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In this study, a new version of diagnostic method of identification of multiple high 

leverage points (HLPs) is developed by incorporating the location and scatter estimators 

obtained from the √𝑛 Reweighted Fast Consistent and High Breakdown method. To 

improve the accuracy of the identification of HLPs, a robust measure of scale, 𝑄𝑛 is 

integrated in the computation of cut-off point for the new method. The results indicate 

that the new method successfully identify high leverage points with the least computing 

time, highest percentage of correct detection of high leverage points and smallest 

percentage of swamping and masking effects compared to the existing diagnostic Robust 

Generalized Potential method which is based on the Minimum Volume Ellipsoid and 

diagnostic Robust Generalized Potential method which is based on the Index Set 

Equality. 
 

 

Several methods have been developed to detect multiple influential observations in linear 

regression that includes the Fast Improvised Influential Distance.  However, this method 

is computationally not stable, still suffers from masking and swamping effects, time 

consuming issues and not using proper cut-off point. As a solution to this problem, a 

new robust version of influential distance method which is based on √𝑛 Reweighted Fast 

Consistent and High Breakdown estimator is proposed.  A confidence bound type cut-

off point is also proposed.  The results signify that the proposed method is very 

successful in identifying multiple influential observations with the least computational 

running times, least swamping effect and no masking effect compared to Influential 

Distance and Fast Improvised Influential Distance methods. 

 

 

The Generalized M-estimator (GM6) poses several weaknesses such as it down weights 

good high leverage points and takes very long computational running times. The 
Generalized M- estimator based on Fast Improvised Generalized Studentized residual 
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(GM-FIMGT) is introduced to remedy this problem. However, this estimator uses Index 

Set Equality in the computation of robust Mahalanobis distance which is found to be not 

stable and still possesses masking and swamping effect. Thus, a new robust GM 

estimator (GM-RFIID) that incorporates a new weight function constructed from a new 

version of influential distance method is established. The findings show that the GM-
RFIID is more efficient than the GM-FIMGT and GM6 estimators.  

 

 

Robust Jackknife Ridge MM and Jackknife Ridge GM2 estimators are developed to 

simultaneously rectify the problem of multicollinearity with the existence of outliers. 

Nonetheless, both estimators are still not very efficient because they suffer from long 

computational running time and not very successful in handling high leverage points. 

Hence, a robust Jackknife Ridge Regression based on GM-RFIID estimator is proposed. 

The results show that the proposed estimator outperforms the existing methods discussed 

in this thesis. 

 

 
Not much research has been done to address the multicollinearity issue caused by high 

leverage points. The deletion of suspect HLPs from the analysis by using Generalized 

Potentials, the Generalized M-Diagnostic Robust Generalized Potential-Least Trimmed 

of Squares and the Diagnostic Robust Generalized Potential-MM methods are the three 

methods that are found in the literature. However, they are not very efficient. Hence, we 

propose the GM-RFIID method to remedy the problem of multicollinearity which is 

caused by high leverage points. The results show that the GM-RFIID method is superior 

compared to the existing methods discussed in this thesis.  
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Dalam kajian ini, kaedah berdiagnostik versi baharu bagi mengesan titik tuasan tinggi 

berganda dibangunkan dengan menggabungkan penganggar lokasi dan skala yang 

diperoleh daripada penganggar √𝑛 berpemberat pantas konsisten dan kaedah titik 

musnah tinggi. Bagi meningkatkan ketepatan pengecaman titik tuasan tinggi, ukuran 

skala teguh, 𝑄𝑛 digabungkan dalam pengiraan titik-potong bagi kaedah baharu ini. 

Keputusan menunjukkan bahawa kaedah baharu ini berjaya mengesan titik tuasan tinggi 

dengan masa pengiraan yang paling singkat, peratus tertinggi pengesanan titik tuasan 

tinggi yang betul dan peratus kesan limpahan dan penyorokan paling kecil berbanding 

dengan Kaedah Potensi Teritlak Teguh Berdiagnostik yang berasaskan Isipadu 

Minimum Ellipsoid dan Kaedah Potensi Teritlak Teguh Berdiagnostik yang berasaskan 

indeks set kesaksamaan. 
 

 

Beberapa kaedah telah dibangunkan bagi mengesan cerapan berpengaruh berganda 

dalam regresi linear termasuk Kaedah Penambahbaikan Jarak Berpengaruh Pantas. 

