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October 2023

Chairman: Prof. Dato’ Dr.-Ing. Ir. Renuganth a/l Varatharajoo, PhD
Faculty: Engineering

A near-stall condition refers to a critical flight situation in which an aircraft is oper-
ating at or near its stall velocity or the minimum speed required to maintain lift. Dur-
ing this condition, the aircraft’s aerodynamic performance is severely compromised,
making precise control essential for the safe and reliable execution of manoeuvres,
including terrain avoidance, evasive manoeuvres, and safe landings or climbing. In
such a situation, maintaining stability and control becomes paramount to ensure the
safety of the aircraft and its occupants. As flight control systems continue to incor-
porate the latest automation technology, it is essential to assess the effectiveness of
these systems in such conditions. However, aircraft models inherit nonlinearity due
to near-stall conditions. In addition to addressing the lack of effective control solu-
tions in existing systems, this thesis explores the application of sliding mode con-
trol (SMC) to maintaining satisfactory flight performance during manoeuvres that
require rapid changes in attitude, altitude, and velocity in the tracking process. A
nonlinear aircraft model was developed for this purpose, and the model was trans-
formed into a nonlinear state space to provide an accurate representation of the air-
craft dynamics. To verify the model, open-loop analysis was employed based on the
trimming and linearisation of the model. Additionally, variants of SMC, including
integral SMC (ISMC) and non-singular terminal SMC (NTSMC), were integrated
into the aircraft model to evaluate their potential for enhancing flight stability and
performance. The model underwent various flight phase scenarios to demonstrate
the effectiveness of these control methods in challenging situations. The results were
compared with PID and SMC controllers as baselines. The study revealed that the
sliding surface variable is critical for determining the stability performance of the
aircraft, with the tested controllers outperforming the baselines. Notably, NTSMC
exhibited nearly a 60% improvement in response compared to PID. However, achiev-
ing simultaneous control for attitudes and velocity has posed challenges, emphasiz-
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ing the necessity of a hierarchical control structure.

Keywords: Longitudinal manouevre, nonlinear aircraft, robust control, sliding mode
control.

SDG: GOAL 4: Quality Education.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

SISTEM KAWALAN JEJAK YANG MANTAP KETIKA GERAKAN
LONGITUD UNTUK PESAWAT BESAR

Oleh

NURHANA BINTI MOHMAD ROUYAN

Oktober 2023

Pengerusi: Prof. Dato’ Dr.-Ing. Ir. Renuganth a/l Varatharajoo, PhD
Fakulti: Kejuruteraan

