
 
 
 
 

Menemui Matematik (Discovering Mathematics) 46(3) (2024) 64-74 
 

 

 
Menemui Matematik  

(Discovering Mathematics) 
 

journal homepage: https://myjms.mohe.gov.my/index.php/dismath/  
 

Analysis Of Modified Linear Congruential Generator for The Randomness 
Property 

 
Balqis Mohd Zamulud1 and Aniza Abd. Ghani2* 

1,2Department of Mathematics and Statistics, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor 
 

1balqismz24@gmail.com, 2aniza@upm.edu.my 
*Corresponding author 

 
Received: 10 August 2024  

Accepted: 1 November 2024 
 
 

ABSTRACT 
Linear Congruential Generators (LCGs) are fundamental tools in the generation of pseudo-random 
numbers, playing a crucial role in various computational applications. This study delves into the analysis 
and enhancement of LCG through the modification of utilizing inverse modular multiplication designed 
to address the limitations. This research paper is done to study the modified LCG by generating the 
sequence, determine the randomness property of modified LCG by utilizing the NIST Statistical Test 
Suite and comparing the randomness of the sequence generated by the standard LCG with the modified 
LCG using the empirical results obtained from the statistical tests. Investigation and analysis of 
randomness are discussed to show that the modified LCG is a better generator to generate the keystream 
sequence. Finding shows that the standard LCG sequences failed the randomness test while the modified 
LCG passed the test. Therefore, it can be concluded that the generated sequence using the modified 
LCG is more random than sequence generated using the standard LCG. 
 
Keywords: Modified Linear Congruential Generator, Inverse modular multiplication, Pseudo-
Random Number Generation, NIST Statistical Test 
 

 
 

INTRODUCTION 
 
A Random Number Generator (RNG) generates truly random numbers. True randomness requires 
gathering entropy from natural sources like atmospheric noise or quantum phenomena. Games like 
bingo, card games and lotteries rely on true randomness for fairness. Meanwhile, a Pseudo-
Random Number Generator (PRNG) is an algorithm based on mathematical formulas. It is not 
truly random because it relies on an initial value called a seed, which determines the output. The 
output can be replicated by using the same seed, undermining the goal of randomness. However, 
with a carefully chosen seed, a PRNG can still generate numbers that appear random. It is crucial 
for the seed to be unpredictable to ensure that others cannot reproduce the PRNG’s sequence and 
that the seed cannot be predicted from the generated numbers. Statistical tests are useful as it is a 
first step in analysing whether a generator is appropriate for a specific cryptographic application. 
 

The linear congruential generator (LCG) was published by Thomson, 1958 and Rotenberg, 
1960.  

 
                                             𝑥𝑥𝑛𝑛+1 ≡ (𝑎𝑎𝑥𝑥𝑛𝑛 + 𝑐𝑐)(𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚)                                                          (1) 

 m - modulus, m > 0, 
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 a  - multiplier, 0 < a < m, 
 c  - growth, 0 ≤ c < m, 
 𝑥𝑥0- starting value (seed), 0 ≤ 𝑥𝑥0 < m 
 

Modification for linear congruential method by utilizing the inverse element of multiplication 
were introduced by Irawadi, Prayanti, et al. (2022). The process initiates by employing the original 
LCG formula (1). The pivotal modification is then introduced by incorporating the inverse element 
into the modulo m of the LCG calculation. For each xi in the LCG sequence, the generated number 
is decided based on the greatest common divisor (gcd). When gcd(𝑥𝑥𝑖𝑖, m) = 1, signifying that xi and 
m are coprime, the inverse element, x-1 is chosen as the number generated. Conversely, when gcd(xi, 
m) ≠ 1, indicating a lack of coprimality, the value of xi remains the same. This decision-making 
process aims to selectively leverage the inverse element to enhance the randomness and statistical 
properties of the LCG sequence. 
 

The NIST test suite, developed by the National Institute of Standards and Technology, is a 
collection of statistical tests used to assess the quality and randomness of binary sequences 
generated by random or pseudo-random number generators. The NIST test suite comprises fifteen 
tests that have been proven to be useful in the examination and evaluation of binary sequences 
generated by random and pseudo-random number generators. 
 
