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Abstract: In geology and mineralogy, optical microscopic images have become a primary research
focus for intelligent mineral recognition due to their low equipment cost, ease of use, and distinct
mineral characteristics in imaging. However, due to their close reflectivity or transparency, some
minerals are not easily distinguished from other minerals or background. Secondly, the number
of background pixels often vastly exceeds the number of pixels for individual mineral particles,
and the number of pixels of different mineral particles in the image also varies significantly. These
have led to the issue of data imbalance. This imbalance results in lower recognition accuracy for
categories with fewer samples. To address these issues, a flexible ensemble learning for semantic
segmentation based on multiple optimized Res-UNet models is proposed, introducing dice loss
and focal loss functions and incorporating a pre-positioned spatial transformer networks block.
Twelve optimized Res-UNet models were used to construct multiple Res-UNet ensemble learnings
using heterogeneous ensemble strategies. The results demonstrate that the system integrated with five
learners using the weighted voting fusion method (RUEL-5-WV) achieved the best performance with
a mean Intersection over Union (mIOU) of 91.65 across all nine categories and an IOU of 84.33 for the
transparent mineral (gangue). The results indicate that this ensemble learning scheme outperforms
individual optimized Res-UNet models. Compared to the classical Deeplabv3 and PSPNet, this
scheme also exhibits significant advantages.

Keywords: optical microscopy images; deep learning; ensemble learning; semantic segmentation;
mineralogy

1. Introduction

In geology, phase analysis and mineral characterization are essential for dating stratig-
raphy and identifying significant minerals. In mineral processing, accurate mineral identifi-
cation facilitates the efficient extraction of target minerals and reduces operational costs.
However, traditional mineral identification methods heavily depend on experts, resulting
in low efficiency, high error rates, and significant subjectivity [1–3]. In recent years, nu-
merous scholars have investigated automatic mineral recognition using various types of
mineral images. Due to its lower cost and ease of use compared to other devices such as
electron scanning microscopes, CT scanners, etc., optical microscopes have been widely
used in the study of minerals and geological materials [4–6]. Some minerals with similar
chemical compositions that are difficult to distinguish using scanning electron microscopes
can be identified accurately in optical microscopy images [1,7].

Computer vision-based devices and methods have emerged as mainstream technolo-
gies for mineral identification and characterization. This approach, known as automatic
mineral identification (AMI), encompasses three primary steps [5,8]:
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1. Feature extraction: Engineers can extract features based on their expertise and datasets,
including color, shape, texture, granularity and others. Alternatively, features can
be algorithmically derived from the original image information to generate a lower-
dimensional feature map.

2. Pixel clustering or image segmentation: Following feature extraction, similar pixels
within each image are clustered, visually segmenting the image into multiple non-
overlapping regions. Each region potentially corresponds to a specific mineral or
background, which will be identified in the subsequent step.

3. Classification: A specific algorithm assigns each segmented region in the image to a
designated mineral or background category.

1.1. Related Studies

Early automatic mineral identification from optical microscopy images predominantly
concentrated on image segmentation, necessitating manual intervention by experts for
feature extraction and classification [8]. Initially, traditional image processing algorithms
were employed for image segmentation, leveraging low-level visual information such
as grayscale values, color, texture, and edges. These traditional algorithms included
threshold-based algorithms [1,9–11], edge detection methods, region-based techniques and
others [12–20].

With advancements in imaging technologies and computer science, machine learning-
based computer vision techniques have been developed and applied to mineral identifica-
tion, automating both image segmentation and the classification of segmented regions in
AMI. These machine learning algorithms utilize image characteristics like color, texture,
shape, and others for image segmentation [21–23], incorporating methods such as decision
trees, random forests, naive Bayes, K-nearest neighbors, artificial neural networks, support
vector machines, etc.

The study of various machine learning algorithms is common, and the integration of
traditional methods with machine learning was also used. Ref. [24] proposed a maceral
identification strategy based on image segmentation and classification, using K-means
clustering to divide the image into regions with similar properties. Comprehensive fea-
tures and random forest were then used to classify the binder and seven types of maceral
components, achieving an accuracy of 90.44%. Ref. [25] developed a random forest-based
model to classify different phases of coal macerals and minerals. The random forest clas-
sifier segmented macerals while ignoring the background, utilizing features related to
microstructure for classification, resulting in an overall classification accuracy of over 90%.
Ref. [26] proposed a complex method combining image processing and machine learning
algorithms to analyze petrographic thin sections, integrating structural object segmentation
and rock classification for images obtained in both non-polarized and polarized light. This
method achieved approximately 90% accuracy in tests, providing results that included
grain size class, rock type, and mineral composition. However, there are also some ev-
ident limitations in machine learning algorithms. Feature engineering before algorithm
implementation generally requires manual intervention, which demands high levels of
expertise and experience [3]. Additionally, steps like feature selection and dimensionality
reduction increase the complexity of the model [27]. For pixel-level classification tasks
in image segmentation, machine learning methods typically consider individual pixels
rather than pixel regions, leading to suboptimal segmentation performance. Furthermore,
bottlenecks exist in processing speed and operational parallelism [28].

