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Abstract—Clinical narratives contain crucial patient information for predicting cardiac failure. Accurate and timely cardiac failure 

recognition (CFR) significantly impacts patient outcomes but faces challenges like limited dataset sizes, feature space sparsity, and 

underutilization of vital sign data. This study addresses these issues by developing a methodology to improve CFR accuracy and 

interpretability within clinical narratives. Four datasets—the Framingham Heart Study, Heart Disease from Kaggle, Cleveland Heart 

Disease, and Heart Failure Clinical Records—undergo preprocessing, including handling missing values, removing duplicates, scaling, 

encoding categorical variables, and transforming unstructured data using natural language processing (NLP). Various feature selection 

methods (Chi-Squared, Forward Selection, L1 Regularization) are used to identify influential features for CFR, and the SHapley 

Additive exPlanations (SHAP) technique is integrated to improve interpretability. Support Vector Machine (SVM), Logistic Regression 

(LR), and Random Forest (RF) models are trained and evaluated. Performance was evaluated using accuracy, precision, recall, f1-

score, and area under the receiver operating characteristic curve (AUC-ROC). Results indicate that L1 Regularization with LR and 

Chi-Squared with RF perform best for specific datasets. The final model, combining all datasets with Forward Selection and RF, 

achieves high accuracy (91%), precision (87%), recall (97%), f1-score (91%), and AUC-ROC (94%). This study concludes that 

advanced text-based feature selection and SHAP interpretability significantly enhance CFR model accuracy and transparency, aiding 

clinical decision-making. Future research should incorporate more diverse datasets, explore advanced NLP techniques, and validate 

models in various clinical settings to enhance robustness and applicability. 
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I. INTRODUCTION

Cardiac failure recognition (CFR) within clinical narratives 

stands as a critical challenge in healthcare, demanding 

accurate and timely identification for optimal patient care. 

The complexities of unstructured medical data, including 

diverse linguistic patterns, limited dataset sizes, and 

underutilized vital sign information, have hindered the 
effectiveness of existing methodologies in CFR [1]. To 

address these challenges, this study explores advanced text-

based feature selection techniques and the SHapley Additive 

exPlanations (SHAP) interpretability method as promising 

approaches. 

Clinical narratives, with their nuanced and multifaceted 

unstructured data, require advanced feature selection to distill 

crucial information effectively [2]. By applying natural 

language processing (NLP) strategies, this research 

transforms unstructured clinical texts, such as patient histories 

and admission notes, into meaningful numerical 

representations. This approach addresses issues of language 

diversity and feature space sparsity, aiming to extract vital 

clinical insights [3]. 

In parallel with feature selection, model interpretability is 

crucial in ensuring that machine learning (ML) predictions are 

not only accurate but also comprehensible and transparent for 

clinical practitioners [3]. The integration of interpretability 

into predictive modeling enhances decision-making in 

healthcare settings, where understanding the factors behind 

predictions is essential [4]. This study proposes to combine 
NLP strategies with SHAP to refine algorithms, optimize 

feature selection, and enhance model interpretability, thereby 

improving CFR's accuracy and transparency in real-world 

clinical applications. 

Existing studies on CFR in clinical narratives, while 

valuable, face significant challenges that limit their 

applicability in clinical practice. A major limitation is the use 
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of small datasets, which restricts the ability to capture diverse 

patterns and essential relationships, thereby affecting the 

accuracy and interpretability of CFR models [4], [5]. Another 

challenge is the feature space sparsity, which complicates the 

identification of relevant information within unstructured data 

[6]. Additionally, the underutilization of vital sign numeric 

values in clinical narratives limits the predictive accuracy of 

CFR models, as highlighted in several studies [1], [3], [4], [5]. 

These limitations underscore the need for innovative 

approaches that enhance feature selection, model 
generalization, and interpretability. 

This study employs four public datasets from repositories 

like Kaggle and the University of California, Irvine (UCI). It 

focuses on developing a decision model for CFR through 

advanced text-based feature selection methods, analyzing 

unstructured clinical notes, and addressing feature space 

sparsity in small datasets. The feature selection techniques 

used include Chi-Squared (filter method), L1 Regularization 

(embedded method), and Forward Selection (wrapper 

method). Emphasis is placed on refining predictive models for 

CFR without developing new diagnostic tools or 
interventions. 