Walaubagaimanapun, pengiraan kaedah ini tidak stabil, masih mengalami kesan 

penyorokan dan kesan limpahan, isu masa pengiraan dan tidak mengunakan titik-potong 

yang betul. Bagi mengatasi masalah ini, dicadangkan satu kaedah teguh versi baharu 

bagi jarak berpengaruh yang berasaskan penganggar √𝑛 berpemberat konsisten pantas 

dan titik musnah tinggi. Keputusan menunjukkan bahawa kaedah yang dicadangkan 

sangat berjaya dalam mengenalpasti cerapan berpengaruh dengan masa pengiraan paling 

singkat, kesan limpahan paling kecil dan tiada kesan penyorokan berbanding dengan 

Kaedah Jarak Berpengaruh dan Kaedah Penambahbaikan Jarak Berpengaruh Pantas.  

 

 

Penganggar M-teritlak (GM6) mempunyai beberapa kelemahan seperti ia nya 

menurunkan pemberat bagi titik tuasan tinggi baik dan mengambil masa pengiraan yang 
panjang. Bagi mengatasi masalah ini, diperkenalkan Penganggar M-teritlak yang 
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berasaskan reja teritlak student tertambahbaik (GM-FIMGT). Walaubagaimanapun, 

kaedah ini menggunakan indeks set kesaksamaan dalam pengiraan jarak Mahalanobis 

teguh, yang diketahui tidak stabil dan masih mempunyai kesan penyorokan dan kesan 

limpahan. Oleh itu, satu penganggar baharu teguh GM-RFIID yang menggabungkan 

fungsi pemberat baharu yang dibina dari ukuran jarak berpengaruh versi baharu telah 
dibangunkan. Hasil kajian menunjukkan bahawa GM-RFIID adalah lebih cekap 

daripada penganggar GM-FIMGT dan penganggar GM6.  

 

 

Penganggar Jackknife Ridge Teguh MM dan Jackknife Ridge GM2 dibangunkan untuk 

menyelesaikan masalah multikolinearan dengan kehadiran titik terpencil.  

Walaubagaimanapun, kedua-dua penganggar ini masih kurang cekap kerana mereka 

mempunyai masa pengiraan yang panjang dan tidak berjaya sepenuhnya untuk 

menangani titik tuasan tinggi. Seterusnya, regresi teguh Jackknife Ridge berasaskan 

GM-RFIID telah dibangunkan. Keputusan menunjukkan bahawa penganggar yang 

dicadangkan ini mengatasi kaedah sedia ada yang dibincangkan dalam tesis ini. 

 
 

Tidak banyak penyelidikan telah dijalankan untuk menangani isu multikolinearan yang 

disebabkan oleh titik tuasan tinggi. Penghapusan suspek titik tuasan tinggi daripada 

analisis dengan menggunakan Kaedah Potensi Teritlak, Kaedah Kuasadua Terkecil 

Terpangkas- Potensi Teritlak Teguh Berdiagnostik-M dan Kaedah MM- Potensi Teritlak 

Teguh Berdiagnostik, adalah tiga kaedah yang terdapat dalam kesusteraan. 

Walaubagaimana pun, ketiga-tiga kaedah itu kurang cekap. Oleh itu, kami 

mencadangkan kaedah GM-RFIID bagi mengatasi masalah multikolinearan yang 

disebabkan titik tuasan tinggi. Keputusan menunjukkan bahawa kaedah GM-RFIID 

adalah lebih unggul berbanding dengan  kaedah sedia ada yang dibincangkan dalam tesis 

ini. 
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1 

CHAPTER 1 

1 INTRODUCTION 

1.1 Background of the Study 

Regression analysis is a vital statistical approach for examining the linear relation 

between a response variable and one or more predictor variables. Sir Francis Galton first 
introduced it in the nineteenth century. There are multiple techniques available for 

modelling and analyzing variables in linear regression. One widely adopted technique is 

the ordinary least squares (OLS), which was introduced by Legendre and Gauss 

(Maronna et al., 2006) due to its simplicity and computational efficiency. The OLS is 

easy to use as it is available in most of the statistical software like SPSS, SAS and 

MINITAB. The OLS estimates are obtained by minimizing the sum of squared errors. It 

has many attractive features under normality assumption of regression errors, not only 

in parameters estimation but also in testing of hypothesis. The Gauss-Markov theorem 

states that under certain conditions, the OLS method provides the Best Linear Unbiased 

Estimator (BLUE) for the parameters of a linear model, specifically, the estimator has 

the smallest variance among those that are unbiased. Thanks to its advantageous 

properties, such as a closed-form solution and ease of computation, OLS is extensively 

applied in various fields of study, including applied sciences and engineering. 

