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ABSTRACT 
In motor sports, racing line optimization is important since different race line can result in different 

speed and time taken to complete a race track. In competitive motor sport events such as NASCAR cup, 

Formula 1 and WRC, the lap time of top racers can differ in mere milliseconds. Hence, it is important 

to formulate a racing strategy to achieve the best possible lap time. Optimizing the lap time requires one 

to minimize the curvature around the corner, and this in turn can be formulated as a variational problem.  

This study proposes cubic spline interpolation as a strategy to find the curvature and time taken for a 

race car to complete a corner at the race track, bounded by physical limits of the race car and the radius 

of turn of the race track. The strategy, which allows one to explore different points on the Cartesian 

plane, is illustrated through an example on a simple corner.  

 
Keywords: Optimal Racing Line, Minimum Curvature, Cubic Spline Interpolation 

 

 

INTRODUCTION 

 

In competitive motor sports, the difference between victory and defeat often comes down to 

milliseconds. One of the most crucial factors in achieving optimal lap times is the selection of the 

ideal racing line - the path a vehicle takes through a race track. The optimization of racing lines 

can be solved by means of mathematical principles in the calculus of variations. In particular, the 

optimal racing line can be formulated as a variational problem, where the objective is to minimize 

the time taken to complete a given track while adhering to the physical constraints such as track 

boundaries, track condition, vehicle dynamics and traction control.  

 

In their work on generating optimal velocity profiles for vehicles with acceleration techniques, 

Velenis and Tsiotras (2008) formulated the minimum-time cornering problem as a constrained 

optimization problem. Their work demonstrated that the optimal route can be derived as a 

variational problem, considering both kinematic and dynamic constraints of the vehicle. Apart 

from dynamics of the car, Braghin et al. (2008) also considered the geometry of the track on the 

problem of trajectory planning that was formulated as a constrained optimization problem.  

 

According to Xiong (2010), several factors affect the racing line at corners such as turn in 

(starting) point, braking point, apex and the direction and position of the next corner. A right 
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strategy would be one that minimizes total time and maximizes overall speed, of which the latter 

requires the driver to maximize the radius of curvature around corners. Combining both artificial 

intelligence (AI) method and Euler spiral method, Xiong introduced an integrated method that is 

more applicable in generating optimal racing lines for different track shapes, subject to pre-

analysis of the tracks.  

 

In the context of Formula One race car, Perantoni and Limebeer (2013) solved the optimal 

control problem for minimizing lap time via direct transcription and nonlinear programming. 

Through optimization of driven line, parameters of car set-up according to track condition and 

driver controls, they managed to reduce the solution time for a full lap. The study on minimum lap 

time had also been conducted by Bianco et al. (2018) who did simulations of direct method via 

nonlinear programming problem and indirect method based on Pontryagin’s principle on the 

trajectory-free full dynamic models. The results shows that both methods displayed similar 

behaviour on the overall simulation.  Other notable works on minimizing lap time include car 

maneuvering (Casanova, 2000) and ideal driver control (Kelly and Sharp, 2009). 

 

More recently, Heilmeier et al. (2019) generated minimum curvature path for autonomous 

race care via a quadratic optimization problem while improving its accuracy. It is clear that 

minimizing curvature and optimizing lap time comes hand-in-hand. In this study, we formulate 

the problem of minimizing the curvature as a variational problem which can be solved via the 

Euler-Lagrange equations analytically. Cubic spline interpolation is introduced as a strategy to 

find the curvature and time taken for a race car to complete a corner at the race track, bounded by 

the physical limits of a race car and the radius of turn of the race track. The strategy allows one to 

explore different points on the 𝑥𝑦-plane such that the optimal race line can be obtained.  

 

 

PRELIMINARIES 

 

Cars need to slow down when it is entering a corner, and accelerate when it is exiting the corner. 

For all race tracks, a racing car can follow an infinitely many numbers of possible racing lines. 

However, not all racing line that follows the same track or circuit can result in the shortest lap time.  