Over the past decade, the field of deep learning, a pivotal branch of machine learn-
ing, has experienced remarkable growth, especially in Convolutional Neural Networks
(CNNs)-based semantic segmentation models. Some scholars have conducted studies
on the automated identification of transparent and opaque minerals in polished sections.
Ref. [29] applied an enhanced UNet model for semantic segmentation on polished sections
of 10 mineral types, attaining an average IoU of 0.813 and an average accuracy of 0.892.
Ref. [5] presented a method for detecting mineral particles in reflected light microscope
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images using a UNet variant. The results suggest this method detects all mineral parti-
cles in samples, although there were 34% under-modeled and 4.73% over-modeled areas.
Ref. [4] utilized a U-Net-like structure to develop a deep learning model for the semantic
segmentation of optical microscopic images of geological polished sections. Comparative
experiments demonstrated that using both cross-polarized light (XPL) and plane-polarized
light (PPL) images significantly improved segmentation results. Ref. [7] utilized an en-
hanced Deeplabv3 model for segmenting opaque and non-opaque minerals in reflected
light microscopy images, achieving accuracy and F1 scores exceeding 90%. Ref. [30] in-
troduced a supervised semantic segmentation model for the pixel-level classification of
2D RGB images of sandstones acquired via transmission light microscopy, distinguishing
between pores and various minerals. Experimental comparisons revealed that the Deeplab
V3+ Resnet-18 network produced optimal results. In mineralogy and geology, fully auto-
mated tasks in feature extraction, image segmentation, and classification have been realized
for automatic mineral identification by deep learning.

1.2. Issues

Despite advancements in automatic mineral identification from optical microscope
images, there are still some unresolved issues.

1.2.1. Transparent and Optically-Alike Minerals Identification

Certain minerals, due to their reflectance or transparency, exhibit colors similar to other
minerals or the background, leading to lower accuracy rates in automated identification.
This is evident with minerals such as sphalerite and magnetite as well as in differentiating
transparent mineral from the background [5,7,31]. Similar challenges have been observed
in distinguishing between pyrite and marcasite, or pyrite and arsenopyrite [1,4,32,33].
The limitations can lead to challenges in accurately quantifying mineral grades and may
introduce biases in the analysis of the texture of the studied mineral particles, including
assessments of mineral liberation degree.

1.2.2. Data Imbalance

The number of pixels in different categories, including background and mineral
particles, may vary significantly in polished section images. It results in imbalanced sample
data, directly lowering accuracy for categories with fewer samples and affecting the overall
accuracy [4,34–36]. Data imbalance can lead to lower accuracy for classes with a limited
number of pixels, resulting in unclear or inaccurate boundary segmentation. It may also
cause significant fluctuations in the loss function, making it challenging for the model to
converge to an optimal state.

1.3. Solution to the Issues
1.3.1. Feature Extracting

Improving the learning ability of the model and obtaining more effective seman-
tic features can enhance the segmentation accuracy of transparent particles and similar
regions. Introducing LeakyRelu, residual networks and spatial transformer networks
(STNs) into the encoder are the possible approaches. The residual connections in ResNet
architectures address the vanishing gradient problem commonly encountered during
training [37–39]. Although ReLU is simple and fast, it may encounter the “neuron death”
problem, where some neurons never activate during training, preventing their weights from
being updated [40,41]. LeakyReLU mitigates the “neuron death” issue by not outputting
zero for negative values through a simple function [42,43]. The capacity of CNNs for spatial
transformation adaptation remains restricted. Spatial transformer networks (STNs) are
trainable modules that execute spatial manipulations on data. STN empower a model to
dynamically implement spatial transformations, such as translation, deformation, rotation,
and scaling, which are contingent upon the features themselves [44]. Incorporating STN
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into CNNs enhances performance on datasets exhibiting spatial transformations of the
foreground and other positive samples [45].

