 1999, Polynomial Reconstruction Problem (PRP) was introduced as a new hard
problem (Augot and Finiasz, 2003). The PRP is one of the mathematical problems
mentioned in Quantum Algorithm Zoo. A public-key cryptosystem based on PRP
was presented in Eurocrypt2003 by Augot and Finiasz (Augot et al., 2003; Coron,
2004). The PRP has an equivalent formulation to the Reed-Solomon error correcting
codes (Naor and Pinkas, 1999; Sadkhan and Ruma, 2006). The decoding of the
Reed-Solomon codes problem is long-established, and many coding theorists were
interested when this code was introduced. The goal of decoding is to recover a
Reed-Solomon code word from a damaged word, which means a word that contains
errors. Decoding Reed-Solomon can be easy if the number of errors is small.

A broad study has been done on the PRP based on its solvability and robustness.
From Kiayias and Yung (2004b), the reasons why the PRP is suggested to be a
hard mathematical problem because there are some evidences show that PRP can
withstand the improvement of quantum computing. Next, this system provides new
advantages based on the perspective of efficiency and cost-effectiveness. Lastly,
PRP utilizes simple matrix operations and other appealing components that can be
useful in cryptographic settings.

The PRP is easy when the weight of error, w, is small such that w ≤ n−k
2 where n

and k represent the number of elements in a vector and the degree of a polynomial,
respectively (Augot and Finiasz, 2003). According to Venkatesan Guruswami
(1999), this problem has improved to w ≤ n−

√
kn . Since Augot and Finiasz created

a cryptosystem based on PRP, hence we denoted this system as AF-Cryptosystem.
This cryptosystem utilized a univariate polynomial (Kiayias and Yung, 2001, 2004a).
The AF-Cryptosystem applied two types of PRP. The first PRP is defined in Jordan
(2011), and the second PRP is designed to ensure decryption in which we called the
second PRP as the Augot and Finiasz Solvable PRP (AF-SPRP), which is defined as
follows:

Definition 1.10 (Augot and Finiasz Solvable PRP) (Augot and Finiasz, 2003) Given
n, k, t and (xi,yi)i=1,··· ,n, output any polynomial p such that deg(p)< k and p(xi) =
yi for at least t values of i where t = n−w and w is the weight of error.

According to the Definition 1.10, when t points are given on a Cartesian plane,
then output a polynomial that fits all the points on the Cartesian plane. Lagrange
interpolation is used in the decryption process.

However, in 2004, Coron fully attacked the AF-Cryptosystem where the plaintext
can be obtained in polynomial time (Coron, 2004). Next, a modified version of AF-
Cryptosystem was created by Ajeena et al. (2013). This cryptosystem used bivariate
polynomial and Vandermonde matrix. We denote this modified cryptosystem as
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AAK-Cryptosystem. The designers of AAK-Cryptosystem stated that if the number
of variables are increased, then the system’s security level is increased.

1.6 Problem statements

According to Jordan (2011), one of the hard mathematical problems that is thought
to be quantum resistant is the PRP. A few PRP-based cryptosystems have been
developed: Augot and Finiasz (2003)’s univariate PRP and Ajeena et al. (2013)’s
bivariate PRP. The Coron (2004) has successfully attacked the univariate PRP. This
indicates that applying the AF-Cryptosystem is not safe. Despite increasing the
number of variables, this cryptosystem may not be sufficiently secure to be used in
post-quantum cryptography. The PRP is a strong contender for a cryptosystem, but
cryptographers require knowledge of how to build a reliable and safe cryptosystem
on the framework of PRP. The goal of this research is to perform algebraic
cryptanalysis on bivariate PRP and make some observations about developing a safe
PRP cryptosystem for later use.

1.7 Research Objectives and Methodology

In this subsection, we provide our research objectives. We also state a concise
explanation of the methodology used in this research to achieve our research
objectives.

1. To investigate the efficiency of decryption process in Polynomial Reconstruc-
tion Problem based cryptosystem.
Methodology: This objective is focused on the decryption process in Augot
and Finiasz (2003) and Ajeena et al. (2013) cryptosystems. If W which is the
weight of big error vector, E in AF-Cryptosystem and AAK-Cryptosystem are
large such that W > k+1 and W > k2 respectively, then the decryption failure
can occur.