 

NUMERICAL EXPERIMENTS  
 

The proposed LCG by Irawadi et al. (2022) utilizes inverse elements of modulo multiplication to 
generate more random numbers than the standard LCG. The proposed modifications aim to 
enhance the generator’s randomness properties and address potential limitations associated with 
the standard LCG. The process initiates by employing the original LCG formula (1), which 
encompasses the standard parameters such as modulus (m), multiplier (a), increment (c), and the 
seed (𝑥𝑥0). The pivotal modification is then introduced by incorporating the inverse element into 
the modulo 𝑚𝑚 of the LCG calculation. For each 𝑥𝑥𝑖𝑖 in the LCG sequence, the generated number is 
decided based on the greatest common divisor (gcd). When gcd(xi, m) = 1, signifying that xi and 
𝑚𝑚 are coprime, the inverse element, 𝑥𝑥𝑖𝑖−1  is chosen as the number generated. Conversely, when 
gcd(xi, m) ≠ 1, indicating a lack of coprimality, the value of xi remains the same. This decision-
making process aims to selectively leverage the inverse element to enhance the randomness and 
statistical properties of the LCG sequence. For testing, a = 71, c = 59 and m = 2256 were chosen. 
The evaluation of the Linear Congruential Generator (LCG) parameters a = 71, m = 2256, and c = 
59 involves an examination of their fundamental properties. The LCG serves as a deterministic 
method for generating pseudo-random numbers. Then, the randomness of the sequence will be 
tested using The NIST test suite comprises Monobit Test, Frequency Test within a Block, Longest 
Run Test, Runs Test and Cumulative Sums (CUSUM) Test, Discrete Fourier Transform Test, 
Approximate Entropy Test and Serial Test.  
 

For each applied test, a conclusion can be made that accepts or rejects the null hypothesis. The 
normal distribution or χ2 is the reference distribution for the most of the NIST Statistical Test Suite. 
The reference distribution is typically used to transform an observed test statistic into a P-value 
since P-values are simpler to interpret. The P-value shows the likelihood that a perfect random 
number generator would have generated a less random sequence than the tested sequence. It is 
common to set α in a smaller value such as 0.01. Therefore, to conclude the random number 
generator is a good generator, the P-value must be greater or equal than 0.01 
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RESULT AND DISCUSSION 

 
The LCGs uses different seeds to check the randomness properties. Comparison was done on both 
LCGs so that conclusion can be made where the modified LCG are better producing random 
number than the standard LCG. However, there are few restrictions and constraint in testing both 
generators as follows:  
 

1. Length of bit streams: 1024 
2. Choosing odd integer as the parameter since even integer will lead to same number 

generation as the standard LCG for the modified LCG. 
 

To observe the randomness of the sequence for both generators, the NIST Statistical Test Suite 
were used where only eight statistical tests were selected due to limitation in bit stream generation. 
The results were categorized to three parts based on the seed value which are when the seed is 
prime, even and odd. A sample size of two for each category of seed were tested using the NIST 
test. The parameter chosen which are a = 71, c = 59 and m = 2256 were kept constant and only 
substituting the initial value (seed), 𝑥𝑥0 to start the sequence of random number. The Frequency 
Test consist of calculating the nth partial sum for the values 𝑥𝑥𝑖𝑖 =  {−1, +1} ; i.e., the sum of the 
first n values of 𝑥𝑥𝑖𝑖 is represented as Sn. 

 
If the Initial Value, 𝑥𝑥0 is a Random Prime Number 
 
Using Maple software, two random prime numbers were chosen as initial value, 𝑥𝑥0  for the 
generation of random sequence of both generators which are 1303 and 28283839. 
 

 
Figure 1: P-value result from the Frequency Test by NIST Statistical Test if 

𝑥𝑥0 = 1303 using standard LCG 
 
 

 
Figure 2: P-value result from the Frequency Test by NIST Statistical Test if 

𝑥𝑥0= 1303 using modified LCG 
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Table 1: Result from NIST Statistical Test if 𝑥𝑥0 = 1303 using modified LCG 

No. Statistical Test P-value Proportion Result 

1 Frequency (Monobit) 0.900524 1.000 success 

2 Frequency within a Block 0.715390 1.000 success 

3 Runs 0.802207 1.000 success 

4 Longest Run of Ones 1.000000 1.000 success 

5 Discrete Fourier (Spectral) 0.194366 1.000 success 

6 Serial 0.269397 1.000 success 

7 Approximate Entropy 0.254922 1.000 success 

8 Cumulative Sums (CUSUM) 0.378538 1.000 success 
 

Based on Figure 1, generator using the standard LCG method with initial value of 1303 fails 
the Frequency Test. Note that, if it fails the Frequency Test, then is also fails another statistical 
test. Meanwhile, the random number generated using the modified LCG passed the Frequency 
Test which means the sequence proven to be random. 
 