 

 
 

 

Figure 1: Comparison of racing lines 

 

Figure 1 shows two different racing lines on the same track. Racing line (a) seems to be a 

better line as the driver is making as little turns as possible with smoother curves at the corners. 

Meanwhile, racing line (b) is not optimal due to many unnecessary turns which will affect the 

overall speed. It is at these corners that differentiates the quality of one’s racing technique as the 

curvature around the corners determines the lap time.  

 

(b) (a) 
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One of the contributing factors in determining the curvature is the apex. Every racer will seek 

to touch a point called the apex, depending on the type of turn. In general, the apex, is a point in 

the inner edge of the race track corner with following characteristics:  

(a) It is the point at which the car is closest and reached minimum speed in the inner edge of 

a corner. 

(b) At the apex, the car is closest to the inner edge of the corner. 

 

There are three types of apexes and the choice of apex depends on the type of car, condition 

of track surface, and shape of the corner. Figure 2 shows three types of apexes with the orange 

point as the apex. 

 

 
 

 

 

Figure 2: Types of apexes 

 

This study only considers geometrical apex of which it maintains the radius of curvature and 

it is suitable for low to average powered cars. Among its advantages are it has a balanced entry 

and exit speed and it smooths out curves, thus reducing the possibility of oversteering and 

understeering. 

 

Another important factor in optimization of racing line is the traction circle which is defined 

as a vehicle’s capability to handle deceleration with cornering when entering a corner and 

acceleration with cornering when exiting a corner (Mitchell et al., 2004). In Figure 3, the direction 

of the arrow indicates the direction a driver experience normal force from the car as it moves, and 

the length of the arrow indicates the magnitude of the force. For every car, there exists a maximum 

amount of grip which its tyres can provide to stabilize the motion of the car. 

 

When a car fails to attain the minimum turning angle in order to turn, the vehicle is identified 

as understeer. On the other hand, if the turning angle is too large, the vehicle is losing control due 

to oversteer. The former is due to excessive steering input and braking input at a same time, while 

the latter is due to excessive steering input and throttle input at a given time. Figure 4 shows the 

traction circles when a car is losing control due to oversteering and understeering. The former is 

due to excessive steering input and braking input at a same time, while the latter is due to excessive 

steering input and throttle input at a given time. 

 

 

(a) Geometric apex (c) Late apex (b) Early apex 
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Figure 3: Traction circles when a car is accelerating, decelerating, turning left and right 

 

 

 

 
 

Figure 4: Traction circles due to oversteering and understeering 
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PROBLEM FORMULATION 

 

Let 𝜇 be the friction coefficient of the racing track surface which is an asphalted road. Dry asphalt 

road with a friction coefficient of about 0.7 to 0.8 shows very low wheel slip ratio (Zhao at al., 

2017). Therefore, this road condition is able to provide enough traction so that grip racing 

technique is faster than drift racing technique.  

 

Let  

(a) 𝐹𝑛 = 𝑚𝑔 be the normal force acting on the car, where 𝑚 is the mass of the car and 𝑔 is the 

gravitational acceleration; 

(b) 𝐹𝑑 is the downward force due to the mass of the car; 

(c) 𝑟 be the radius of curvature; 

(d) 𝐹𝑐 =
𝑚𝑣2

𝑟
 be the centripetal force, where 𝑣 is the velocity of the car; 

(e) 𝐹𝑣 = 𝜇𝐹𝑛 be the tangential force; 

(f) 𝐹𝑟 be the resultant force due to the centripetal and tangential forces.  

 

 
 

Figure 5: Forces acting on a car while being driven in a circle with radius 𝑟 

 

For a car to maintain no slip condition, it must satisfy  

 

𝐹𝑐 ≤ 𝐹𝑣. (1) 

 

Otherwise, the car will slip out of the circle. Substituting the formulas of 𝐹𝑐 and 𝐹𝑣 results in  

 

𝑣 ≤ √9.8𝜇𝑟, (2) 

  

where the gravitational acceleration 𝑔 is 9.8 ms−2. It is clear that 𝑣2 is proportional to 𝑟. Since 

curvature and radius of curvature is related in a way that 𝜅 =
1

𝑟
, we have 𝑣2 ∝

1

𝜅
. 