Nonetheless, many not aware that the OLS estimates suffer a huge setback when outliers 

are present in the data. According to Belsley et al. (1980), outliers refer to observations 
that have the greatest effect on the calculated values of various estimates, either alone or 

in combination with multiple other points. Additionally, Hawkins (1980) described an 

outlier as one that differs so significantly from the others that it raises concerns that it 

was caused by a variety of factors. “An outlier is an observation that, because it is 

unusual and/or unjustified, deviates decisively from the overall behavior of experimental 

data in regards to the criterion studied,” as explained by Muñoz-Garcia et al. (1990). As 

per Barnett and Lewis (1994), outliers are points that are significantly different from the 

bulk of observations included in a data collection.  

In regression analysis, outliers can be classified into three main categories (residual 

outliers, vertical outliers, and high leverage points). Residual outliers refer to 

observations that have a large residual while vertical outliers refer to observations that 

are extreme or are outlying in the Y-space. High leverage points (HLPs) are those 

observations that fall far from the majority of the explanatory variables or are outlying 

in the X-space (see Figure 1.1 and Figure 1.2). 
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Figure 1.1 : Outliers in Y-Direction and X-Directions 

 

 

 

Figure 1.2 : Example of Simple Linear Regression Showing (a) Regular 

Observations, (b) Vertical Outliers, (c) Good Leverage Points, (d) Bad Leverage 

Points 
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According to Hampel et al. (1986), a routine data set typically contains about 1-10 % 

outliers, and even the highest quality data set cannot be guaranteed to be free of outliers. 

One immediate consequence of the presence of outliers may cause apparent non-

normality (Huber, 1973). Since most of the statistical analysis are based on normality 

assumption, the violation of this assumption may lead to invalid inferential statements 
and inaccurate predictions. Evidences are now available in the literatures that the 

presence of outliers have an adverse effect on the computed values of various estimates 

(Rousseeuw, 1985; Imon & Khan, 2003; Midi et al., 2009; Riazoshams et al., 2010; 

Bagheri et al., 2012, Zahariah et al., 2021, Rashid et al., 2022). Rashid et al. (2021) 

pointed out that among the three types of outliers, leverage point has the most detrimental 

effect on the computed values of various estimates which leads to misleading conclusion 

about the fitted regression model. 

It is now evident that in the presence of multicollinearity, the OLS can result in a very 

poor estimate. Multicollinearity is a statistical phenomenon that occurs when two or 

more independent variables in a regression model are highly correlated with each other. 

According to Bagheri et al. (2012) and Bagheri and Midi (2015), multicollinearity can 

cause the OLS estimates to have large variances which lead to inaccurate prediction. The 

problem is further complicated when both outliers and multicollinearity are present in a 

data. Robust methods alone cannot remedy the simultaneous problems of 

multicollinearity and outliers.  

Hence robust statistical methods that are able to reduce/eliminate the effect of 

multicollinearity and outliers should be used as an alternative to the classical method. 

Thus, in this thesis, we will develop several alternatives robust methods to deal with 

multicollinearity and outliers. Several basic concepts and some commonly used methods 

need to be introduced in the following sections. 

1.2 Mahalanobis Distance (MD) 

Mahalanobis Distance (MD) measures how far each point is from the centroid of all 

points for the independent variables. It is initially introduced by Mahalanobis (1936), 

finds extensive application in multivariate analysis as a prominent metric for measuring 

the dissimilarity between two individual points within a dataset containing multiple 

variables (Filzmoser et.al, 2009). 

