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By
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June 2023

Chair : Norfifah binti Bachok @ Lati, PhD
Institute : Mathematical Research

The purpose of this study is to solve five different problems focused on the nanofluid
model, Tiwari-Das model (2007) and related to the steady laminar free and mixed
convection boundary layer flow on a linear, exponential, or nonlinear stretching or
shrinking surface in a nanofluid. This study considers flow that occurs over a flat
surface or at the top of a cylinder. Three types of nanoparticles, namely copper, alu-
mina, and titania, were investigated. The governing partial differential equations are
reduced into nonlinear ordinary differential equations using the similarity transfor-
mation technique. The system of equations will then be numerically solved using the
bvp4c solver in MATLAB software. The present study was validated by comparing it
to previous literature and found to be in good agreement. The influence of governing
parameters, including stretching or shrinking, nanoparticle volume fraction, curva-
ture, suction, mixed convection, first-order and second-order velocity slip, chemical
reaction, buoyancy ratio, magnetic field, Soret number, Dufour number, nonlinear
parameter, radiation, heat generation, and Eckert number, are analyzed. The physical
quantities of interest are the skin friction coefficient, Nusselt and Sherwood numbers,
velocity, temperature, and concentration profiles, which are presented graphically for
further discussion. A certain range of solutions reveals the existence of dual solu-
tions. The stability analysis has been performed to determine which solutions are
linearly stable and physically reliable. Dual solutions exist within a certain range
of solutions. Copper has the highest thermal conductivity compared to alumina and
titania. The lowest skin friction coefficient goes to alumina, while titania is for the
lowest heat transfer. Increases in the skin friction coefficient and heat transfer rate
reduced the values of the suction parameter, while there was an increase in the mag-
netic field parameter, nanoparticle volume fraction, and slip parameters. An increase
in the nanoparticle volume fraction helps to increase the chemical reaction parame-
ter. The upper branch solution was found to be stable by stability analysis performed
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in two problems of study, while the lower branch solution was unstable.
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Kajian ini dijalankan adalah bertujuan untuk menyelesaikan lima permasalahan ka-
jian yang berbeza memfokuskan kepada model nanobendalir, model Tiwari-Das
(2007) dan berkenaan dengan aliran lapisan sempadan yang mantap berlamina dan
olakan campuran pada permukaan atau plat meregang atau mengecut yang linear, ek-
sponen dan tak linear dalam nanobendalir . Kajian ini mempertimbangkan aliran di
atas permukaan yang rata atau di atas silinder. Tiga jenis nanobendalir iaitu tembaga,
aluminium, dan titanium dikaji. Persamaan pembezaan separa menakluk telah dijel-
makan kepada persamaan pembezaan biasa tak linear dengan menggunakan teknik
penjelmaan keserupaan. Sistem persamaan berkenaan seterusnya diselesaikan secara
berangka menggunakan pakej bvp4c yang dibina dalam perisian MATLAB. Penge-
sahan kajian ini dilakukan dengan membandingkan penyelesaian semasa dengan ka-
jian terdahulu dan didapati hasil perbandingan adalah sangat baik. Pengaruh pa-
rameter menakluk yang merangkumi parameter meregang atau mengecut, pecahan
isipadu nanozarah, kelengkungan, sedutan, olakan campuran, gelinciran peringkat
pertama dan kedua, tindak balas kimia, nisbah apungan, medan magnet ke atas ciri-
ciri aliran, nombor Soret, nombor Dufour, parameter tak linear, radiasi, penjanaan
haba, dan nombor Eckert. Kuantiti fizikal seperti pekali geseran kulit, kadar pe-
mindahan haba dan jisim serta profil halaju, suhu dan kepekatan ditunjukkan secara
bergraf melalui rajah untuk perbincangan lanjut. Penyelesaian dual didapati wujud
bagi julat tertentu. Analisis kestabilan dijalankan untuk menentukan penyelesaian
yang stabil dan bermakna secara fizikal. Tembaga mempunyai kekonduksian haba
yang lebih tinggi berbanding aluminium dan titanium. Pekali geseran kulit dan ha-
laju yang tinggi akan merendahkan parameter sedutan dan meninggikan parameter
medan magnet ke atas ciri-ciri aliran, pecahan isipadu nanozarah, dan parameter-
parameter gelinciran. Peningkatan dalam pecahan isipadu nanozarah mempengaruhi
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kenaikan pada parameter tindak balas kimia. Penyelesaian untuk cabang atas adalah
sentiasa stabil menerusi analisis kestabilan dalam dua permasalahan yang dikaji,
manakala penyelesaian untuk cabang bawah didapati tidak stabil.
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CHAPTER 1