 

It is clear from inequality (2) that the maximum speed a car can safely navigate a corner is 

constrained by the friction and radius of curvature. As the curve's radius changes, so does the 

critical speed threshold, of which exceeding this limit will result in the tyres losing grip on the 

track, potentially causing the car to slide or spin out. Tighter corners (smaller radius) require lower 

speeds to maintain traction, while gentler curves (larger radius) allow for higher speeds while 

keeping the tyres firmly planted.  
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A race car can maintain a higher cornering speed without slipping when it follows a path with 

a larger radius of turning. Hence, a path with minimum curvature is preferred. However, the 

curvature 𝜅 is restricted by the built of the car which has minimum turning radius 𝑟min: 
 

𝑟 ≥ 𝑟min  or   𝜅 ≤ 𝜅max, (3) 

 

where 𝜅max is the maximum curvature of the car.  

 

Suppose 𝑦 = 𝑦(𝑥) where 𝑥 and 𝑦 are the coordinates on the Cartesian plane. The aim is to 

obtain the curvature of the function at any point in the given domain. Let the position vector be 

 

𝒓(𝑥) = 𝑥𝒊 + 𝑦(𝑥)𝒋. (4) 

 

By means of vector calculus, the curvature 𝜅 for 𝒓(𝑥) is given by  

 

𝜅(𝑥) =
|𝑦"(𝑥)|

(1 + (𝑦′(𝑥))
2
)

3
2

. 
(5) 

 

Denote by 𝑣max the maximum speed limit, 𝑎min < 0 the maximum deceleration and 𝑎max > 0 the 

maximum acceleration. 

 

In order for an optimal race line to exist, all parts of the race track must be wide enough and 

do not have a high curvature to the point that a race car cannot clear it without having its racing 

line intersecting with the border of racetrack. Hence for a solution to exist, the racing line has to 

satisfy:  

 

𝑟min ≤ 𝑟turn, (6) 

 

where 𝑟turn denotes the maximum turning radius allowed by the corner.  

 

Let 

 

𝜅(𝑥) = ∫𝑓(𝑥, 𝑦(𝑥), 𝑦′(𝑥), 𝑦′′(𝑥), 𝑦′′′(𝑥)) 𝑑𝑥

𝑏

𝑎

, 

 

(7) 

where  

 

𝑓(𝑥, 𝑦(𝑥), 𝑦′(𝑥), 𝑦′′(𝑥), 𝑦′′′(𝑥)) =
𝑑

𝑑𝑥

[
 
 
 

|𝑦"(𝑥)|

(1 + (𝑦′(𝑥))
2
)

3
2
]
 
 
 

. 

 

(8) 

The variational problem for minimizing curvature along a track to form an optimal racing line 

around a corner is given by 
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minimize 

subject to 

{𝜅(𝑥): 𝑦(𝑥) ∈ 𝐶2([𝑏, 𝑐]), 𝜅(𝑏) = 0, 𝜅(𝑐) = 0}, 

𝑣(𝑥) ≤ √9.8𝜇𝑟 ≤ 𝑣max, 

𝑟min ≤ 𝑟(𝑥) ≤ 𝑟turn, 

𝑎min ≤ 𝑎(𝑥) ≤ 𝑎max. 
 

(9) 

Here 𝑏 and 𝑐 are the starting point and exit point of which the corner, respectively, and 𝑎(𝑥) the 

acceleration of the car at position 𝑥.  

 

In this study, we consider the race takes place on a dry asphalt road with friction coefficient 

of 0.8 with the car Toyota MR2 which has a maximum speed of 220 kmh−1 , maximum 

acceleration of 3.9683 ms−2 , maximum deceleration of −10.9128  ms−1 , minimum turning 

radius of 4.6 m and down force of 5000 N.  To simplify calculation, we minimize the square of 

the curvature (5) instead: 

 

𝜅2(𝑥) =
(𝑦"(𝑥))

2
  

(1 + (𝑦′(𝑥))
2
)
3. 