Let present the 𝑖𝑡ℎ vector of independent variables as: 

 

𝑋𝑖
′ = (1,𝑋1, 𝑋2, … , 𝑋𝑃) = (1, 𝑡𝑖), 

 

 

where 𝑡𝑖 is a 𝑝 −dimensional row vector. The vector of the mean and the variance 

covariance matrix can be calculated, respectively as:  
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 𝑡̅ = 1 𝑛⁄ ∑ 𝑡𝑖
𝑛
𝑖=1    

 

𝐶 = (
1

𝑛−1
)∑ (𝑡𝑖

𝑛
𝑖=1 − 𝑡̅ ) (𝑡𝑖 − 𝑡̅ )

′,   

 

The (𝑀𝐷) for each observation is defined as follows:  

 

𝑀𝐷𝑖 = √(𝑡𝑖 − 𝑇(𝑋))
′
𝐶(𝑋)−1 (𝑡𝑖 − 𝑇(𝑋))         𝑖 = 1,2,… , 𝑛,                              (1.1) 

 

 
and Mahalanobis (squared) distance is given by, 

 

𝑀𝐷𝑖
2 = (𝑡𝑖 − 𝑇(𝑋))

′
𝐶(𝑋)−1 (𝑡𝑖 − 𝑇(𝑋)),    i = 1, 2, 3, …, n 

 

 

where  𝑇(𝑋) is the mean vector ( 𝑡̅ ) and 𝐶(𝑋) is the variance covariance matrix (𝐶).  

1.3 Minimum Volume Ellipsoid (MVE) 

The Minimum Volume Ellipsoid (MVE) represents another robust multivariate 

estimator. Rousseeuw (1985) stated that the center of the minimal volume ellipsoid 

covers at least half of the ℎ points of X, where ℎ can be taken as equal to [
𝑛

2
] + 1. This 

ellipsoid can serve as an effective covariance predictor. However, in practical 

applications, considering all possible subsets of data becomes infeasible. Midi et al. 

(2009) proposed an approach to compute the MVE by first drawing a subsample of (p + 

1) distinct observations, indexed by 𝐽 = (𝑖1, 𝑖2, . . . 𝑖𝑝). The mean and covariance matrix 

are then determined as follows: 

 

�̄�𝑗 =
1

𝑝+1
∑ 𝑥𝑖𝑖∈𝐽  and 𝐶𝑗 =

1

𝑝
∑ (𝑥𝑖 − �̄�)

𝑇(𝑥𝑖 − �̄�)𝑖∈𝐽 . 

 
 

Assuming that the 𝐶𝑗 is non-singular, the corresponding ellipsoid needs to be adjusted to 

precisely enclose ℎ points, which involves the computation of 𝑚𝑗
2 = 𝑀𝑒𝑑(𝑥𝑖 −

�̄�𝐽)𝐶𝐽
−1(𝑥𝑖 − �̄�𝐽)

𝑇. The resulting ellipsoid’s volume, denoted by 𝑚𝐽
2𝐶𝐽 , is proportional 

to √𝑑𝑒𝑡(𝑚𝐽
2𝐶𝐽) = √𝑑𝑒𝑡( 𝐶𝐽)(𝑚𝐽)

𝑃 . This process is repeated for multiple 𝐽 iterations to 

minimize the above determinant, and the corresponding values are obtained as follows: 

𝑇(𝑋) = �̅�𝐽 and 𝐶(𝑋) = (𝑥𝑝,0.5
2 )−1 𝑚𝐽

2𝐶𝐽 ,where 𝑥𝑝,0.5
2  is the median of the Chi-square 

distribution with p degrees of freedom. This correction factor is required to attain the 

consistency for multivariate normal data. 
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1.4 Basic Notions  

Robust estimators are designed to offer valuable information even when some of the 

parametric assumptions are violated. In the context of linear regression analysis, robust 

regression methods are employed to yield resistant estimates, ensuring stable results 

even in the presence of unusual observations in the dataset (for further details, refer to 

Huber, 1964; Hampel, 1974; Andrews, 1974; Ramsay, 1977; Simpson, 1995; 

Rousseeuw and Leroy, 1987; Wilcox, 2005; Maronna et al., 2006). 

The primary objective of a robust estimator is to provide estimates based on the 

information contained in the majority of the data set. It seeks to fit a model that relies on 

the information from the most significant portion of the data. The fundamental properties 

used to assess the performance of robust estimators are efficiency, breakdown point, and 

bounded influence. These principles are briefly stated as follows: 

1.4.1 Efficiency 

Efficiency serves as a metric to gauge how effectively a robust method performs 

compared to the least squares method under basic assumptions. It can be expressed as a 

percentage, representing the ratio between the variance of the least squares fits on the 

clean data (without outliers) and the variance of the robust fit (Maronna et al., 2006). An 

efficient estimator is also known as the minimum variance unbiased estimator (MVUE), 

as it achieves the minimum variance among all parameter estimates. Precision is another 

vital aspect of an estimator, and it is quantified by its statistical efficiency. The statistical 
efficiency of an estimator depends on the assumed distribution. For example, the sample 

mean exhibits perfect efficiency of 100% when the distribution is normal, but its 

efficiency may vary with other distributions. 