INTRODUCTION

1.1 Fluid Dynamics

This study is related to the benefit of fluid dynamics in real-life situations. The
mathematical models obtained can represent the physical phenomena in fluid
dynamics that can contribute to solving industrial problems. Aerospace engineers,
for example, should study fluid flow to construct aeroplanes with low resistance but
significant lift force to sustain the plane’s weight. Besides, engineers can use fluid
dynamics knowledge to develop dams and water supply systems, turbines and heat
exchangers, efficient sewage systems, and efficient devices in industrial chemicals.
Fluid dynamics requires mathematical analysis and experimental to reach a simple
and accessible answer to a problem. Usually, some assumptions are needed while
performing a mathematical model, but the mathematical model may or may not
match the assumption made. As a result, the model must have some modifications
to produce a good model.

One of the branches of fluid mechanics is fluid dynamics which is concerned
with the movement of liquids and gases with the existence of the pressure force. The
other one is fluid statics which the condition of the fluid is at rest. Many researchers
are interested in exploring fluid dynamics for studying blood circulation, airflow in
the lungs, weather patterns, star evolution, and the application of technology in oil
pipelines, radiators, refrigerators, vacuum cleaners, dishwashers, washing machines,
water and gas metres, air conditioning systems, rocket engines, and wind turbines.
Since most fluid dynamics issues are hard to solve with calculations alone, a mix of
numerical computation and computer simulation is necessary.

1.2 Boundary Layer

Aerodynamics encompasses a wide range of applications, including in planes and
rockets, that necessitate a grasp of boundary layer flow concepts. Besides, meteo-
rology, oceanography, and hydrology all employ a similar notion. In 1904, a Ger-
man engineer named Ludwig Prandtl discovered the boundary layer concept. Ac-
cording to his research, when a fluid flows over a stationary solid boundary with
high Reynolds numbers with a no-slip condition, the flow is divided into two re-
gions. In most circumstances, he added, the viscosity is negligible when the kine-
matic viscosity is low. A thin layer adjacent to the solid boundary is a boundary
layer where viscous forces dominate over inertia forces. An outer region away from
the object’s surface where the viscosity effect is too small can be neglected. Fig-
ure 1.1 shows the formation of the boundary layer on a flat plate (retrieved from
https://cfdflowengineering.com/cfd-modelling-of-boundary-layer/).
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1.3 Heat Transfer

Another aspect of fluid dynamics that is crucial in industrial and environmental
challenges is the heat transfer rate. It includes an energy transition from a higher
to a lower temperature. The pressure difference is the driving force for fluid
movement, while the magnitude of the temperature gradient influences the rate
of heat transmission in a particular direction. The faster the exchange of heat,
the higher the temperature gradient (Ozisik, 1985). Figure 1.2 illustrates the
three types of heat transfer: conduction, convection, and radiation (retrieved
from https://www.vectorstock.com/royalty-free-vector/diagram-showing-how-heat-
transfer-vector-27755208).

The process of energy transmission from more energetic to less energetic par-
ticles of a substance across a solid or fluid medium is known as thermal conduction.
Cooking utensils with wooden handles and double-walled Eskimo dwellings made
of ice blocks are examples of how it is applied. Convection is a heat transmission
mechanism in liquids and gases in which heat is transferred from one location
to another by heated particles moving around. Ventilation, electric lighting, and
hot water circulation heating of buildings are some of the applications, as are
environmental phenomena such as the formation of land and sea breezes. Heat is
transferred via radiation in space or vacuum when there are no particles that may
move or transfer heat. The electromagnetic spectrum, the sun’s and light’s radiation,
are part of the radiation process.