(10) 

 

Therefore, problem (9) is now expressed as 

 

minimize 

subject to 

{𝜅2(𝑥): 𝑦(𝑥) ∈ 𝐶2([𝑏, 𝑐]), 𝜅(𝑏) = 0, 𝜅(𝑐) = 0}, 

𝑣(𝑥) ≤ √7.84𝑟 ≤ 𝑣max, 
4.6 ≤ 𝑟(𝑥) ≤ 𝑟turn, 

−10.9128 ≤ 𝑎(𝑥) ≤ 3.9683. 

(11) 

 

 This problem can be solved by means of Euler-Lagrange equation: 

 

𝜕𝑓

𝜕𝑦
−
𝑑

𝑑𝑥
(
𝜕𝑓

𝜕𝑦′
) +

𝑑2

𝑑𝑥2
(
𝜕𝑓

𝜕𝑦"
) −

𝑑3

𝑑𝑥3
(
𝜕𝑓

𝜕𝑦′′′
) = 0. (12) 

 

Note that in (8), 𝑓 does not depend on 𝑥 and hence we can use Beltrami’s identity to find the 

function 𝑓 that represents the equation of the racing line: 

 

𝑓 − [𝑦′
𝜕𝑓

𝜕𝑦′
] − [𝑦′ (

𝜕𝑓

𝜕𝑦′′
)
′

− 𝑦′′ (
𝜕𝑓

𝜕𝑦′′
)] − [𝑦′ (

𝜕𝑓

𝜕𝑦′′
)
′′

+ 𝑦′′ (
𝜕𝑓

𝜕𝑦′′′
)
′

− 𝑦′′′ (
𝜕𝑓

𝜕𝑦′′′
)] = 𝑐. (13) 

 

In reality, race tracks are built with multiple turns and straights. Straights are sections of a 

race track in which a race car can be driven in a straight line. The optimal race line in a straight 

will simply be a straight line that connects the starting point to the exit point. On the other hand, a 

corner is a section of a racing track which is not a straight. To find an optimal racing line around 

a corner, we have to first find the starting point (entry), the apex, and the exit point.  

 

The first step is to decompose a path with multiple corners into segments consisting of one 

corner and analyze each segment independently. One of such examples is given in Figure 6, where 

the starting point, apex and exit point of each corner (T3, T4 and T5) is found by fitting a circle 

into each corner with its radius as large as possible, or simply 𝑟turn. The starting point is labeled 

in green, the apex in orange, and the exit point in red.  
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Figure 6: Analysis of T3, T4 and T5 of Silverstone racing track by fitting circles into each 

corner with largest possible radius around the respective apex 

 

Since a racing line must be continuous, the exit point of previous segment must be the same 

as the starting point of the next segment. We can take the midpoint between the exit point of the 

previous corner and the starting point of the next corner, as illustrated by the cyan cross in Figure 

6. The midpoint will replace both these points and the new starting and exit points are shown in 

Figure 7. Each segment is then interpolated by using cubic spline interpolation method to ensure 

𝐶2 continuity, which in turn will be used to approximate the curvature and time taken to complete 

each corner.  

 

 
Figure 7: T3, T4 and T5 of Silverstone racing track with adjusted starting and end (exit) points 

 

 

CUBIC SPLINE INTERPOLATION FOR APPROXIMATION OF RACING LINE 

 

Instead of solving equation (13) directly, we use cubic spline interpolation (Wolberg, 1988) to 

approximate the racing line around the corner. Cubic spline interpolation, a powerful mathematical 

tool that ensures smoothness of curves with continuity of up to the second order derivatives, is a 

piecewise polynomial function consisting of 𝑛 − 1 cubic polynomials that takes the form: 
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𝑦(𝑥) = {

𝑦1(𝑥), if 𝑥1 ≤ 𝑥 ≤ 𝑥2,

𝑦2(𝑥), if 𝑥2 ≤ 𝑥 ≤ 𝑥3,
⋮ ⋮

𝑦𝑛−1(𝑥), if 𝑥𝑛−1 ≤ 𝑥 ≤ 𝑥𝑛.