Keadaan menghampiri pegun merujuk kepada keadaan penerbangan yang kritikal
sebuah pesawat yang beroperasi menghampiri kelajuan pegun, iaitu kelajuan mini-
mum yang diperlukan untuk mengekalkan daya angkat. Ketika ini, prestasi aerodi-
namik pesawat terjejas, menjadikan kawalan yang tepat penting untuk pemacuan ger-
akan yang selamat dan boleh dipercayai, termasuk mengelakkan kawasan berbukit,
sewaktu misi mengelak serta ketika pendaratan atau pelepasan. Dalam keadaan
sedemikian, mengekalkan kestabilan dan kawalan penting untuk memastikan ke-
selamatan pesawat serta penumpang. Dengan pengintegrasian teknologi automatik
dalam sistem kawalan penerbangan yang semakin maju, penilaian keberkesanan
sistem semasa gerakan adalah penting. Walau bagaimanapun, pemodelan pesawat
mewarisi ketidaksamaan linear disebabkan oleh keadaan menghampiri pegun. Selain
itu, kekurangan penyelesaian kawalan yang berkesan dalam sistem-sistem sedia ada
menghalang prestasi pesawat yang mantap, terutamanya dalam situasi ini. Tesis ini
meneroka aplikasi kawalan mod gelongsor (SMC) yang mantap dalam mengekalkan
prestasi penerbangan yang disasarkan semasa pemacuan gerakan yang memerlukan
perubahan pantas dalam oreintasi, ketinggian, dan halaju ketika proses penjejakan.
Satu model pesawat yang tidak linear telah dibina untuk tujuan ini dan model terse-
but diubahsuai menjadi ruang keadaan yang tidak linear untuk mendapatkan repre-
sentasi dinamik pesawat yang tepat. Analisis gelung-buka dikenakan untuk menge-
sahkan model berdasarkan pemangkasan dan pelelurusan model. Selain itu, variasi
SMC, termasuk SMC integral (ISMC) dan SMC terminal tidak singular (NTSMC),
turut dikaji untuk menilai potensi mereka bagi meningkatkan prestasi penerbangan.
Model itu dikenakan pelbagai fasa penerbangan untuk membuktikan keberkesanan
kaedah kawalan ini dalam situasi yang mencabar. Hasilnya dibandingkan dengan
pengawal PID dan SMC sebagai garis panduan. Kajian ini mendapati bahawa pem-
bolehubah permukaan gelongsor adalah penting untuk menentukan prestasi kestabi-
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lan pesawat, malah prestasi pengawal melangkaui garis piawaian. Perlu ditekankan
bahawa NTSMC menunjukkan peningkatan hampir 60% lebih baik dalam tindak
balas berbanding dengan PID. Walaubagaimanapun, kawalan serentak melibatkan
orientasi dan kelajuan tidak dapat dicapai dengan baik, menekankan terdapatnya
keperluan untuk mempertimbangkan hierarki kawalan.

Kata Kunci: Gerakan longitud, kawalan mantap, kawalan mod gelongsor, ketidak-
samaan linear pesawat.

SDG: MATLAMAT 4: Pendidikan Berkualiti.
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CHAPTER 1

INTRODUCTION

1.1 Background

A mission profile is a thorough plan that defines the many stages of a flight, such
as take off, ascent, cruise, descent, and landing. Figure 1.1 illustrates a typical mis-
sion profile for a commercial aircraft, beginning with taxiing, followed by take off,
climbing to a specified altitude, cruising to the destination, initiating descent and de-
celeration as it nears the destination, preparing for approach and landing, and finally
taxiing to the terminal. This plan is significant as it identifies the specific perfor-
mance criteria, such as altitude, airspeed, range, fuel consumption, and payload, that
the aircraft must maintain during each stage (Filippone, 2012). By defining these
criteria, a mission profile guarantees that the aircraft can efficiently fulfill its prede-
termined mission, whether it involves transporting passengers or cargo, conducting
military operations, or executing scientific research. In addition, a meticulously de-
signed mission profile can enhance the aircraft’s efficiency and performance, result-
ing in decreased costs and improved safety measures.

Figure 1.1: Typical mission profile for a commercial aircraft. (Source: Yin, 2016)

In a conventional aircraft, the pilot is responsible for operating the aircraft in a safe
and efficient manner. This includes the ability to make decisions regarding the air-
craft’s speed, altitude, heading, and other aspects of flight control. However, as
technology continues to advance, system automation is becoming more prevalent
in many areas, including flight control systems. Taking account maintaining precise
control over the aircraft’s path for an extended period of time can be challenging for a
human pilot, especially when faced with external factors such as weather conditions
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or turbulence, but effortless for an AFCS.

Automatic Flight Control Systems (AFCS) provide significant benefits by utilising
sophisticated control algorithms to ensure that the aircraft follows a predefined mis-
sion with a high level of precision and flight safety. For example in Figure 1.2, the
AFCS integrates with the Electronic Flight Instrument System (EFIS), Mode Control
Panel (MCP), Air Data Control Unit (ADCU), and Attitude and Heading Reference
System (AHRS) to provide comprehensive data inputs and control commands to the
Autopilot Control Computer (Jeppu, 2014). It utilises an autopilot system to control
and adjust various mechanical, electrical, or hydraulic systems within an aircraft, re-
ducing the need for manual pilot input.