Figure 1.2: Types of heat transfer
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1.4 Mass Transfer

There is a tendency of mass transfer whose concentration fluctuates from
one point to another by lowering the concentration discrepancies when a sys-
tem consists of two or more components. The transition from higher to
lower concentration is known as mass transfer (refer Figure 1.3 retrieved from
https://en.wikipedia.org/wiki/Chemiosmosis). This phenomenon can be seen in in-
dustrial processes, including gas dispersion from stacks, pollutant removal from
plant discharge fluxes through absorption, gas stripping from wastewater, neutron
diffusion in nuclear reactors, and air conditioning, depending on mass transfer across
a boundary or within a fluid process. Meanwhile, in daily life, it occurs when adding
sugar to coffee to make the concentration more uniform, when water evaporates from
ponds to increase the humidity of passing air, and when fragrances release an alluring
scent into the environment. The mechanism of mass transfer involves both molecular
diffusion and convection.

Figure 1.3: Mass transfer from high concentration to low concentration

1.5 Stagnation Point

A ”stagnation point” is a point in a fluid’s path around a plate where the flow veloc-
ities are zero. There are two types of stagnation point flow: plane and axisymmetri-
cal. Hiemenz flow is another name for laminar flow in a plane with a stagnation point
(Schlichting and Gersten, 2016). Figure 1.4 illustrates the physical interpretation of
the stagnation point flow field in the neighbourhood of a stagnation point (retrieved
from https://www.transtutors.com/questions/potential-flow-near-a-stagnation-point-
fig-4b-6-a-show-375083.htm). There is a point (x = y = 0) known as the stagnation
point where fluids are at rest state on the plate surface. A stagnation point flow is
characterised by a high rate of deposition of mass, transfer of heat, and pressure of
fluid as it approaches a stagnation point where the free streams head in different di-
rections after passing through the stagnation point and approaching the plate surface.
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Figure 1.4: Physical interpretation of stagnation point flow field

1.6 Stretching and Shrinking Surface

The ”stretching flow” is the flow produced from stretching an elastic flat sheet that
moves in its plane with a velocity that varies with distance from a fixed point re-
sulting from the force applied. Crane (1970) was the first to introduce the analytical
solution over a stretched sheet for the boundary layer flow of an incompressible vis-
cous fluid. The study of a viscous fluid’s flow problem over a stretching sheet was
driven by numerous industrial applications, for example, in cooling and extrusion
operations, paper production, the boundary layer along material handling conveyors,
a chemical plant’s polymer processing unit, and the metalworking process in met-
allurgy, the flow resulting from a stretching sheet occurs. The boundary layer flow
problem on a shrinking sheet was initially studied by Wang (2008). The boundary
layer cannot accommodate the vorticity of the shrinking sheet. As a result, a con-
stant flow over a diminishing sheet is impossible unless an opposing force is applied
to prevent vorticity diffusion and preserve the boundary layer structure. Figure 1.5
depicts the stretching or shrinking scenario on a flat plate (Zaimi et al., 2014b).

Figure 1.5: Stretching or shrinking on a flat plate
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1.7 Magnetohydrodynamics

The study of the dynamics of electrically conducting fluids is known as magneto-
hydrodynamics (MHD), often known as magnetofluid dynamics or hydromagnet-
ics. These fluids include plasmas, liquid metals, and salt water or electrolytes, as
example. The words magnetohydrodynamic refer to magnetic fields, liquids, and
movement, respectively. Alfvén (1942) founded the field of MHD, for which he
was awarded the physics Nobel Prize in 1970. The core idea behind MHD is that
magnetic fields can induce currents in conductive fluids that are flowing, which in
turn exerts forces on the fluid and affect the magnetic field. MHD effects are multi-
physics issues that, like electrokinetics, require for the coupling of many fields. The
Navier-Stokes equations of fluid dynamics and Maxwell’s equations of electromag-
netism combine to provide the set of equations that describe MHD. It is necessary to
simultaneously solve these differential equations, either analytically or numerically.
There are numerous uses for MHD in physics, chemistry, and engineering. Figure
1.6 describes a state of moving conductive fluid with induced current in the presence
of a magnetic field (Sheikholeslami and Ganji, 2016).