1.3.2. Loss Function

Dice loss, focal loss, or their combinations with cross-entropy loss (CE Loss) are im-
portant techniques for addressing the problem of data imbalance. CE Loss is a widely
utilized loss function in classification tasks, quantifying the cross-entropy between the
predicted probability distribution and the true label distribution. As a widely used loss
function in image segmentation, CE Loss tends to perform poorly in the presence of
class imbalance [46,47]. The Dice coefficient is an overlap measure extensively utilized
in image segmentation. Dice loss, derived from the Dice coefficient, effectively addresses
the issue of imbalanced quantities of foreground and background pixels [47,48]. Focal
loss is specifically designed to address class imbalance in one-stage object detection. As
a modified version of the cross-entropy loss function, it reduces the weight of easy-to-
distinguish examples, thereby directing the model’s focus toward more challenging exam-
ples during training [47,49]. In natural language processing (NLP) tasks [50,51], weather
forecasting [52], and medical image segmentation [53–55], some scholars have explored
the role of the dice loss and focal loss function in handling data imbalance, and they have
demonstrated a significant improvement in model performance.

1.3.3. Ensemble Learning

Ensemble learning denotes a methodology that amalgamates multiple weak learners
to create a robust learner, thereby achieving a specified task [56]. In general, ensemble
classifiers exhibit greater robustness and superior performance compared to individual
models [57]. With the advancement of deep learning techniques, the base learners in ensem-
ble learning have gradually evolved from traditional classifiers to deep learning models.
Although ensemble learning based on deep learning models presents greater challenges
compared to traditional classifiers, it demonstrates superior performance in various fields,
such as computer vision, natural language processing (NLP), and others [58,59]. From
some studies on medical image recognition, it is evident that ensemble learning based on
deep learning models demonstrates superior performance compared to individual semantic
segmentation models [60–67].

1.4. Preliminary Work

Comparative experiments were conducted in the preliminary work of this study,
utilizing Otsu’s thresholding, k-means clustering, and Random Forest algorithms for image
segmentation. Figure 1 illustrates the results. As shown in Figure 1b, the transparent
gangue was not detected using Otsu’s thresholding due to its similar intensity to the
background. In the result of the k-means algorithm (Figure 1c), some pixels of the left side
of the image were incorrectly classified as background. In addition, the key parameter k,
presenting the number of categories, must be predetermined before executing the k-means
algorithm, which increases the algorithm’s complexity. Similar to the results of the k-means
algorithm, the Random Forest algorithm also classified some pixels on the left side of the
image as the gangue category, as shown in Figure 1d. Moreover, for the segmented gangue
particle, only the clear boundary is visible, while the majority of the pixels is identified
as the background. In pixel-level classification tasks, such as image segmentation, it is
essential not only to determine the category of individual pixels but also to consider the
relationships between adjacent pixels and regions. The traditional algorithms have only
achieved the former, which is the primary reason for their suboptimal results.

To address the issues, a flexible Res-UNet ensemble learning for semantic segmentation
based on multiple optimized Res-UNet models is proposed. The system achieved better
results than traditional models, and it also exhibited certain advantages compared to
other studies in the same field. The structure of this paper is as follows: Section 2 covers
the sampling, data acquisition and augmentation, Res-UNet and optimization, and the
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workflow of the proposed ensemble learning system. Section 3 details image annotation,
model training and evaluation metrics. Section 4 presents the Results and Discussion. The
final section offers the conclusions.

(a) (b) (c) (d)
Figure 1. Comparison between results and original image. (a) Original image; (b) the result of Otsu’s
threshold; (c) the result of k-means; (d) the result of Random Forest.

2. Dataset and Methodology
2.1. Mineral Sampling

In this experiment, four types of ore samples were selected, primarily composed of
pyrite, galena, sphalerite, and magnetite, with minor components including pyrrhotite,
bornite, chalcopyrite, and gangue. The pyrite and magnetite samples originated from
the Inner Mongolia Autonomous Region, China, while the galena and sphalerite samples
were sourced from Hunan Province, China. Each ore type was prepared at the Hunan
Nonferrous Metals Research Institute. Sample preparation involved grinding the raw ore
(Figure 2a) into powder (Figure 2b), then mixing with resin, pressing, and polishing to
create the polished sections depicted in Figure 2c. The mineral powder was sieved to a
mesh size of 200. These samples were subsequently examined under a polarized light
microscope with imaging parameters configured to capture plane-polarized light images of
the mineral particles, as shown in Figure 2d.

(a) (b) (c) (d)
Figure 2. Sampling and image capturing. (a) Original ore; (b) ore powder; (c) polished sections;
(d) the microscope for images capturing.

2.2. Data Acquisition and Augmentation

Original images were captured by polarized light microscope using the PPL mode.
The optical microscope used in this study is an upright Leica DM4500P polarization model
equipped with a Leica DFC450 camera. This digital microscope camera, featuring a C-
mount interface, houses a high-quality 5-megapixel CCD sensor. The microscope and
imaging equipment are depicted in Figure 3a. The integrated software system allows for
the real-time transmission of captured images to a computer, as shown in the software
interface in Figure 3b. The imaging parameters were set as follows: exposure time of
69.1 ms, gain control at 1.0×, saturation at 1.00, and gamma at 0.54. The image resolution
was 2560 × 1920.