Figure 1.2: General overview of a Automatic Flight Control System (AFCS).
(Source: Jeppu, 2014)

The advances in control theory and computing technology have been instrumental in
facilitating the required improvements in AFCS. This has allowed AFCS to become
more sophisticated and capable of performing more complex tasks, such as auto-
mated take off and landing, autonomous flight, and collision avoidance, for which it
has provided a theoretical foundation for the development of AFCS.

Flight control laws are embedded in AFCS for manipulating control surfaces or de-
sired control signal (refer Figure 1.2). It employs various control solutions or meth-
ods to ensure stable aircraft operation such as Proportional-Integral-Derivative (PID),
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a linear type controller with PID gains which can either be tuned manually with
constant gains (Stevens and Lewis, 2003) or by automatic tuning for variable gains
(Wahid and Hassan, 2012; Mohammad Salem, 2014; Deepa and Sudha, 2016) to get
a better control and enhancement in the performance. Despite its simplicity in many
applications, PID control struggled with highly nonlinear systems or those with sig-
nificant time delays. As an alternative, gain scheduling was adapted (Stilwell, 2001)
and has evolved significantly in aircraft autopilot systems since its inception (Saussié
et al., 2011; Mendez-Vergara et al., 2014).

In managing such a nonlinear system, various nonlinear control approaches have
been introduced for autopilots, including model predictive control (MPC). It utilizes
a dynamic model to predict system behavior and adjust control inputs to achieve de-
sired control objectives. But it suffers from drawbacks such as being computationally
intensive and requiring accurate modeling (Simon et al., 2014). Another type of non-
linear control in dealing with nonlinearities is nonlinear dynamics inversion (NDI)
as reported in (Enns et al., 1994; Ghosh and Tomlin, 2000). Similar to MPC, apart
being sensitive to model mismatch, it is said to be not robust due to internal stability
of the system (Alam and Celikovsky, 2017; Jia et al., 2018). Therefore, sliding mode
control or SMC (Devika and Thomas, 2018), and backstepping (Sartori et al., 2021)
were explored to achieve robustness. However, backstepping control methods typi-
cally require recursive development for the controller, which can pose challenges for
a complex nonlinear system (Tran and González, 2020).

In some occasions,an autopilot disengagement can occur for several reasons, includ-
ing manual override, system malfunctions, upset flight conditions, or at the command
of the pilot (Schroeder, 2016). An upset happens when an aircraft enters a flight
regime beyond its normal operating parameters, characterized by highly dynamic
conditions involving rapid changes in attitude, altitude, and airspeed. This situation
can lead to stall or loss of control (LOC) if not promptly addressed. Considering
this, it is essential to design autopilot systems capable of managing such challeng-
ing flight conditions to ensure the safety and stability of the aircraft throughout all
phases of flight and to mitigate the risk of human error.

Similarly, as an aircraft reaches a large angle of attack, i.e., nearing the stall an-
gle, it demonstrates unpredictable behaviour that may compromising the safety and
performance of the aircraft (Wang and Shi, 2010). Capturing these nonlinearities
into a model poses a significant challenge as there are uncertainties in its aerody-
namic properties and not straightforward (Tol et al., 2016). As a result, control laws
based on linearised models become inadequate. An alternative strategy is to employ
nonlinear design techniques, particularly in this critical flight conditions where the
nonlinearities of the aircraft become pronounced. In parallel to the development of
AFCS, there is growing interest in equipping AFCS to have the capability to per-
form beyond this regime, which can be advantageous in situations where a human
pilot may not have the capacity to respond quickly or where precise control is critical
(Bailey, 2021).
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1.2 Problem Statement

An aircraft mission such as a climbing manoeuvre can be complex due to the dy-
namic and nonlinear nature of the flight conditions. The aircraft experiences changes
in altitude, airspeed, and angle of attack during the climb, leading to significant vari-
ations in its dynamic responses. As a result, accurately following a predefined trajec-
tory and maintaining stability and control during the climb have garnered significant
attention (Buelta et al., 2022). The subsequent paragraphs will elaborate more fac-
tors on challenges in maintaining flight at such conditions.