1.4.2 Breakdown Point 

A robust approach aims to possess a high breakdown point, a crucial characteristic. The 

breakdown point (BP) represents the minimum percentage of contamination that can 

completely disrupt or collapse an estimator or estimating process (Hampel, 1974; 

Coakley and Hettmansperger, 1993). Conversely, even a small number of bad data points 
(outliers) can significantly distort an estimator. When an estimator has a high breakdown 

point, it can withstand a substantial number of outliers without the analysis collapsing. 

In practical terms, this means the estimate remains stable as long as less than 50% of the 

data are replaced with outlying observations, and the maximum attainable BP is thus 

0.50 (Rousseeuw and Croux, 1993). Furthermore, to formally define breakdown in a 

finite sample, we can consider a sample of 𝑛 data points as follows: 

 

𝐺 = {(𝑥11, … , 𝑥1𝑝 , 𝑦1),… , (𝑥𝑛1,… , 𝑥𝑛𝑝, 𝑦𝑛)} . 

 

 

If we assume 𝑇 to be a regression estimator, we get the following vector of regression 

coefficients when we apply 𝑇 to such a sample 𝐺: 
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𝑇(𝐺) = �̂�. 

 

 

To obtain all possible corrupted samples 𝐺𝑇, any m of the original data points is replaced 

with arbitrary values, or also known as outliers. Therefore, the estimator 𝑇′𝑠 breakdown 

point at sample 𝐺 is defined as 

 

𝐵𝑃(𝑇, 𝐺) = min {
𝑚

𝑛
; SUP
𝐺𝑇
‖𝑇(𝐺𝑇) − 𝑇(𝐺)‖ is infinite} 

 

 

in which the supremum is over all possible data matrix 𝐺, which contains 𝑛 −𝑚 

observation and 𝑚 contaminated points (Rousseeuw and Leroy, 1987; Maronna et al. 

2006).  

1.4.3 Bounded Influence Function  

The bounded influence function (BIF), as demonstrated by Simpson (1995), exhibits 

robustness against high leverage points in the X space. Its primary purpose is to 

safeguard model estimators from the influence of outlier points within the X space. 

Additionally, the influence function (IF) is utilized to assess the robustness of an 

estimator concerning minor contamination levels, often serving as a means to determine 

whether the estimator possesses BIF. 

The following expression represents the IF of an estimator 𝑇 at a distribution 𝐹, 

calculated for points 𝑥0within the sample space, provided the limit exists: 

 

IF(𝑥0;𝑇, 𝐹) = lim
δ→∞

𝑇((1 − 𝛿)𝐹 + 𝛿𝜑𝑥0) − 𝑇(𝐹)

𝛿
 , 

 
 

where 𝜑𝑥0 denotes the probability distribution that puts all its mass in the point 𝑥0 and 𝛿 

represents the contamination amount. Moreover, it is vital to note that the influence 

function reflects the bias introduced by a few outliers at the point  𝑥0 (Rousseeuw and 

Leroy, 1987; Simpson, 1995; Wilcox, 2005; Maronna et.al, 2006). 

1.5 Problem Statement 

As will be presented in Chapter 2 (Literature Review) many methods of identification of 

HLPs have been proposed. Among all methods that will be discussed, most of them are 

not very successful in detecting multiple HLPs. As a solution to this, Midi et al. (2009) 

established Diagnostic Robust Generalized Potential (DRGP) which is based on 

Minimum Volume Ellipsoid (MVE) in order to improve the detection rate of high 

leverage points. The DRGP(MVE) is very successful in the detection of HLPs.  
However, it was reported that the algorithm of DRGP(MVE) has complex computational 

form and has a long computational running time. The iterative computational form of 
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MVE makes DRGP(MVE) to consume a lot of time. Lim and Midi (2016) proposed 

another version of DRGP based on index set equality (ISE) denoted by DRGP(ISE) in 

order to reduce the computational complexity of DRGP(MVE) of Midi et al. (2009). 