A total of 98 original images were cropped to 512 × 512 size. After screening,
1377 images were selected as the experimental dataset. Considering the quantity and
the ratio of various mineral categories, 1146 images were designated for the training set
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and 231 for the test set. Data augmentation was applied, including flips and rotations. The
number of images in the training and test set reached 6876 and 1386 after augmentation.

(a) (b)
Figure 3. Software and hardware equipment for image acquisition. (a) Optical microscope and
computer; (b) image acquisition interface.

2.3. Res-UNet and Optimization
2.3.1. Res-UNet

Res-UNet, a variant of the UNet architecture, is widely utilized in medical image
segmentation, demonstrating remarkable performance [68–73]. The optimized Res-UNet
serves as the learner in Res-UNet ensemble learning with the overall structure depicted in
Figure 4. Layer1, Layer2, Layer3, and Layer4 each consist of one Downsampling Bottleneck
(Figure 4b) and several Normal Bottlenecks (Figure 4c). The number of obttlenecks and
the values of n in each layer are detailed in Table 1. The optimization of ResNet50 as the
encoder of Res-UNet focuses on two main aspects: the activation function, Leakyrelu, and
the incorporation of STN.

Table 1. Number of bottlenecks in Layers 1–4 and the values of n.

Layer 1 Layer 2 Layer 3 Layer 4

Downsampling bottleneck 1 1 1 1
Normal bottleneck 2 3 5 2

n 1 2 3 4

2.3.2. Activation Function

According to comparative experiments, LeakyReLU(0.1) was selected in this study
with its formula shown in Equation (1).

f (x) =

{
x, x > 0
0.1x, x ≤ 0

(1)

2.3.3. Cross-Entropy Loss

The CE Loss is calculated as shown in Equation (2).

L(y, p) = −
n

∑
i=1

yi log(pi) (2)

Here, yi is the true label and pi is the predicted value.
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2.3.4. Dice Loss

The formula for calculating dice loss is presented in Equation (3).

LDice = 1 − 2 ∑n
i=1 piyi

∑n
i=1 p2

i + ∑n
i=1 y2

i
(3)

Here, yi represents the actual pixel value and pi denotes the predicted pixel value. For
multi-class segmentation, the second term averages over all classes.

2.3.5. Focal Loss

The calculation formula of focal loss is provided in Equation (4).

FL(pt) = −αt(1 − pt)
γ log(pt) (4)

For easy-to-distinguish samples, (1 − pt)γ approaches 0, thereby reducing the loss
value. Conversely, for hard-to-distinguish samples, (1 − pt)γ approaches 1, maintaining
the loss value. This mechanism increases the contribution of hard samples to the overall
loss by reducing the loss from easy samples. The term αt refers to an α-balanced form
of focal loss, typically ranging between 0 and 1. The variable pt denotes the predicted
probability for a specific pixel.

(a)

(b) (c)
Figure 4. Improved Res-UNet for 512 × 512 Size Image. (a) Overall structure; (b) downsampling
bottleneck; (c) normal bottleneck.

2.3.6. Spatial Transformer Networks (STNs)

Mineral particles within the same category can exhibit substantial variations in size
and shape. To enhance the generalization performance of the learner, an STN is integrated
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with the Res-UNet model. The STN represents an adaptive mechanism capable of per-
forming spatial transformations on images or feature maps by generating customized
transformations for individual input samples images and improving feature extraction
efficiency [74]. Figure 5 illustrates the STN architecture, which is composed of a localization
net, grid generator and sampler.

Figure 5. The structure and workflow of STN in the Res-UNet.

2.4. Res-UNet Ensemble Learning

The Res-UNet Ensemble Learning (RUEL) scheme incorporating multiple learners
was proposed, offering the advantage of avoiding an increase in hyper-parameters and
minimizing the complexity of weak learners. The architecture utilizes a heterogeneous
ensemble strategy, integrating multiple learners based on the same dataset. The fusion
method applied is the voting method, specifically plurality voting and weighted voting.
All learners are arranged in descending order based on a selected evaluation metric with
first the n learners selected to ensemble. Each ensemble assigns two sets of weights to
the base models: one with equal weights (plurality voting) and another with decreasing
weights (weighted voting) expressed by Equation (5).

wi =
n − i

∑n
j=1 n

(5)

In the equation, i ∈ [0, n − 1].
The workflow of RUEL can be outlined as follows:

1. Identify n trained and ranked learners along with their respective weights, ensuring
the sum of all weights equals 1. For a given pixel, each learner produces a prediction
result predi, representing different mineral categories.