Figure 1.6: A moving conductive fluid with induced current in the presence of
a magnetic field

1.8 Flow on a Cylinder Surface

The problem of the boundary layer flow and heat transfer over a cylinder surface
gained attention among researchers due to its significant application in industry. The
discovery of boundary layer flow and heat transfer problems due to stretching cylin-
ders benefits the extrusion process and fibre technology. Other examples include
the manufacturing process of polymer sheets and plastic films, paper making, glass
blowing, and metal spinning. No matter how minimal the viscosity, a viscous flow
over a cylinder, can result in a thin boundary layer adjacent to the cylinder surface.
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There will be a boundary layer separation and a trailing wake in the flow behind the
cylinder. The pressure at any point on the wake side of the cylinder would be lower
than the upstream side, resulting in a drag force in the downstream direction. Figure
1.7 (Waini et al., 2021) depicts the nanofluid flow configuration on a shrinking cylin-
der, with u and v representing velocities along the x− and r− axes, respectively. The
nanofluid flow on a stagnation point of a shrinking cylinder of radius a is considered,
with ue as the free stream velocity, uw as the surface velocity, qw as the prescribed
heat flux and T∞ is the fluid’s constant ambient temperature.

Figure 1.7: Nanofluid flow configuration on a shrinking cylinder

1.9 Nanofluid

Researchers have spent many years finding a method to enhance the thermal
conductivity of the fluid. In 1995, Choi discovered a new class of heat transfer fluid
which suspended nanoscale particles in size less than 100 nanometres into conven-
tional fluid, namely nanofluid (Choi and Eastman, 1995). The word ”nanofluid”
is well-known among scientists, particularly in engineering. They agreed that
nanofluids have so much potential in enhancing the thermophysical heat transfer of
fluid and are very efficient in the heat transfer process. Nanofluid has significantly
higher thermal conductivities than the conventional fluid (Huminic and Huminic,
2012). Figure 1.8 shows a schematic representation of the nanofluid (Gupta et al.,
2012). Besides that, nanofluids with small-sized particles can surpass any obstacle

Figure 1.8: Schematic model of nanofluid
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and flow smoothly through mini or microchannels. They also can increase the heat
transfer rate with the large surface area that encourages the heat transfer mechanism
with the surrounding. A nanofluid is a popular choice among researchers as a heat
transfer agent for all of these reasons. Copper (Cu), aluminium (Al), titanium (Ti),
zinc (Zn), magnesium (Mg), silver (Ag), silicon (Si), iron (Fe), gold, and diamond
are the most prevalent uses of nanofluids.

The nanofluid formulation used water, ethylene glycol (EG), and oils as base
fluids. Heat exchange systems, cooling and heating systems, vehicle air condi-
tioning, and plant processes cooling are examples of nanofluids applications. The
instability of particle interaction with one another and the surrounding liquid, which
can affect operational performance, is one of the difficulties in nanofluids.

1.10 Tiwari and Das Model

Assuming thermal equilibrium and uniform velocity for the base fluid and nanopar-
ticles, the Tiwari-Das model describes a one-phase system free of slippage. The
Tiwari-Das model primarily focuses on the impact of nanoparticle volume fraction.
The results of the prior research show that as the volume percentage of nanoparticles
grows, so does the thermal conductivity of the nanofluid. Furthermore, a small
proportion of the solid volume fraction is needed to guarantee its efficacy (Jang and
Choi, 2007). In conclusion, nanofluid can improve thermal conductivity and heat
transfer efficiency on the wall surface.

Over the last few years, many researchers have tackled various practical is-
sues to improve thermal conductivity. The model Tiwari and Das (Tiwari and Das,
2007), as well as the model Buongiorno (Buongiorno, 2006), are two well-known
models of nanofluid. It’s worth noting that the Buongiorno model is referred to as
a non-homogenous two-phase model because the base fluid and nanoparticles have
non-zero slip velocity. Meanwhile, the Tiwari-Das model is a single-phase (homo-
geneous) model where the base fluid’s thermophysical properties can be improved
by adding nanoparticles that contribute to the nanofluid’s high thermal conductivity.
Many researchers used these two models to explore a variety problems of nanofluids
flows, including Hsiao (2017), Alarifi et al. (2019), and Moradikazerouni et al.
(2019).

1.11 Stability Analysis

One method to determine if a flow is stable or unstable is to subject it to various
forms of perturbation and observe its behaviour afterwards. The flow is steady and
achievable if all perturbations decay and unstable if the perturbations increase. It
would not happen in real life unless an external mechanism suppresses the growth
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of the unstable perturbations. In some circumstances, evaluating the behaviour of
the perturbations can be done using simple physical explanations, but more often,
it requires thorough analysis and numerical computation. The behaviour of the
perturbations can be studied theoretically from solving the continuity equation and
the equation of motion subject to the appropriate boundary conditions. The equation
of motion subject to the velocity of the base state can be linearized and solved for a
broad range of initial conditions using the Laplace transform. The general solution
(analytical form) can be obtained only for limited class of flows after performed
linearization, which examines the behaviour of perturbations with exponential
growth or decay in time.