Nonetheless, DRGP(ISE) is computationally not stable and still suffers from masking 

and swamping effects. This shortcoming has motivated us to improvise the existing 
DRGP by integrating the location and scatter estimators obtained from the Reweighted 

Fast Consistent and High breakdown (RFCH) estimators (Olive & Hawkins, 2010). The 

developed method is denoted as DRGP(RFCH). We also suggest using 𝑄𝑛 (estimate of 

scale) as robust alternative to scale estimate, instead of using NMAD (Midi et al.2009) 

in the computation of cut-off point for the proposed DRGP(RFCH) which is denoted as 

𝑝𝑖𝑖 (𝑝𝑖𝑖 refer to potential values), to improve the accuracy of the identification of HLPs. 

As reported by Rousseuw and Croux (1993), the efficiency of NMAD at normal data is 

only 37% as compared to median which has 64% efficiency. Furthermore, both 𝑄𝑛 and 

NMAD have desirable robustness properties (50% breakdown point and bounded 

influence). However, 𝑄𝑛 has better efficiency (82%) and does not depend on symmetry.   

Influential observations will be discussed at length in Chapter 2 (Literature Review). 

Belsley et al. (2004) noted that influential observations (IOs) are those observations 

which either alone or together with several other observations have detrimental effect on 
the computed values of various estimates. Hence, it is very crucial to detect them before 

making any statistical analysis or inferential statements. Many methods have been 

developed to detect IOs that includes the “influential distance” (ID) of Nurunnabi et al. 

(2016) and fast influential distance (FIID) introduced by Midi et al. (2021b). The ID 

technique comprises three main stages. Initially, the first stage involves identifying 

suspected unusual observations through the Group Union Method (GUM). In the second 

stage, it detects high leverage points (HLPs) and vertical outliers (VOs). And in the third 

stage, it calculates the influential distance (ID). Overall, this method is highly effective 

in identifying influential observations (IOs). However, this method has a drawback 

concerning the first stage and when deciding to consider IOs. In the first stage, the 

technique employs the union of five different detection methods (standardized 
studentized residual, standardized LMS residuals, leverage values or hat matrix, Cook’s 

distance, and difference in fits) to identify the suspected unusual observations. Some of 

these detection methods have been reported to suffer from a high rate of masking and 

swamping, as discussed in Midi et al. (2009). Additionally, the computation time 

required for all these diagnostic methods is substantial. Hadi (1992) highlighted the 

critical importance of choosing the initial suspected unusual observations accurately, as 

it significantly affects the correct detection of the final influential observations (IOs).  

The suspected IOs of Nurunnabi et al. (2016) is then confirmed by sketching a 

confidence bound on the ID’s plot of GSR versus GLV and declared an observation is 

IO if it falls beyond its confidence bound. This approach will ultimately tend to declare 

more good observations as IOs and taking longer computational running time. To rectify 
this problem, Midi et al. (2021b) introduced an improved version of ID (FIID) that 

exhibits reduced computational running times. This version has demonstrated 

considerable success in detecting IOs with diminished swamping and masking effects. 

Despite these advancements, the efficiency of FIID in terms of computation running 

times and IO detection is still limited due to its reliance on index set equality (ISE) as a 

fundamental basis. Recent findings have indicated that ISE can be inherently unstable 

because the algorithm’s outcomes are contingent upon the initial subset, ‘h,’ that is 

selected. Midi et al. (2021b) illustrated that the final estimator of location and scatter 
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matrix based on ISE is analogous to the minimum covariance determinant (MCD) when 

the same initial subset is employed. However, if a different initial subset is utilized, the 

results may significantly diverge. Another shortcoming of this method is the use of F 

distribution as cut-off point for FIID which is not suitable since the distribution of FIID 

is intractable. The weaknesses of this estimator have inspired us to develop an alternative 
method of identifying IOs named robust and fast influential distance denoted as RFIID. 

The DRGP (RFCH) is integrated in the algorithm of RFIID. 

Many robust estimators that are resistance to outliers such as the M, MM, S, Least 

Trimmed Squares (LTS), Least Median of Squares (LMS) are developed to address the 
issue of outliers affecting parameter estimation methods. While some of these methods 

exhibit high efficiency and possess high breakdown points (HBDP), they lack bounded 

influence properties, in the sense that they cannot cope with HLPs. The GM6 estimator 

which is based on robust Mahalanobis distance (RMD) which uses minimum volume 

ellipsoid (MVE) as an initial of d–weight function (Rousseeuw, 1985) is noted to have 

bounded influence properties. However, as will be discussed in Chapter 2, the GM6 has 

several drawbacks due to using MVE. The computation running time for MVE is very 

intensive. The MVE is noted to swamp some low leverage as high leverage points. 