 
Figure 3: P-value result from the Frequency Test by NIST Statistical Test if 

𝑥𝑥0 = 28283839 using standard LCG 
 

 
Figure 4: P-value result from the Frequency Test by NIST Statistical Test if 

𝑥𝑥0 = 28283839 using modified LCG 
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Table 2: Result from NIST Statistical Test if 𝑥𝑥0= 28283839 using modified LCG 

No. Statistical Test P-value Proportion Result 

1 Frequency (Monobit) 0.189351 1.000 success 

2 Frequency within a Block 0.209932 1.000 success 

3 Runs 0.893488 1.000 success 

4 Longest Run of Ones 1.000000 1.000 success 

5 Discrete Fourier (Spectral) 0.598041 1.000 success 

6 Serial 0.601003 1.000 success 

7 Approximate Entropy 0.495879 1.000 success 

8 Cumulative Sums (CUSUM) 0.221981 1.000 success 
 

Based on Figure 3, it is shown that the initial value of 28283839 using the standard LCG fails 
the Frequency Test, while using the modified LCG passes the Frequency Test. It is once again 
proven that random number generated using the modified LCG produces a good sequence of 
random number. 
 
If the Initial Value, 𝑥𝑥0 is a Random Even Number 
 
In this section, two random even numbers were chosen as the initial value, 𝑥𝑥0, for the generation 
of random sequences for both generators, which are 37570 and 89868. 

 
Figure 5: P-value result from the Frequency Test by NIST Statistical Test if 

𝑥𝑥0 = 37570 using standard LCG 

 
Figure 6: P-value result from the Frequency Test by NIST Statistical Test 

if 𝑥𝑥0= 37570 using modified LCG 
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Table 3: Result from NIST Statistical Test if 𝑥𝑥0 = 37570 using modified LCG 

No. Statistical Test P-value Proportion Result 

1 Frequency (Monobit) 0.211300 1.000 success 

2 Frequency within a Block 0.655643 1.000 success 

3 Runs 0.265697 1.000 success 

4 Longest Run of Ones 1.000000 1.000 success 

5 Discrete Fourier (Spectral) 0.935354 1.000 success 

6 Serial 0.578803 1.000 success 

7 Approximate Entropy 0.548913 1.000 success 

8 Cumulative Sums (CUSUM) 0.357948 1.000 success 
 
According to Figure 5, the initial value of 37570, when generated through the standard Linear 

Congruential Generator (LCG), does not meet the criteria of the Frequency Test. Conversely, in 
Figure 6, when employing the modified LCG, the generated sequence successfully satisfies the 
Frequency Test. This reaffirms the notion that random numbers generated through the modified 
LCG exhibit a good random sequence. 

 

 
Figure 7: P-value result from the Frequency Test by NIST Statistical Test if 

𝑥𝑥0 = 89868 using standard LCG 

 
Figure 8: P-value result from the Frequency Test by NIST Statistical Test if 

𝑥𝑥0 = 89868 using modified LCG 
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Table 4: Result from NIST Statistical Test if 𝑥𝑥0 = 89868 using modified LCG 

No. Statistical Test P-value Proportion Result 

1 Frequency (Monobit) 0.169131 1.000 success 

2 Frequency within a Block 0.962101 1.000 success 

3 Runs 0.528969 1.000 success 

4 Longest Run of Ones 1.000000 1.000 success 

5 Discrete Fourier (Spectral) 0.776497 1.000 success 

6 Serial 0.773031 1.000 success 

7 Approximate Entropy 0.116442 1.000 success 

8 Cumulative Sums (CUSUM) 0.078320 1.000 success 
 

In accordance with the data presented in Figure 7, the initial value of even integer of 89868, 
when produced using the standard Linear Congruential Generator (LCG), fails to conform to the 
requirements stipulated by the Frequency Test. In contrast, as depicted in Figure 8, the utilization 
of the modified LCG results in a generated sequence that effectively fulfills the criteria outlined 
in the Frequency Test. This observation serves to underscore the proposition that random numbers 
generated via the modified LCG display a commendable adherence to a truly random sequence. 

 
 

If the Initial Value, 𝑥𝑥0 is a Random Odd Number 
 
Using Maple software, two random odd number were chosen as initial value, 𝑥𝑥0 for the generation 
of random sequence of both generators which are 4044145 and 21123143. 
 