2. Define set S to gather all unique prediction values and their corresponding weighted
sums. S is a collection of key–value pairs, where each pair represents a unique
prediction value for the pixel and its weighted sum. The formula utilized for this set
S is illustrated in Equation (6):

S =

{(
predi,

n

∑
j=1

wj|predj = predi

)}
(6)

3. Select the prediction value with the maximum weighted sum from S as the final output
y, which denotes the final predicted class for the pixel by RUEL. The calculation
formula is illustrated in Equation (7).

y = arg max
(pred,∑ w)

(
∑ w|(pred, ∑ w)∈S

)
(7)

The workflow of RUEL is depicted in Figure 6.
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Figure 6. Workflow of the Res-UNet Ensemble Learning (RUEL).

3. Experiments
3.1. Hardware and Software

This research is conducted on a workstation equipped with two Intel® Xeon® Silver
4210 2.2 GHz processors, 128 GB of memory, and two NVIDIA GeForce RTX 3090 GPUs.
The Integrated Development Environment (IDE) utilized is Visual Studio Code (version:
1.75.1), configured with a Python+PyTorch environment, incorporating Python 3.9.13, torch
1.7.1+cu101, numpy 1.12.5, and matplotlib 3.5.1.

3.2. Image Annotation

The images in the training and testing sets were pre-annotated to create corresponding
masks for the original images. Annotation was performed using Labelme 5.1.1. Initially,
the mineral particles were labeled as different categories in Labelme (Figure 7b) [75,76],
and the corresponding masks were subsequently generated (Figure 7c), serving as ground
truth labels during training and testing. The original images and their corresponding labels
in the training dataset are 512 × 512 in size with the original images being JPG format RGB
images (Figure 7a) and the labels being single-channel PNG images (Figure 7c).
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(a) (b) (c)
Figure 7. Three stages of image annotation. (a) Original sample image; (b) Two different classes
annotated with different colors; (c) Ground truth for each class represented by different colors.

3.3. Model Training

Transfer learning was employed in model training. Initially, pre-trained weights from
ImageNet were loaded into the encoder, while the weights of the decoder were initialized
randomly. The training process was divided into two stages: the first stage involved freezing
the backbone and training the decoder, while the second stage entailed unfreezing the backbone
and training the entire network. This experiment implemented two sets of training epochs
with frozen and unfrozen settings, specifically 40 + 80 and 50 + 100 epochs. The initial learning
rate was set to 1 × 10−4 and decayed to 1 × 10−6 using a cosine annealing schedule. The
optimizer was ADAM with a momentum of 0.9. Nearly 30 models were trained, incorporating
different loss functions, activations, STN, epochs, and batch sizes. Based on the training and
prediction results, 12 learners were selected to construct Res-UNet ensemble learning. The
specific settings of each model are detailed in Table 2.

Table 2. Settings of all models.

ID Backbone Loss Function Activation STN Epoches Batchsize

b0 VGG CE Loss Relu() 0 40 + 80 32/16
b1 VGG CE Loss Relu() 0 50 + 100 32/16
1 ResNet CE Loss + Dice Loss LeakyRelu(0.1) 1 40 + 80 32/16
2 ResNet CE Loss + Focal Loss LeakyRelu(0.1) 1 40 + 80 32/16
3 ResNet CE Loss LeakyRelu(0.1) 1 40 + 80 32/16
4 ResNet CE Loss + Dice Loss LeakyRelu(0.1) 0 40 + 80 32/16
5 ResNet CE Loss + Focal Loss LeakyRelu(0.1) 0 40 + 80 32/16
6 ResNet CE Loss LeakyRelu(0.1) 0 40 + 80 32/16
7 ResNet CE Loss + Dice Loss LeakyRelu(0.1) 1 50+100 32/16
8 ResNet CE Loss + Focal Loss LeakyRelu(0.1) 1 50+100 32/16
9 ResNet CE Loss LeakyRelu(0.1) 1 50+100 32/16

10 ResNet CE Loss + Dice Loss LeakyRelu(0.1) 0 50+100 32/16
11 ResNet CE Loss + Focal Loss LeakyRelu(0.1) 0 50+100 32/16
12 ResNet CE Loss LeakyRelu(0.1) 0 50+100 32/16

3.4. Evaluation Metrics
3.4.1. Confusion Matrix

Semantic segmentation entails classifying each pixel in an image into categories,
typically encompassing the background and multiple foregrounds. All evaluation metrics
used are derived from the confusion matrix. It is an n ∗ n square matrix, where n denotes the
number of categories. In the matrix, each column indicates the number of pixels predicted
by the model as a certain category, while each row reflects the true number of pixels in that
category. Specifically, in Table 3, numij represents the number of pixels that belong to the
true category classi and are predicted as classj.
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Table 3. Confusion matrix for multi-class classification.