The flow is unstable if linear stability analysis indicates that perturbations
grow in time. The base flow is linearly stable if the magnitude of the disturbance
decays. The unstable flow can be realized in practice only when the disturbances
are screen off from the physical system by some externally controlling mechanism.
However, a flow that is stable according to the theory of linear stability may not
always exist in actuality because of nonlinear influences and slight variations from
the flow’s stated domain.

Stability is a branch of fluid dynamics that studies the stability and onset of
instability in fluid flows. The goal of a stability study is to determine whether a
flow is stable or unstable. If an unsteady flow occurs, it is critical to understand the
instabilities that cause turbulence to form. Escoffier and Boyd (1962) established the
stability criterion. Analytical methods are required to solve nonlinear differential
equations in boundary layer flow analysis over a shrinking sheet due to the difficulty
to obtain an analytical solution.

In 1985, Merkin (1986) obtained dual solutions for his study on the problem
of mixed convection flow with simple time-dependent. He concluded that the upper
and lower branches solutions of possible steady states for general time-dependent
are stable and unstable, respectively. The performance of nanofluids is frequently
influenced by their stability. The thermophysical features of nanofluids are altered
by their lack of stability, resulting in nanofluids with poor heat transmission
capability. To obtain high thermal conductivity nanofluids, it is necessary to have a
way to analyse and measure stability.

1.12 Dimensionless Parameters

Dimensionless parameters are the parametric study in engineering and physics. They
are used to understand the similarity between issues of the same problem so that the
researcher can avoid a lot of experimental data runs caused by the data collection
that correlated to a similar problem. The time used to collect data also can be min-
imised. Besides, dimensionless parameters are widely used in fluid dynamics to
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determine fluid behaviour. Common examples of dimensionless parameters such as
the Reynolds, Sherwood, Lewis, Nusselt, Prandtl, and Schmidt numbers, which de-
scribe as ratios the relative magnitude of fluid and physical system characteristics,
such as density, viscosity, speed of sound, and flow speed. There are various dimen-
sionless parameters used in this study as in details can be explained below:

1. Prandtl number.

The ”Prandtl number” often used to describe fluid flows, especially in
forced convection heat transfer and boundary layer flow issues. It assists in
determining the comparative significance of momentum diffusivity versus
heat diffusivity in a fluid. Ludwig Prandtl, a researcher from the early twen-
tieth century, was the one who introduced the Prandtl number (1875-1953).
He is the pioneer who created the mathematical foundation for the core ideas
of subsonic aerodynamics (Coulson, 2000). His study leads to the boundary
layer, thin airfoils, and lifting-line theories.

Pr =
ν

α
=

µCp

k
=

rate of viscous diffusion
rate of thermal diffusion

, (1.12.1)

where,
k is the thermal conductivity of the fluid,
µ is the dynamic viscosity coefficient,
ν = µ

ρ
is the kinematic viscosity coefficient,

Cp is the specific heat at constant pressure, and
α = k

ρCp is the thermal diffusivity coefficient.

2. Reynolds number

The ”Reynolds number” is a ratio of inertial (non-moving) forces to
viscous forces. George Gabriel Stokes proposed it in 1851, but it was Osborne
Reynolds (1842− 1912) who popularised its use in 1883 (Rott, 1990). The
Reynolds number is applied to compare dynamic similitude between different
experimental examples, especially in liquid dynamics problems, and to
distinguish between different flow regimes of laminar and turbulent. The
laminar flow has low Reynolds numbers with viscous forces in smooth and
constant liquid motion, whilst turbulent flow has high Reynolds numbers
with inertial forces that tend to produce chaotic eddies, vortices and other
flow instabilities. In general, flows with Re < 2000 are considered laminar,
Re > 4000 are considered turbulent, and flows with Re between 2000 and
4000 are in a transitional state.

Re =
ρuL

µ
=

uL
ν

=
inertial forces
viscous forces

, (1.12.2)

where,
u is the velocity of the fluid,
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ρ is the density, and
L is the characteristic length.