 (14) 

 

where   

 

𝑦𝑖(𝑥) = 𝑎𝑖 + 𝑏𝑖(𝑥 − 𝑥𝑖) + 𝑐𝑖(𝑥 − 𝑥𝑖)
2 + 𝑑𝑖(𝑥 − 𝑥𝑖)

3, 𝑖 = 1, 2, … , 𝑛 − 1. (15) 

 

with 𝑏 = 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛−1 < 𝑥𝑛 = 𝑐.  Here 𝑎𝑖, 𝑏𝑖 , 𝑐𝑖  and 𝑑𝑖  are constants determined by 

means of 𝐶2 continuity of 𝑦𝑖  at any given data point. Note that this problem requires 𝑦"(𝑥1) =
𝑦"(𝑥𝑛) = 0 since the car is about to exit the corner and continue in a straight line. Hence 𝑐1 =
𝑐𝑛 = 0.  
 

Denote by ℎ𝑖 = Δ𝑥𝑖 = 𝑥𝑖+1 − 𝑥𝑖, we obtain  

𝑎𝑖 = 𝑦𝑖(𝑥𝑖), 
𝑎𝑖+1 = 𝑎𝑖 + 𝑏𝑖ℎ𝑖 + 𝑐𝑖ℎ𝑖

2 + 𝑑𝑖ℎ𝑖
3, 

𝑏𝑖+1 = 𝑏𝑖 + 2𝑐𝑖ℎ𝑖 + 3𝑑𝑖ℎ𝑖
2, 

𝑐𝑖+1 = 𝑐𝑖 + 3𝑑𝑖ℎ. 
 

The values of 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 and 𝑑𝑖 are then determined using the following formulas: 

 

𝑎𝑖 = 𝑦𝑖(𝑥𝑖), 

ℎ𝑖−1𝑐𝑖−1 + 2(ℎ𝑖−1 + ℎ𝑖)𝑐𝑖 + ℎ𝑖𝑐𝑖+1 =
3

ℎ𝑖
(𝑎𝑖+1 − 𝑎𝑖) −

3

ℎ𝑖−1
(𝑎𝑖 − 𝑎𝑖−1), 

𝑏𝑖 =
𝑎𝑖+1 − 𝑎𝑖

ℎ𝑖
−
𝑐𝑖+1 + 2𝑐𝑖

3
ℎ𝑖 , 

𝑑𝑖 =
𝑐𝑖+1 − 𝑐𝑖
3ℎ𝑖

. 

 

(16) 

 

(17) 

 

(18) 

 

(19) 

To obtain the time taken for a race car to complete a turn, one needs to first obtain the arc length 

taken by the car using the formula 

 

𝑠 = ∫√1 + (𝑦′(𝑥))
2
 𝑑𝑥

𝑏

𝑎

.  

 

(20) 

The value of the arc length is then used to evaluate the velocity of the car at starting point (𝑢), 

velocity at apex (𝑣𝑎) and velocity at exit point (𝑣) where 

 

𝑣2 = 𝑢2 + 2𝑎𝑠. 
 

(21) 

Lastly, the time taken can be easily evaluated using the formula 

 

𝑣 = 𝑢 + 𝑎𝑡. (22) 
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EXAMPLE OF A SIMPLE CORNER FOR APPROXIMATION OF CURVATURE AND 

TIME TAKE OF A RACING LINE 

 

Figure 8 shows a parabola shaped corner with labeled starting point, apex and exit point. The outer 

edge of this corner is plotted using black bold curve, the inner edge of the corner is plotted using 

black dotted curve, and the center path is plotted using blue dashed curve.  

 

 
 

Figure 8: Parabola shaped turn with starting point, apex and exit point 

 

 

The equations used to generate the corners are: 

 

𝑦 = −0.28𝑥2 + 7, 
𝑦 = −1.4𝑥2 + 3, 
𝑦 = −0.5𝑥2 + 5. 

(outer edge) 

(inner edge) 

(center path) 

 

Consider the following points taken from the race track in Figure 8.  