Confusion Matrix
Predicted Values

class0 . . . . . . classj . . . . . . classn−1

True Values

class0 num00 . . . . . . num0j . . . . . . num0(n−1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
classi numi0 . . . . . . numij . . . . . . numi(n−1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

classn−1 num(n−1)0 . . . . . . num(n−1)j . . . . . . num(n−1)(n−1)

3.4.2. Mean Pixel Accuracy

Mean Pixel Accuracy (mPA) indicates the average proportion of correctly predicted
pixels for each category relative to the total number of pixels predicted for that category.
Essentially, it quantifies the accuracy of pixel predictions for each category. The formula for
mPA is presented in Equation (8):

mPA =
1
n

n−1

∑
i=0

numii

∑n−1
j=0 numji

(8)

3.4.3. Mean Recall

Mean Recall (mRecall) represents the average proportion of correctly predicted pixels
for each category relative to the total number of actual pixels in that category. This metric
indicates the proportion of correctly identified pixels for each category. The calculation
formula is presented in Equation (9):

mRecall =
1
n

n−1

∑
i=0

numii

∑n−1
j=0 numij

(9)

3.4.4. F1 Score

In semantic segmentation, the F1 score integrates both mPA and Recall metrics with
equal weighting. A value closer to 1 indicates that the predicted results closely match the
ground truth. The formula for the F1 score is presented in Equation (10):

F1score = 2 × mPA × m Re call
mPA + m Re call

(10)

3.4.5. Mean Intersection over Union

Mean Intersection over Union (mIoU) is a standard metric in semantic segmentation,
specifically measuring the proportion of the intersection to the union of the ground truth
and predicted values. A higher IoU value indicates greater similarity between predicted
and actual values. mIoU represents the average IoU across various categories in image
segmentation. The calculation formula for mIoU is presented in Equation (11):

mIoU =
1
n

n−1

∑
i=0

numii

∑n−1
j=0 numij + ∑n−1

j=0 numji + numii
(11)

4. Result and Discussion
4.1. Training Results

The 14 models, including 12 learners and 2 baselines, were categorized into two
groups: Group T and Group F. The training epochs of the two groups were set to 120 and
150, respectively. The metric curves for all models are depicted in Figure 8. Columns (a) and
(b) represent the training conditions for Group T and Group F. All metrics are averaged over
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nine categories with mIoU measuring the mean Intersection over Union for all categories
in the training set.

Figure 8. Training loss, validation loss, validation mPA and mean intersection over union results for
all models based on (a) 120-epochs and (b) 150-epochs.

4.2. Test Set Results

All trained models conducted semantic segmentation on 1386 images in the test
dataset. The test dataset underwent the same data augmentation operations as the training
dataset. The quantitative metrics of the test results include mIoU, mPA, and mRecall for
nine categories, from which the F1 score was calculated based on PA and Recall, along
with the average values of these metrics for all categories. The 12 improved models
demonstrated superior results compared to the two baselines, indicating the effectiveness
of the model optimization, as detailed in Table 4.

Table 4 presents the metrics for each learner on the test set in descending order by
the key of gangue’s mIoU, encompassing the average of all minerals and the transparent
mineral gangue. The improved 12 learners achieved higher IoU and accuracy for sphalerite
and magnetite compared to the baselines. The results for gangue exhibit a substantial
disparity from the average values. The main reason is the similarity between the transparent
mineral gangue and the background, making identification more challenging than for other
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mineral particles. Consequently, both the baseline and learners recorded the lowest IoU and
accuracy for gangue particle segmentation among all categories. This context, along with
the primary issues targeted by this study, was considered when constructing the ensemble
learning and evaluating performance.

Table 4. Quantification summary of the test set for the evaluation of metrics ordered by mIOU
of gangue.