Besides, the RMD which is based on MVE attempts to identify high leverage points 

without taking into consideration whether they are good or bad leverage points. Hence, 

the GM6-MVE considers the good leverage points as bad leverage points and its 
efficiency tends to decrease as the number of good leverage points increases. The 

weaknesses of GM6-MVE have prompted Midi et al. (2021a) to put forward another 

version of GM estimator which is called the Fast GM estimator which is based on 

Improvised Generalized MT (FIMGT). It is denoted as GM-FIMGT estimator.  The Fast 

GM estimator utilizing high breakdown point S-estimator as an initial estimate and using 

𝑑 −weight function based on Fast Improvised Generalized MT (FIMGT). It has been 

shown that the GM-FIMGT is more efficient than the GM6 estimator. The only 

shortcoming of this method is that the FIMGT is based on index set equality (ISE) 

whereby it is computationally not stable. Hence, their work has motivated us to propose 

a new version of GM based on robust and fast influential distance RFIID that is denoted 

as GM-RFIID. The RFIID is incorporated in the algorithm of GM-RFIID. 

This thesis also addresses the issue of multicollinearity in multiple linear regression 

models in the presence of HLPs. The problem of multicollinearity can stem from various 

sources, such as the data collection method employed, model constraints, model 

specification, and an overly defined model (Montgomery et al., 2021). It is important to 
note that the OLS estimates are much affected by the existence of multicollinearity in 

which it occurs when two or more independent variables are highly correlated.  

Multicollinearity results in undesirable consequences and relying on the OLS estimator 

can result in a wrong sign problem of regression coefficients, lead to erroneous 

interpretation of regression coefficient, causes regression estimates to have unduly large 

variances and inaccurate prediction. Many remedial techniques to address the adverse 

effects of multicollinearity will be discussed in Chapter 2 (Literature Review). The ridge 

regression estimator (RR) is the commonly used method to remedy the problem of 

multicollinearity (Hoerl ,1962; Hoerl and Kennard ,1970b; Hoerl et al.,1975; Marquard 

and Snee,1975). However, Batah et al. (2008) and Akdeniz and Akdeniz, (2012) noted 

that the RR estimator is significantly biased. Therefore, Singh et al. (1986) proposed an 
unbiased ridge estimator based on the Jackknife method. Unfortunately, RR techniques 
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alone and robust method alone are not adequate enough to address the complicated 

problems of multicollinearity and outliers (Midi and Zahari, 2007; Alguraibawi et al., 

2015; Zahariah et al., 2021). As a solution to this shortcoming, Jadhav and Kashid (2011) 

suggested the use of Jackknife ridge M-estimator to overcome multicollinearity and 

outliers in the Y direction. Alguraibawi et al. (2015) proposed a combination of the 
Jackknife Ridge Regression (JRR) with MM-estimator and called Robust Jackknife MM 

estimator, denoted as RJMM. They also proposed combining the Jackknife Ridge 

Regression with the GM2-estimator of Bagheri (2011) and denoted the estimator as 

RJGM2. As will be discussed in Chapter 2 (Literature Review), the GM2 is noted to 

have several drawbacks due to using MVE in the computation of RMD. It takes longer 

computational running times and its efficiency decreases as the number of good leverage 

points increases. Thus, this drawback has motivated us to establish Robust Jackknife 

Ridge Regression based on GM-RFIID denoted as RJGM-RFIID.  

Many are not aware that beside data collection strategy, model constraints, model 

specification, and an over-defined model, the existence of HLPs is another prime source 

of multicollinearity (Imon and Khan, 2003). Bagheri et al. (2012) noted that 

multicollinearity caused by HLPs is related to collinearity-influential observation, in 

which it can alter multicollinearity pattern of a data. Specifically, the high leverage 

collinearity-enhancing observations (HLCEO) that induce multicollinearity in a data set 

is the prime source of multicollinearity. Regardless of the source, detecting 
multicollinearity is very important, so that correct remedial measure is taken up to obtain 

efficient parameter estimates. Corrective techniques such as ridge regression and 

jackknife ridge regression are ineffective when multicollinearity is caused by the 

presence of HLPs. Very scarce work is devoted to this issue. Since multicollinearity is 

caused by HLPs, the only solution to this problem is by using robust method that able to 

reduce the effect of HLPs. Imon and Khan (2003) suggested deletion of suspect HLPs 

from the analysis by using generalized potentials (GP). Nonetheless, Midi et al. (2009) 

noted that the GP approach is not very successful in identifying HLPs. Bagheri and Midi 