 

Table 1: Points taken from the race track in Figure 8 

𝒏 1 2 3 4 5 6 7 

𝑥 -6.716 -4.489 -2.283 0 2.283 4.489 6.716 

𝑦(𝑥) -6 0 2.393 3 2.393 0 -6 

 

Implementing cubic spline interpolation (14) – (15) and finding 𝑎𝑖 using (16) gives 

 

𝑎1 = −6,   𝑎2 = 0,   𝑎3 = 2.393,   𝑎4 = 3,    𝑎5 = 2.393,   𝑎6 = 0,   𝑎7 = −6. 
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We obtain the values of 𝒄𝒊 using (17) and the fact that 𝑐1 = 𝑐7 = 0: 
 

𝑐2 = −0.5154,   𝑐3 = −0.1176,   𝑐4 = −0.1158,   𝑐5 = −0.1179,   𝑐6 = −0.5141. 
 

Solving for 𝑏𝑖 and 𝑑𝑖 by means of (18) and (19) gives 

 

𝑏1 = 3.0768,   𝑏2 = 1.9292,   𝑏3 = 0.5330,   𝑏4 = 0.0001,   𝑏5 = −0.5333,   𝑏6 = −1.9309, 

𝑑1 = −0.0770,   𝑑2 = 0.06,   𝑑3 = 0.0002,   𝑑4 = −0.0003,   𝑑5 = −0.0598,   𝑑6 = 0.0769. 

 

Hence, the function 𝑦(𝑥) is  
𝑦(𝑥)

=

{
  
 

  
 

−6 + 3.0768(𝑥 + 6.716) − 0.077(𝑥 + 6.716)3, −6.716 ≤ 𝑥 ≤ −4.489,

1.9292(𝑥 + 4.489) − 0.5154(𝑥 + 4.489)2 + 0.06(𝑥 + 4.489)3, −4.489 ≤ 𝑥 ≤ −2.283,

2.393 + 0.533(𝑥 + 2.283) − 0.1176(𝑥 + 2.283)2 + 0.0002(𝑥 + 2.283)3, −2.283 ≤ 𝑥 ≤ 0,

3 − 0.0001𝑥 − 0.1158𝑥2 − 0.0003𝑥3, 0 ≤ 𝑥 ≤ 2.283,

2.393 − 0.5333(𝑥 − 2.283) − 0.1179(𝑥 − 2.283)2 − 0.0598(𝑥 − 2.283)3, 2.283 ≤ 𝑥 ≤ 4.489,

−1.9309(𝑥 − 4.489) − 0.5141(𝑥 − 4.489)2 + 0.0769(𝑥 − 4.489)3, 4.489 ≤ 𝑥 ≤ 6.716.

   

(23) 
 

Figure 9 illustrates the racing line obtained from cubic spline interpolation based on the points 

taken from Table 1. The resulting racing line (𝑦1 – blue, 𝑦2 – orange, 𝑦3 – yellow, 𝑦4 – purple, 𝑦5 

– green, 𝑦6 – light blue) is the approximation obtained from cubic spline interpolation method. It 

started from near the outer edge, touched the apex in the inner edge and exit the corner while 

aiming for the outer edge. The circle on the figure is a circle with radius 4.6m which touches the 

apex. The equation of the circle is 

 

𝑥2 + (𝑦 + 1.6)2 = 4.62. 
 

Note that more points are taken around the apex and the points taken are never inside the circle. 

The reason is to avoid taking racing line which intersects with the circle, which is the physical 

limit of car turning radius. 

 

The main objective of an optimal racing line is to minimize the curvature, hence maintaining 

maximum possible speed. Recall the formula of a function’s curvature (5). It is possible to find the 

curvature of this racing line for any point in its domain as all functions generated by cubic spline 

interpolation is 𝐶2 continuous. This implies that the curvature of the racing line will be continuous. 

Figure 9 also shows its curvature (brown) plotted on the same graph. Based on the graph, we can 

observe that the curvature is very low as the racing car enters, touches the apex and exits the corner. 