Learner Id
All Categories Gangue

mIoU (%) F1 Score (%) mIoU (%) F1 Score (%)

08 91.34 95.43 83.85 91.21
06 91.23 95.37 83.26 90.87
09 91.38 95.45 83.06 90.75
02 91.08 95.29 83.06 90.74
11 90.96 95.22 82.51 90.42
05 90.98 95.23 81.84 90.01
10 90.97 95.22 81.49 89.8
03 90.82 95.13 81.38 89.73
12 91.07 95.27 81.09 89.56
01 91.36 95.43 80.99 89.5
04 90.93 95.2 80.93 89.46
07 90.94 95.2 79.95 88.86

Baseline 01 89.89 94.6 78.85 88.17
Baseline 02 89.87 94.59 78.46 87.93

Using the 12 learners, multiple Res-UNet ensemble learnings were constructed.
The optimal scheme was identified by comparing IoU, F1 score, and TPI (Time Per
Image). Following the guidelines in Section 2.4, the 12 base models were ranked in
descending order based on the IoU and F1 score of gangue, as detailed in Table 4.
Subsequently, i(i = 3, 4 . . . 12) top-ranked base learners were selected to construct the
20 ensemble learning systems. The Res-UNet ensemble learning schemes are denoted
as RUEL-i-PV/WV, where RUEL represents Res-UNet Ensemble Learning, i denotes the
top i learners from Table 4, PV stands for plurality voting, and WV stands for weighted
voting. The semantic segmentation results for test set is presented in Table 5. Given
that Baseline 01 performed slightly better than Baseline02, only Baseline01 was used in
subsequent comparative experiments.

Table 5. Quantification summary of the test set for the metrics evaluation (gangue) of all ensemble
learning schemes.

ID
Plurality Voting (PV) Weighted Voting (WV)

F1 Score IOU TPI(s) F1 Score IOU TPI(s)

RUEL-3 91.35 84.08 1.3 91.21 83.85 1.3
RUEL-4 91.47 84.28 1.5 91.41 84.19 1.4
RUEL-5 91.31 84.02 1.7 91.50 84.33 1.7
RUEL-6 91.34 84.06 2.0 91.44 84.23 1.9
RUEL-7 91.30 83.99 2.3 91.38 84.12 2.2
RUEL-8 91.32 84.03 2.5 91.36 84.09 2.5
RUEL-9 91.27 83.94 2.7 91.34 84.06 3.0

RUEL-10 91.29 83.97 3.1 91.33 84.05 3.1
RUEL-11 91.27 83.95 3.2 91.35 84.07 3.1
RUEL-12 91.26 83.92 3.9 91.32 84.03 3.9

As illustrated in Table 5, all ensemble learning systems exhibited varying degrees
of improvement in IoU and F1 score for the gangue category compared to Learner 08,
which had the best individual performance. RUEL-5-WV achieved the highest IoU value of
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84.33, which was followed by RUEL-4-PV with 84.28. Compared to Baseline01, RUEL-5-
WV’s Gangue IoU increased by 5.48, and its F1 score increased by 3.33. When compared
to Learner 08, the gangue IoU increased by 0.48 percent, and the F1 score increased by
0.29 percent. According to Table 5, the shortest processing time for a single image is 1.3 s,
and the longest is 3.9 s. Considering both segmentation accuracy and time efficiency for
the gangue category of transparent minerals, RUEL-5-WV performed the best among the
constructed ensemble learning systems.

Table 6 presents the IoU and number of labeled particles for each category in the test
set for Baseline 01, Learner 08, and RUEL-5-WV. The “Particle Nums” column in Table 6 is
the total number of each mineral segments in the training set. This column highlights data
imbalance in the training set, with magnetite having the highest number of particles (11,160)
and pyrrhotite the fewest (216). The IoU results indicate that Learner 08 and RUEL-5-WV
achieve the most significant enhancements in segmentation performance for categories
with fewer particles and lower IoU. Learner 08 employs CE Loss + focal loss, suggesting
that focal loss helps address data imbalance in mineral microscopic images, and ensemble
learning systems further enhance semantic segmentation performance. For categories with
fewer particles such as bornite and pyrrhotite, which feature distinct colors, regular shapes,
and clear edges, Baseline 01 already achieves IoUs of 96.02% and 90.74%, respectively,
leading to smaller IoU gains with ensemble learning systems. Compared to Learner 08,
RUEL-5-WV achieves additional enhancements in most single-category and overall mean
IoUs. However, the TPI is nearly eight times that of Learner 08, and the size of the test
dataset needs to be considered when applying them. Compared to other two studies of this
area [4,5], both RUEL-5-WV and Learner 08 achieved superior results.

Table 6. Comparison of IoU and number of particles for each category.