(2009) proposed using their developed GM-DRGP-LTS and DRGP-MM estimators to 

remedy multicollinearity caused by the presence of HLPs. However, those estimators are 

still not very efficient because their derivation involve RMD based on MVE which have 

been mentioned previously to have several drawbacks. Hence, their work has inspired 
us to propose the new version of GM estimator (GM-RFIID) developed in Chapter 5, to 

remedy the problem of multicollinearity caused by HLPs.  

1.6 Research Objectives 

The objective of our research can be outlined as follows: 

 

1. To develop a fast-diagnostic technique for the detection of high leverage 

points in multiple linear regression model (DRGP (RFCH)). 

2. To develop Fast Improvised Method of Identification of Influential 

Observations in multiple linear regression model (RFIID). 

3. To develop a fast version of high breakdown, high efficiency, bounded 

influence GM estimator for multiple linear regression model (GM-RFIID). 
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4. To develop Robust Jackknife Ridge Regression based on GM-RFIID to 

simultaneously remedy the multicollinearity problems and outliers. 

5. To apply GM-RFIID for handling multicollinearity problems caused by 

HLPs.  

 
 

1.7 Scope and Limitation of the Study 

The multiple linear regression model is widely used in many fields of studies such as 

business, economics, medicine and social sciences. In real situation, it has many practical 
uses. Multiple linear regressions are predominantly fitted using the OLS method because 

of tradition and ease of computation if the underlying assumptions are hold. 

Unfortunately, the OLS estimate is not robust against outliers and influential 

observations. Its performance worsens when both multicollinearity and outliers are 

present in a data set. Moreover, there is evidence that HLPs is a new source for 

multicollinearity. Hence the scope of this thesis concentrates on the establishment of 

diagnostic and robust methods in multiple linear regression model. 

The most challenging aspect in this thesis evolves around creating the necessary 

programming codes. Finding dataset that suited the particular problems at hand is also 

another challenging task. In most of the chapters, we only report the simulation study for 

few numbers of parameters (p =2,3,4,5). The results of another p are consistent. 

1.8 Outline of the Thesis 

This thesis consists of eight chapters based on the research objectives and scope of the 

study. Chapters of the thesis are structured in a way that makes it clear what the 

objectives are and how they relate to each other. 

Chapter Two discusses the literature reviews on the diagnostic methods of high 

leverage points and vertical outliers in the multiple linear regression. This chapter also 

reviews some methods on the identification of influential observations. Some existing 

robust regression methods for parameter estimation in the presence of HLPs and vertical 

outliers are also presented. Finally, the literature reviews on multicollinearity with its 

consequences and multicollinearity sources with its usual detection and estimation 

techniques.  

Chapter Three is mainly dedicated to develop a Fast Diagnostic Technique for the 

Detection of High Leverage Points in multiple linear regression model, named as 

DRGP(RFCH). The performance of DRGP(RFCH) is evaluated using real data sets and 

simulation studies. 

Chapter Four discusses the new method for the identification of multiple influential 

observations termed Robust and Fast Improvised Influential Distance (RFIID). Several 
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well-referred real data set and Monte Carlo Simulation study are conducted to evaluate 

the performance of the proposed method. 

Chapter Five presents the development of the GM-estimator in the linear regression, 

denoted by GM-RFIID. Real data set and Monte Carlo simulations are presented to 

assess the performance of the proposed method.  

Chapter Six discusses the establishment of the new robust Jackknife Ridge Regression 

based on GM-RFIID to simultaneously remedy the multicollinearity problems and 

outliers. Real data set and Monte Carlo simulations are presented to evaluate the 

performance of the proposed method.  

Chapter Seven discusses the issue of multicollinearity arising from the presence of 

highly leveraged points (HLPs) in a data set. This type of phenomena is tackled by 

utilizing the GM-estimator. The discussion is focused on using GM-RFIID using GM- 

To evaluate the effectiveness of the proposed technique, a Monte Carlo simulation study 

and numerical examples are conducted. 

Chapter Eight presents a summary, conclusions, and recommendations for future 

research. 
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