3. Nusselt number

The ratio of convective to conductive heat transfer at a fluid’s boundary
is called the Nusselt number. Advection (fluid motion) and diffusion are
both types of convection (conduction). The ”Nusselt number” is named
after Wilhelm Nusselt (1882− 1957), who made a significant contribution
to the research of convective heat transfer (Çengel and Ghajar, 2002). It
is commonly used in the analysis and design of heat exchangers and other
heat transfer applications. As the volume of the fluid body is divided by the
surface area, a higher Nusselt number indicates more active convection, with
turbulent flow often in the 1001000 range.

Nu =
h
k
L
=

hL
k

=
convective heat transfer
conductive heat transfer

, (1.12.3)

where,
h is the convective heat transfer coefficient of the fluid.

Local Nusselt number,

Nux =
hxx
k

. (1.12.4)

where,
x is the distance from the surface boundary to the local point of interest.

4. Sherwood number

The ”Sherwood number” also known as the mass transfer Nusselt num-
ber used in mass-transfer operations. It is named after Thomas Kilgore
Sherwood (1903− 1976) and measures the ratio of convective mass transfer
to diffusive mass transport (Heldman and Moraru, 2010). In many cases,
the Sherwood number is correlated with the Reynolds number (Re) and the
Schmidt number (Sc) for different flow conditions. It is commonly used in the
design and analysis of processes involving mass transfer, such as absorption,
distillation, and chemical reactions.

Sh =
h
D
L
=

convective mass transfer rate
mass diffusion rate

, (1.12.5)

where,
D is the mass diffusivity of the fluid, and
h is the convective mass transfer coefficient.
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5. Schmidt number

The ”Schmidt number” describes fluid flows with simultaneous momen-
tum and mass diffusion convection processes. It was computed by dividing
the momentum diffusivity (kinematic viscosity)by the mass diffusivity. Ernst
Heinrich Wilhelm Schmidt (1892− 1975), a German engineer, was the one
to introduce it. It physically connects the hydrodynamic layer’s thickness to
the mass-transfer boundary layer’s thickness (Incropera et al.). The Schmidt
number is often used in the analysis of mass transfer processes, particularly in
cases where both momentum and mass transfer occur simultaneously, such as
in chemical reactions or the diffusion of a component in a flowing fluid.

Sc =
ν

D
=

viscous diffusion rate
mass diffusion rate

, (1.12.6)

6. Grashof number

In fluid dynamics and heat transfer, the ”Grashof number” is a dimensionless
parameter that approximates the ratio of buoyancy to the viscous force acting
on a fluid. It is similar to the Reynolds number and commonly used in the
study of natural convection scenarios. Franz Grashof (1826−1893) is known
to be the inspiration for the name (Sanders and Holman, 1972). For natural
convection from vertical flat plates, the transition to turbulent flow occurs
in the range (108 < Gr < 109). The boundary layer is turbulent at higher
Grashof numbers; at lower Grashof numbers, the boundary layer is laminar in
the range (103 < Gr < 106). The Grashof number helps determine whether
natural convection in a fluid will be significant compared to forced convection.

Gr =
gβ (Ts−T∞)L3

ν3 =
buoyancy force
viscous force

, (1.12.7)

where,
Ts is the surface temperature,
g is the acceleration due to gravity,
β is the volumetric thermal expansion coefficient (equal to approximately 1

T ,
for ideal fluids, where T is the absolute temperature), and
T∞ is the bulk temperature.

7. Eckert number

The ”Eckert number” is a unitless parameter used in continuum me-
chanics. The Eckert number expresses the flow’s kinetic energy of the
enthalpy differential across the thermal boundary layer. It is named after Ernst
R. G. Eckert (1904− 2004) and is used to characterize heat dissipation in
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high-speed flows for which viscous dissipation is significant. The temperature
profile in a fluidic system at high flow velocities is dominated not only by
the temperature gradients existing in the system but also by the effects of
dissipation due to internal fluid friction (Rapp, 2022).

Ec =
u2

Cp∆T
=

kinetic energy
enthalpy

, (1.12.8)

where,
u is the local flow velocity of the continuum, and
∆T = Ts−T∞ is the temperature difference between the surface and the free
stream.