Category Baseline 01 (IoU) Learner 08 (IoU) RUEL-5-WV (IoU) Particle Nums

Background 98.40 98.69 98.72 900
Pyrite 90.64 93.57 93.77 4686
Galena 91.94 91.91 92.11 9444

Sphalerite 90.31 90.47 90.44 7344
Chalcopyrite 82.03 87.13 88.08 486

Bornite 96.02 95.75 96.06 390
Magnetite 90.12 89.65 90.17 11,160
Pyrrhotite 90.74 91.02 91.14 216
Gangue 78.85 83.85 84.33 1830
Mean 89.89 91.34 91.65 4051

4.3. Qualitative Results

Along with a comparison to the ground truth, the original images and the results
of semantic segmentation by Baseline 01, Learner 08, and RUEL-5-WV are displayed in
Figure 9. For the particles or regions indicated by the white arrows, RUEL-5-WV achieved
superior results. In images 1 and 2, the primary categories of particles are gangue and
pyrite. Images 3 and 4 feature monomeric and composite particles of sphalerite and
magnetite. Image 5 mainly contains pyrrhotite and magnetite particles, with the magnetite
particles being relatively dispersed. Image 6 includes various categories of minerals, such
as sphalerite, bornite, galena, pyrite, and chalcopyrite. In the dataset, there are many
images on which multiple different categories of mineral particles are present, just like
image 1, image 2, image 3, image 5 and image 6 in Figure 9. Among these categories,
gangue is a transparent mineral with particles exhibiting color characteristics similar to the
background, some of which have clear edges. The semi-transparent sphalerite and opaque
magnetite display similar colors.

The segmentation results of various models indicate that RUEL-5-WV and Learner
08 provide more accurate segmentation for the transparent mineral gangue. Compared to
Baseline 01, RUEL-5-WV and Learner 08 distinguish sphalerite and magnetite in composite
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particles more accurately. The segmentation results for small granularity particles across
multiple images show that RUEL-5-WV achieves better outcomes. For images like image 6,
which contain multiple types of mineral particles, RUEL-5-WV generally identifies them
accurately and performs better than other models. However, some shortcomings were
identified in the improved models and ensemble learning systems. The segmentation
results for gangue particles with unclear edge contours are suboptimal. The micro or blurry
particles are easily overlooked.

Figure 9. Comparison of segmentation results of sample images. For the particles or regions indicated
by the white arrows, ELS-5-WV achieved superior segmentation results.

4.4. Comparative Experiment

Experiments were conducted on the dataset using several other existing algorithms,
including Deeplab v3 and PSPNet, which are all outstanding semantic segmentation
algorithms that have emerged in recent years. The comparative results of the quantification
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for each model are presented in Table 7, which includes the Intersection over Union (IOU)
and F1 score for all mineral categories, along with their means. The proposed approach
(RUEL-WV-5) achieved higher IOU and F1 score compared to Deeplab v3 and PSPNet,
particularly for minerals such as pyrrhotite, bornite, chalcopyrite, galena and gangue.

Table 7. Comparison of the proposed model with other algorithms.

IOU F1 Score

RUEL-WV-5 Deeplabv3 PSPNet RUEL-WV-5 Deeplabv3 PSPNet

gangue 84.33 82.16 73.79 91.50 90.21 84.42
pyrrhotite 91.14 86.79 74.44 95.37 92.93 85.35
magnetite 90.17 88.39 67.25 94.83 93.84 80.42

bornite 96.06 90.91 82.84 97.99 95.24 90.61
chalcopyrite 88.08 82.71 70.77 93.66 90.54 82.88

sphalerite 90.44 89.99 77.76 94.98 94.73 87.49
galena 92.11 88.74 74.69 95.90 94.03 85.52
pyrite 93.77 92.48 83.39 96.78 96.58 90.94

background 98.72 98.51 96.25 99.35 99.25 98.09
mean 91.65 88.97 77.91 95.60 94.11 87.38

5. Conclusions

A flexible semantic segmentation ensemble learning system based on multiple op-
timized UNet models is proposed. The results indicate that this system outperforms
traditional models in identifying transparent and similar minerals. For minority minerals
in the dataset, the segmentation performance of the ensemble learning system is signifi-
cantly enhanced. The proposed system is not a trainable neural network module but an
integrated solution. It is compatible with other semantic segmentation models without
altering their structures and offers good scalability.

Some issues in this field have also been reflected in the research process. Compared
to accurately identified large, normal and small particles, some microparticles were not
identified. The supervised learning approach used in this study is data-driven, requiring
pre-annotation for mask generation, which is a time-consuming and labor-intensive task.
Thus, despite achieving good results, the data processing stage remains cumbersome. One
possible reason why some microparticles were not identified is that the particles of this size
were not annotated in the training set.

Future research can focus on the following directions using deep learning-based
computer vision technology:

1. Enhance the accuracy of identifying micro mineral grains by applying more efficient
data annotation methods and multi-scale modules.

2. Implement faster intelligent identification in small-scale datasets using semi-supervised,
weakly supervised, or unsupervised learning methods with minimal image annotation.

3. Employ instance segmentation for intergrown minerals to count mineral grains and
automatically calculate the liberation degree.
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