While linear models can be used to approximate nonlinear systems, they are limited
in their ability to accurately capture the behaviour of the system, especially under
nonlinear conditions (Abdulhamitbilal, 2014; Tol et al., 2016). Thus, nonlinear air-
craft models are needed for precise aircraft behaviour predictions to effectively de-
sign a control system. However, due to limited access to the complete aerodynamics
model, modeling inaccuracies are expected due to the aerodynamic uncertainties. It
should be taken into account as it confers the desired performance over the entire
operating range.

Concurrently, invertibility of the input-output dynamics in a system is crucial for
ensuring precise trajectory tracking. However, the aircraft system is categorized as
a nonminimum phase system, indicating the presence of unstable zero dynamics
that cannot be precisely canceled (Alam and Celikovsky, 2017). Failure to carefully
address this non-minimum phase condition may lead to instability in the internal
dynamics of the system.

Thus, nonlinear control is necessary to address these issues. However, NDI methods
alone seem to encounter challenges in effectively handling the inherent nonlinear-
ities, while backstepping tends to aggravate the complexity of the problem. The
lack of effective control solutions in existing systems significantly hinders a robust
aircraft performance, especially during near stall conditions.

On the other hand, the implementation of sliding mode control (SMC) on a non-
linear aircraft model has promised robustness due to its insensitivity to modelling in-
accuracies, nonlinearities and reduction in the complexity of feedback design (Shtes-
sel et al., 2013). The sliding surface may be chosen from the state variables according
to the control objective and the desired performance specifications. However, track-
ing the climb profile of an aircraft can be daunting due to the multiple sliding variable
options, such as the angle of attack and the pitch angle, that can affect the tracking
performance (Salahudden et al., 2021). Therefore, a question on how the selection
of a sliding variable impacts the control objective is an important consideration.

The effectiveness of SMC as a nonlinear control approach has been widely acknowl-

4
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edged, outperforming traditional linear control methods in various scenarios. As
such, there is considerable interest in exploring whether SMC can be utilized to
achieve high climb rates or steep attitude angles, even in the face of challenging
nonlinear conditions typically encountered during manoeuvres in challenging con-
ditions. This potential application of SMC is particularly intriguing given its proven
advantages, such as reducing landing distances as demonstrated in previous studies
(Ramamurthi et al., 2016). Thus, there is optimism that SMC could offer significant
benefits in improving the aircraft performance in demanding flight conditions.

Nevertheless, the application of high gain SMC has been observed to detrimen-
tally affect aircraft performance due to the chattering effect (Devika and Thomas,
2018; Raza et al., 2022). Therefore, it is imperative to explore variations of SMC
to mitigate this effect while enhancing aircraft performance. However, the integra-
tor approach, as implemented by Mukherjee et al. (2016), is susceptible to integrator
windup prompting a need for improvements in the SMC approach. For these reasons,
it is essential to develop a nonlinear aircraft model to address the aforementioned
issues. Having a comprehensive nonlinear simulation model provides a valuable op-
portunity to validate and test SMC design methodology, ensuring its applicability
across all flight conditions.

1.3 Research Objectives

The aim of this thesis is to employ a robust control in maintaining satisfactory flight
performance of an aircraft during challenging manoeuvres that requires rapid chang-
ing in attitude, altitude and velocity in the tracking process. The controller should
be able to provide robust performance and stability margins while maintaining the
desired performance parameters and the necessary safety criteria despite the nonlin-
earities in the model. Stated below are the objectives that have been highlighted:

a) To develop a mathematical model of nonlinear aircraft flight dynamics, com-
prising equations of motion and relevant flight parameters, and incorporating
the effects of saturation and rate limiting from the aircraft actuator model.

b) To design and implement a sliding mode control or SMC, integral sliding mode
control or ISMC and non-singular terminal sliding mode control or NTSMC
for the developed aircraft model, encompassing the SISO and MIMO model
for affine model.

c) To investigate optimal flight control performance by designing manoeuvre sce-
narios affecting angle of attack, pitch angle, and thrust, while assessing the
final values for all the state variables.