1.13 Problem Statement

Numerous industrial processes depend on commonly used fluids like water, ethylene
glycol, and oil. These fluids are essential for activities like power production,
heating or cooling operations, chemical processes, and microelectronics. However,
due to their limited thermal conductivity, these fluids incompetent to achieve
high heat exchange rates in thermal engineering systems. There is a technique to
overcome this obstacle by using ultra-tiny solid particles suspended in common
base fluids to improve the thermal conductivity. A nanofluid is a suspension of
nano-sized particles (1100 nm) in a regular base fluid. In 1995, Choi and Eastman
(1995) coined the term ”nanofluid”. Nanofluids outperform micrometre-sized
particles in improving stability, rheological properties, and thermal conductivities.
Different nanomaterials alter parameters to various extents.

Two techniques for studying nanofluids in assessing the effective thermal con-
ductivity of nanofluids are experimental research (Thomas and Balakrishna
Panicker Sobhan, 2011) and computational modelling through computational fluid
dynamics (CFD) (see Abouali and Ahmadi (2012), Kamyar et al. (2012) and
Seon Ahn and Hwan Kim (2012)). The research on nanofluids was conducted based
on three categories: influencing factors, prediction models, and applications.

The Tiwari and Das nanofluid model, possess multi-directional applications
including nano drug delivery, cooling of computer microchips, and optical devices
(Ramzan et al., 2023). Rapid heat dissipation is a big obstacle in developing smaller
microchips. Nanofluids are beneficial for the liquid cooling of computer chips
because of their high thermal conductivity. The next generation of computer chips
has a localized heat flux of over 10 MW/m2 and total power of more than 300 watts.
Nanofluid oscillating heat pipe (OHP) on the cooling system will be able to remove
heat fluxes of over 10 MW/m2 and will be used as a next-generation cooling device
to handle heat dissipation created by new technologies (see Ma et al. (2006a) and
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Ma et al. (2006b)).

In industrial applications such as process heating, space heating, and power
generation, heat is released from the bottom of the solar pond at a temperature
around 50 to 60 degrees Celcius higher than the top surface of the solar pond (see
Andrews and Akbarzadeh (2005) and Singh et al. (2011)). Nanofluids help increase
the rate of heat removal from the bottom of the solar pond when nanofluids travel
through a heat exchanger positioned at the bottom of the solar pond to absorb heat
(Mahian et al., 2013).

Nanofluids could be used in nearly every disease treatment procedure by reengi-
neering the properties of nanoparticles. The anti-cancer medication docetaxel was
bound to the nanoparticles, then dissolved in the cells’ internal fluids and released
at a controlled rate. The nanoparticles contain aptamers that target molecules that
recognise the surface molecules on cancer cells and prevent the nanoparticles from
hitting healthy cells. Polyethene glycol molecules are included in the nanoparticles
to prevent them from being destroyed by macrophages, which are cells that protect
our bodies from foreign toxins. Nanoparticles are effective medication delivery
vehicles because they are so small that they are absorbed by living cells when they
reach their surface (Wong and De Leon, 2010).

Industrial technology increasingly acknowledges the importance of flow through
a stretching or contracting cylinder in fluid dynamics applications. Flow past a
cylinder is occurred in many technical applications, including mooring lines, risers,
bundled cylinders at offshore installations, bridge piers, and tube bundles in heat
exchangers. Researchers have a good understanding of the flow patterns in a single
cylinder. Fluid flow problems due to stretching cylinders have occurred in processes
of extrusion in metal, plastic, and food products, as well as in the cooling system
(Wang and Ng, 2011). In many engineering and industrial applications, the cooling
of a solid surface is a primary tool for minimizing the boundary layer (Majeed et al.,
2016). Because of these practical and realistic implications, the problem of cooling
solid on moving surfaces has become a topic of concern for scientists and engineers.