 
Figure 9: P-value result from the Frequency Test by NIST Statistical Test if 

𝑥𝑥0 = 4044145 using standard LCG 
 

 
Figure 10: P-value result from the Frequency Test by NIST Statistical Test if 



 

B.M. Zamulud and A.A. Ghani                                                    Menemui Matematik (Discovering Mathematics) 46(3) (2024) 64-74 
 

71 

 

𝑥𝑥0 = 4044145 using modified LCG 
 

Table 5: Result from NIST Statistical Test if 𝑥𝑥0 = 4044145 using modified LCG 
No. Statistical Test P-value Proportion Result 

1 Frequency (Monobit) 0.491768 1.000 success 

2 Frequency within a Block 0.550051 1.000 success 

3 Runs 0.281137 1.000 success 

4 Longest Run of Ones 1.000000 1.000 success 

5 Discrete Fourier (Spectral) 0.745603 1.000 success 

6 Serial 0.858893 1.000 success 

7 Approximate Entropy 0.493258 1.000 success 

8 Cumulative Sums (CUSUM) 0.600895 1.000 success 
 

From the result, it is shown that the generated sequence using the standard LCG with odd 
integer as initial value also fails the Frequency Test. Meanwhile, by utilizing the modified LCG 
for generation of sequence with odd integer as initial value, passes the Frequency Test. Thus, the 
generated sequence also passes the rest eight statistical tests. 

 
 

 
Figure 11: P-value result from the Frequency Test by NIST Statistical Test if 

𝑥𝑥0 = 21123143 using standard LCG 

 
Figure 12: P-value result from the Frequency Test by NIST Statistical Test if 

𝑥𝑥0= 21123143 using modified LCG 
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Table 6: Result from NIST Statistical Test if 𝑥𝑥0 = 21123143 using modified LCG 

No. Statistical Test P-value Proportion Result 

1 Frequency (Monobit) 0.381574 1.000 success 

2 Frequency within a Block 0.849326 1.000 success 

3 Runs 0.725336 1.000 success 

4 Longest Run of Ones 1.000000 1.000 success 

5 Discrete Fourier (Spectral) 0.465392 1.000 success 

6 Serial 0.838181 1.000 success 

7 Approximate Entropy 0.727226 1.000 success 

8 Cumulative Sums (CUSUM) 0.629223 1.000 success 
 

The outcomes demonstrate that the sequence generated through the standard Linear 
Congruential Generator (LCG), initialized with an odd integer, does not meet the criteria set by 
the Frequency Test. Conversely, when employing the modified LCG for sequence generation with 
an odd integer as the initial value, the generated sequence successfully satisfies the Frequency Test. 
Consequently, the generated sequence also successfully passes the remaining eight statistical tests. 
Based on both results, it is clear to conclude that the modified LCG shows better characteristics of 
random sequence than the standard LCG. 
 

In accordance with all the results illustrated above, the P-value for Longest Run of Ones Test 
remain the same which is 1.00. This can be explained by the length of each block, M where usually 
the test code will be pre-set to accommodate three values for 𝑀𝑀 in aligned with the following 
values of sequence length, n: 

 
Table 7: Minimum value for n for each 𝑀𝑀 

Minimum n M 

128 8 

6272 128 

750000 104 
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Figure 13: P-value result for the Longest Run of Ones Test by NIST 
Statistical Test if 𝑥𝑥0 = 1303 using modified LCG 

Meanwhile for the NIST Statistical Test Suite that was used did not follow the value that 
should have been used while testing the sequences for the Longest Run of Ones Test as it only set 
the value of 𝑀𝑀 to 104 which only accommodate 𝑛𝑛 ≥  750000 while the sequence length that was 
tested is 𝑛𝑛 =  1024 which means the test should set 𝑀𝑀 =  8 for the Longest Run of Ones Test. 
The value for the number of blocks, 𝑁𝑁 which is selected in accordance with the value 𝑀𝑀 is 0 and 
the test statistic used for the reference distribution is χ2 = −1. Therefore, as shown in Figure 13, the 
𝑃𝑃-value for the Longest Run of Ones Test is invalid for all the sample tested previously. This does 
not dismiss other statistical tests result obtained in determining the randomness of the sequences. 
 
 

CONCLUSION 
 
In summary, this research explored a modified Linear Congruential Generator (LCG) proposed by 
Irawadi et al. (2022) for its ability to generate more random sequences compared to the standard 
LCG. Using Maple Software, sequences were generated for both LCGs, achieving the main 
objective. Statistical tests, including the NIST suite, confirmed the modified LCG's sequences 
were more random, as evidenced by a P-value exceeding 0.01 in the Frequency Test. 
 

Results showed the modified LCG outperformed the standard LCG in randomness. Even with 
different initial seed characteristics, the modified LCG consistently passed all tests. Future 
research could focus on optimal LCG parameters for practical cryptography, selecting initial 
values, and testing larger size of binary sequences for the remaining NIST Statistical Tests. 
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