5



© C
OPYRIG

HT U
PM

1.4 Research Overview

The overall research flow is illustrated as in Figure 1.3. It commences with a thor-
ough exploration on the background, clarifying the motivation for the study within its
broader context. This involves a detailed review of existing literature to understand
the current knowledge, theories, and methods relevant to the research topic. The
objectives were established in guiding the focus and scope of the research. These
objectives serve as a roadmap, to outline specific goals related to aircraft modeling
and robust control design.

Figure 1.3: Research overview.
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The first objective focuses on aircraft modeling, involving the development and ver-
ification of a mathematical model to represent the dynamics of the aircraft. This
process entails building a model based on theoretical principles and collected aero-
dynamic data, followed by rigorous testing and verification to ensure its reliability.
If errors are identified for example, the run simulation failed during verification, the
model is revised and updated accordingly before proceeding with the next step.

Once a mathematical model is set up, various analyses can be performed, including
numerical trim analysis depending on the flight conditions and control input setting
of the model while taking into account aircraft parameter changes. The dynamics of
the system can be learned from the eigenvalue structure from the open-loop analysis,
thus allowing the control and stability of the aircraft to be further designed. With
the information provided, the operating envelope of the aircraft can also be defined.
Then the cross-coupling effect in the longitudinal and lateral-directional directions
can be investigated through the numerical simulation.

Based on the information from the eigenvalue analysis, the research progresses to
the second objective, which involves the design and implementation of robust control
strategies. This includes developing various control techniques such as Sliding Mode
Control (SMC), Integral Sliding Mode Control (ISMC), and Nonlinear Time-Scale
Modeling (NTSM) as well as the PID controller as the benchmark controller. These
control strategies are then integrated into the nonlinear aircraft model and subjected
to numerical simulation to evaluate their effectiveness in stabilizing the aircraft and
achieving desired performance objectives.

The response analysis involves running simulations to assess the stability and per-
formance of the control designs under various operating conditions. If instability is
observed, the control parameters are adjusted iteratively until satisfactory results are
achieved. Once the control objectives are met, the research proceeds to analyze the
system’s response to the designed control inputs, evaluating its dynamic behavior
and performance characteristics. The results are compared between each controller
that has been developed by assessing their performances.

Lastly, the research was concluded based on the findings. Additionally, the limita-
tions of the study are acknowledged, providing opportunities for further refinement
and expansion of the research in subsequent studies.

1.5 Scope

Previous applications of SMC to aircraft tracking controls have been limited to lin-
earised aircraft models and often do not consider the dynamics of the actuators. This
thesis aims to address these limitations by considering both factors and developing
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a control strategy that includes multi-input multi-output (MIMO) control allocation
to supply control more efficiently to the system at a near stall condition. The aim
is to have a universal controller suitable for all flight conditions, spanning from take
off to landing. By considering the full nonlinear dynamics of the aircraft and the ac-
tuator dynamics, the proposed control approach is expected to enhance the tracking
performance and robustness of the system.

The focus of this thesis is a numerical study investigating the application of robust
flight control techniques for a rigid wing aircraft. Specifically, the research exam-
ines the design and implementation of SMC, on the longitudinal aircraft model to
ensure that the aircraft trajectory converges to predefined reference trajectories or
desired states and remains within specified performance bounds, despite the non-
linearities inherent in the aircraft model. This encompasses the ability to adeptly
adapt to varying conditions like airspeed, altitude, and manoeuvres while ensuring
safety and desired performance. However, it is important to note that the nonlinear
longitudinal model considered in this study is subjected to limitations, particularly
with respect to the inputs from thrust and horizontal stabilator deflection only. Major
works in the thesis are regarding take off and climbing scenarios where no signifi-
cant contribution in lateral-directional mode as presented (Mukherjee et al., 2016).
In contrast, this could not be enough in the case of an actuator failure that may causes
the coupling between the longitudinal and the lateral-directional dynamics.