Aside from that, study into these issues is going on in processes such as
polymer and rubber sheet extraction, hot rolling, wire drawing, paper manufacture,
melt-spinning, and glass fibre production (Zaimi et al., 2013). The cooling rate
affects the final product’s quality (Bachok et al., 2012b). Meanwhile, the study
on the flow and transmission of heat over a shrinking cylinder has attracted the
interest of researchers only recently due to its application in industries such as
manufacturing high-performance materials for aerospace coating.
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Many thermal applications could benefit from fluids with higher thermal conductivi-
ties. Motivated by the benefits gained from nanofluid applications, this study focuses
on the problem of boundary layer flow, heat, and mass transfer in a nanofluid over a
linearly, exponentially, and nonlinearly stretching or shrinking surface, as well as a
cylinder surface with focusing on Tiwari-Das model. This research hopefully helps
to understand the thermal transmission processes of the various surface materials
and thus enhances the quality of the final products. As a result, the following
research questions can be raised:

The following issues have been raised in this study:

1. What parameters contribute to the existence of dual solutions?

2. Which parameters contribute to broadening the range of possible solutions?

3. How does the presence of nanoparticles volume fraction give impact on the
flow and heat transfer characteristics at the surface?

4. How would the changes in physical parameters (suction, slip, chemical re-
action, magnetic, Soret and Dufour, viscous dissipation and heat generation
parameters) affect the skin friction, local Nusselt number, and local Sherwood
number?

5. Which type of nanoparticles performs better?

6. Which of the solutions obtained is a stable solution?

1.14 Objectives

This thesis aims to extend the problem of boundary layer flow, heat and mass transfer
in a nanofluid towards various surfaces using Tiwari and Das model. The stability
analysis has been performed for some of the problems studied. The objectives of this
present study are to:

1. construct mathematical formulations using similarity transformation tech-
nique and create an algorithm for the various nonlinear nanofluid flow prob-
lems,

2. apply the bvp4c solver in MATLAB program to numerically solve the mathe-
matical models and run validation tests for the present study, which compare
it with the numerical findings in the literature,

3. examine the effects of various parameters on the nanofluid’s flow, heat, and
mass transfer characteristics, and

4. perform the stability analysis on dual solutions for some of the problems (in
Chapter 4 and Chapter 7).
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There are five problems that have been considered:

1. Boundary layer flow over a cylinder in the presence of suction effect.

2. Axisymmetric stagnation point flow over a vertical plate in the presence of slip
effect.

3. Stagnation point flow past a stretching or shrinking vertical surface in a
nanofluid with chemical reaction effect.

4. Stagnation point flow over an exponentially stretching or shrinking sheet in
the presence of magnetohydrodynamics with Soret and Dufour numbers.

5. Stagnation point flow over a nonlinear stretching or shrinking cylinder in the
presence of magnetohydrodynamics with viscous dissipation and heat genera-
tion effects.

1.15 Scopes of Study

This study uses the Tiwari and Das model (Tiwari and Das, 2007) to investigate the
problem of steady two dimensional and three dimensional, incompressible flow of
boundary layer and stagnation point, and transfer of heat and mass over a stretching
or shrinking surface in a nanofluids. Copper (Cu), alumina (Al2O3), and titania
(TiO2) are the three types of nanoparticles that were taken into consideration, with
water serving as the base fluid. The Prandtl number taken in this study is Pr= 6.2
(water-base fluid).

1.16 Outline of Thesis

This thesis consists of nine chapters starting with Chapter 1, the introduction, which
elaborates on the research background, problem statement, objective and scope
and significance of the study. This chapter will give the basic knowledge of the
content of this thesis with several terms and definitions. The literature review in
Chapter 2 captures the flow of the progressing and the growth of the research among
researchers from the same field. This chapter is important as a starter key to the
problems studied and to gain motivation for the problems that have been considered.

Chapter 3 depicts the derivation of the mathematical formulation for the prob-
lem in Chapter 4 together with detailed description of the numerical phase for
addressing mathematical formulations. The main steps is to reduce the governing
equations in partial differential equations (PDEs) to ordinary differential equations
(ODEs) using the similarity transformation technique. The simplified ODEs were
then numerically solved with MATLAB’s bvp4c programme.
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Next, from Chapter 4 until Chapter 8, the five main objectives of this study
will be discussed. The objectives of our study include the mathematical formu-
lations of the flow of boundary layer and heat exchange over an exponential,
linear and nonlinear stretching or shrinking surface in nanofluid with suction, slip,
chemical reaction, Soret and Dufour, and viscous dissipation and heat generation
or absorption effects. The parameters studied are nanoparticle volume fraction,
suction, chemical reaction, curvature, mixed convection, buoyancy ratio, stretching
or shrinking, magnetic, heat generation, and radiation, with Soret, Dufour, and
Eckert numbers. Finally, Chapter 9 summarises all of the research done and
highlights several ideas for further investigation.
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