2. To establish an algebraic cryptanalysis upon bivariate Polynomial Reconstruc-
tion Problem based cryptosystem.
Methodology: In this objective, we get the motivation to cryptanalyze
bivariate PRP cryptosystem from Coron (2004). The methods that we used
are Berlekamp-Welch algorithm and modified Coron cryptanalysis strategy.
From here, we obtain two types of result where the system can be fully
cryptanalyzed or the system is not indistinguishable chosen plaintext attack
(IND-CPA) secure.

3. To outline a secure method in utilizing a bivariate cryptosystem based on the
Polynomial Reconstruction Problem.
Methodology: For this objective, we suggest an alternative way to utilize
bivariate PRP cryptosystem in a safe way where the user has to cryptanalyze
the system in order to determine whether the system that they used is secure
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or not. By using Coron cryptanalysis strategy, the user needs to ensure that the
determinant for polynomial f (λ ) is equal to 0. Hence, the system is safe to be
used.

4. To develop an algebraic cryptanalysis for a multivariate cryptosystem based
on Polynomial Reconstruction Problems.
Methodology: To achieve this objective, we created a multivariate PRP
cryptosystem based on the AAK-Cryptosystem. The methods that are
applied in this analysis are Berlekamp-Welch algorithm and modified Coron
cryptanalysis strategy. Thus, despite the increasing the number of variable in
a polynomial, the system still can be fully cryptanalyzed or the system is not
indistinguishable chosen plaintext attack (IND-CPA) secure.

1.8 Thesis outline

This thesis contains 8 chapters which the contents are shown as follows:

Chapter 1 describes the definition of cryptography and the five approaches
of cryptography. This chapter also provides an introduction to post-quantum
cryptography and the hard mathematical problem utilized in this research which is
PRP. The research objectives and the methodology are also described in this chapter.

Chapter 2 discusses the mathematical background involved in this research, such
as Reed-Solomon codes and PRP. This chapter also presents the previous work that
utilized PRP which are the univariate and bivariate PRP crytosystems. Moreover,
relevant preliminary mathematical concepts involved in this research are also
provided.

Chapter 3 introduces the methods that are used in this research which are
Lagrange interpolation, Vandermonde method, Berlekamp-Welch algorithm and
Indistinguishable under Chosen-Plaintext Attack (IND-CPA) attack. We also
provide the cryptanalysis method that had been published by Coron (2004). This
cryptanalysis is being our reference for the attack on the bivariate and multivariate
PRP cryptosystems.

Chapter 4 provides a proposition where the univariate PRP cryptosystem and
bivariate PRP cryptosystem can have a decryption failure. When the big error
vector, E, has a weight larger than the number of monomials in a secret polynomial
p(x) and p(x,y), then decryption failure can occur in univariate and bivariate PRP
cryptosystems. We also provide our numerical illustration for this analysis.

10



© C
OPYRIG

HT U
PM

Chapter 5 presents an algebraic cryptanalysis on bivariate PRP cryptosystem. The
methodology used in this analysis is the Berlekamp-Welch algorithm and a modified
cryptanalysis strategy by Coron (2004). The result shows that we obtain two
situations where the system can be fully cryptanalyzed or is not Indistinguishable
under Chosen-Plaintext Attack (IND-CPA) secure. We also provide our numerical
illustration for this analysis.

Chapter 6 explains a proposition where the user can use the bivariate PRP
cryptosystem with a condition. The user needs to use the same method in the
bivariate cryptosystem and cryptanalyze their system to determine whether it
is secure. By using a modified cryptanalysis strategy by Coron (2004), if the
determinant for polynomial f (λ ) is equal to 0 where f (λ ) = 0 mod q, then the
system is safe to be used. We also provide our numerical illustration for this analysis.

Chapter 7 proposes an algebraic cryptanalysis on a multivariate PRP cryptosystem.
We used the Berlekamp-Welch algorithm and a modified cryptanalysis strategy by
Coron (2004). The result shows that the system can be either fully cryptanalyzed
or not Indistinguishable under Chosen-Plaintext Attack (IND-CPA) secure. We also
provide our numerical illustration for this analysis.

Chapter 8 consists of the summary of this research and the future directions of PRP
that can be expanded from this research.
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