The chosen model aircraft for this study is based on the F/A-18, a large fighter air-
craft with maximum take off weight (MTOW) about 30000 kg. It is recognized for
its roles in supporting the research and enhancing pilot proficiency that was manu-
factured by Boeing (Dinius, 2009). The F/A-18 presents distinctive challenges due
to its dynamic response, complex aerodynamic characteristics, and wide range of
flight conditions. The stability and control properties of an aircraft have a substantial
impact on its dynamic behavior, the origins of which can be traced back to the aero-
dynamics of the aircraft. For the purpose of building the model of the aircraft, the
aerodynamic data was collected from the sources available in open literature. How-
ever, this data was subjected to the change of angle of attack, horizontal stabilator
deflection, aileron deflection, rudder deflection, roll rate, pitch rate, and yaw rate for
a 6-degree-of-freedom (DoF) model.

It is important to note that the work only involves the conceptual design of the con-
troller, and practical implementation and validation are beyond the scope of this
study. The following software tools are intended to be used during the research:

• MATLAB - a technical computer programming language and software plat-
form developed by The MathWorks. It is widely used for numerical comput-
ing, data analysis, visualization, and simulation in various disciplines such as
engineering, science, and mathematics.

• Simulink - a software tool developed by The MathWorks that works in tan-
dem with MATLAB for simulation and model-based design. It is suitable for
simulating nonlinear dynamic systems and designing novel control strategies.
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Simulink comes equipped with a library of pre-installed blocks that can be
used to represent models, and it can also be combined with user-defined MAT-
LAB files to create custom functions.

1.6 Thesis Organisation

The thesis is composed of six chapters that document the various stages of the re-
search conducted to achieve the predetermined objectives using methodological ap-
proaches. A brief summary of the contents of the thesis is given as follows:

Chapter 1 serves as an introduction to the thesis topic, setting out the aims and ob-
jectives of the research project. The chapter provides an overview of the research
problem and its significance and outlines the scope of the thesis. It establishes the
foundation for subsequent chapters.

In Chapter 2, a literature survey is conducted on previous studies related to the de-
velopment of aircraft simulation models and aircraft control. The chapter provides a
detailed overview of the existing literature in the field and highlights the key findings
and contributions of each study.

Chapter 3 details the development of a mathematical aircraft model. It describes the
kinematic and dynamic model for a fixed-wing aircraft and the collected aerodynam-
ics data used for the model from the public domain. Additionally, modal analyses
were conducted to study the aircraft’s longitudinal and lateral-directional behavior.

Chapter 4 begins with a review of the mathematical preliminaries of sliding mode
control (SMC). The chapter also presents the design of a flight control system based
on SMC and its variants, such as integral sliding mode control (ISMC) and nonlinear
terminal sliding mode control (NTSMC), for both single-input single-output (SISO)
and multiple-input multiple-output (MIMO) aircraft models. The design methodol-
ogy is thoroughly elaborated to provide a comprehensive understanding of the effec-
tiveness of the proposed control approach.

In Chapter 5, the control design from Chapter 4 is applied to the aircraft model
presented in Chapter 3. The chapter describes the numerical simulations that were
conducted to evaluate the control system’s performance, and the results of the simu-
lations are thoroughly discussed.

Finally, Chapter 6 highlighted the research’s main findings and consequences and
discussed its shortcomings and limits. Additionally, recommendations for future
research directions were provided.
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Figure 1.4: Organisation of the thesis.
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