 

The next step is to evaluate the time taken for the race car to drive past the corner. Since the 

radius of curvature is directly proportional to maximum allowed velocity of a car before it spins 

out of control, we need to first determine the minimum radius of curvature of this corner. This can 

be done by first determining the limiting factor of radius of curvature at the apex. 

 

The inner edge of the corner is given by 𝑦(𝑥) = −1.4𝑥2 + 3 and therefore the maximum 

curvature at the apex (when 𝑥 = 0) is 

 

𝜅(0) =
| − 2.8|

(1)3/2
= 2.8. 
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Figure 9: Race line obtained from cubic spline interpolation 

 

Taking 4.6 m as the minimum radius of curvature, we deduce the velocity at the apex 𝑣𝑎 by using 

the first constraint in (11): 

 

𝑣𝑎 = √7.84(4.6) = 6.0053 ms−1 = 21.6191 kmh−1. 
 

We can calculate the distance traveled by the car by using the arc length formula 

 

𝑠𝑦𝑖 = ∫ √1 + (𝑦′(𝑥))
2
 𝑑𝑥

𝑥𝑖+1

𝑥𝑖

, 𝑖 = 1, 2, … , 𝑛 − 1. 

 

Therefore, the arc length of each path 𝑠𝑦𝑖 for [𝑥𝑖 , 𝑥𝑖+1] are as follows: 

 

𝑠𝑦1 = 6.4075,   𝑠𝑦2 = 3.3096,   𝑠𝑦3 = 2.3894,   𝑠𝑦4 = 2.3866,   𝑠𝑦5 = 3.3095,   𝑠𝑦6 = 6.4064.  

 

We now calculate the final velocity at each path using the formula 

 

𝑣𝑖
2 = 𝑣𝑖−1

2 + 2𝑎min 𝑠𝑦𝑖 , 𝑖 = 4, 3, 2, 

 

where we consider maximum deceleration 𝑎min  before reaching the apex. Since 𝑣4 = 𝑣𝑎 =
6.0053 ms−1, we first compute 𝑣3: 
 

𝑣4
2 = 𝑣3

2 + 2𝑎min 𝑠𝑦3  ⇒   𝑣3 = 9.3922 ms
−1 = 33.8119 kmh−1. 
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Subsequently,  

 

𝑣2 = 12.6668 ms
−1 = 45.6005 kmh−1, 

𝑣1 = 17.329 ms
−1 = 62.3844 kmh−1, 

 

where 𝑣1 is the velocity of the car at point (−6.716, 6). 
 

After leaving the apex, the car starts to accelerate at maximum acceleration of 𝑎max =
3.9683 ms−2 and hence the car has a velocity of  

 

𝑣5 = 7.4165 ms
−1 = 26.6994 kmh−1, 

𝑣6 = 9.0150 ms
−1 = 32.454 kmh−1, 

𝑣7 = 11.4941 ms
−1 =  41.3788 kmh−1, 

 

where 𝑣7 is the velocity of the car at point (6.716, 6). 
 

Finally, we evaluate the time taken to complete the corner using the formula 

 

𝑣𝑖 = 𝑣𝑖−1 + 𝑎𝑡𝑖 , 𝑖 = 1, 2 , … , 7. 
 

However, since we assumed that the car achieves maximum deceleration and maximum 

acceleration before and after the apex, respectively, we have the following: 

 

𝑣4 = 𝑣1 + 𝑎min(𝑡1 + 𝑡2 + 𝑡3), 
𝑣7 = 𝑣4 + 𝑎max(𝑡4 + 𝑡5 + 𝑡6).  

 

Subsequently,  

 

𝑡1 + 𝑡2 + 𝑡3 = 1.0377 s, 
𝑡4 + 𝑡5 + 𝑡6 = 1.3832 s, 

 

which means the total time take to clear the corner is 2.4209 s.  
 

 

CONCLUSION 

 

This study introduced the optimization of racing line as a variational problem and implemented 

cubic spline interpolation as a practical approach for minimizing curvature around the corner, 

subject to the vehicle dynamics and track limitations.  The approach provides racing teams with a 

systematic tool for strategy development, allowing for simulations of different points around 

corners for optimal racing lines to achieve minimum lap time.  
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