This study aims to develop a model using NLP strategies 

tailored for text-based feature selection in CFR. Also, this 

study deploys advanced ML models trained on features 

derived from filter, wrapper, and embedded methods to 

predict cardiac failure within clinical narratives. Further, this 

study assesses the models' performance on diverse clinical 

datasets using metrics like accuracy, precision, recall, F1-

score, and AUC-ROC to make sure they are applicable in 

medical settings. Based on the objectives, this study is subject 

to proposes three research questions, as follows: 
● RQ 1: How can text-based feature selection 

methodologies enhance the accuracy of pattern 

recognition in clinical narratives for effective CFR? 

● RQ 2: What novel ML strategies can address the 

challenges of sparse clinical datasets and underutilized 

vital sign numeric values for more robust CFR? 

● RQ 3: How can integrating SHAP interpretability 

techniques in ML models contribute to improving 

clinical decision-making in CFR? 

The paper is formatted as follows: A thorough assessment 

of the literature including the proposed decision model, which 

combines text-based feature selection with the SHAP method 

for CFR, is introduced in Section II. In Section III, the 

outcomes of the proposed model are shown and discussed. 

The study is finally concluded in Section IV. 

II. MATERIALS AND METHOD 

A. Background Study 

1) Cardiac Failure Recognition: 

Various studies have delved into the intricacies of 

recognizing and managing cardiac failure through clinical 

narratives, shedding light on diverse aspects of this condition. 

Thanh-Dung Le et al. engineered a ML algorithm, leveraging 

NLP on physician notes to discern cardiac failure from a 

healthy state [1]. Rachel Johnson-Koenke et al. took a 

narrative inquiry approach, investigating the psychosocial 

adjustments of veterans grappling with heart failure, 

scrutinizing alterations in self-schema, world schema, and 

meaning [7]. In a pediatric context, Jonathan N. Johnson and 

David J. Driscoll underscored the pivotal role of clinical 

history and physical examination in evaluating children with 

heart failure [8]. Additionally, Carlos Sampaio et al. delved 

into the caregiving experience of family caregivers of heart 

failure patients, advocating for their active participation in 

healthcare planning and execution [9]. These studies 

collectively contribute valuable insights into the multifaceted 

landscape of CFR and management through clinical 
narratives. 

The identification of cardiac failure hinges on various 

approaches, each offering distinct pathways for early 

detection. Notable methodologies encompass ML 

applications for prompt identification, quantifying 

cytoskeleton-associated protein 4 (CKAP4) concentrations in 

blood samples, and analyzing physiological signals to detect 

deteriorating cardiac conditions [10]. ML techniques like 

decision trees, support vector machines (SVM), random forest 

(RF), logistic regression (LR), Naive Bayes and K-nearest 

neighbor demonstrate promise in detecting early-stage heart 
failure [11]. Furthermore, sensor circuits coupled with signal 

processors can derive signal metrics, while risk stratified 

circuits yield indications of cardiac risk escalation, 

collectively offering robust avenues for timely diagnosis. 

Fundamentally, heart failure presents as a clinical illness 

when the heart is unable to pump enough blood to meet the 

body's needs. The symptoms include decreased cardiac output 

from either diastolic or systolic dysfunction, or a combination 

of the two, resulting in a smaller stroke volume [12]. Systolic 

dysfunction arises from a loss of intrinsic inotropy or viable 

muscle, while diastolic dysfunction signifies decreased 
ventricular compliance, hindering proper filling [13]. These 

dysfunctions elevate ventricular end-diastolic pressure, 

fostering compensatory mechanisms such as the Frank-

Starling mechanism to bolster stroke volume [14]. Moreover, 

heart failure symptoms extend to vasoconstriction, heightened 

systemic resistance, and escalated left ventricular filling 

pressure according to [14]. 

2) Clinical Narratives:  

Clinical narratives serve as a rich resource for enhancing 

the detection of cardiac failure, offering profound insights into 

the intricate impact of this condition on patients' lives and the 

perspectives of caregivers and medical professionals [1], [6]. 

Leveraging NLP techniques such as word representation 

learning and ML classifiers enables the analysis of these 

narratives, facilitating the identification of cardiac failure 

within the context of unstructured medical texts [15].  

Notably, approaches like the KTI-RNN model, 

amalgamating keyword extraction and topic modeling, 
exhibit promising outcomes in accurately discerning heart 

failure from these unstructured narratives [16]. But there are 

drawbacks when it comes to using clinical narratives, 

including informal vocabulary and sparse information in 

unstructured data, which may compromise classification 

model accuracy [9]. Moreover, divergent perspectives on 

heart failure across patients, caregivers, and medical 

specialists underscore the necessity of integrating multiple 

viewpoints in the healthcare pathway. 
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In the domain of CFR using clinical narratives, diverse 

studies offer multifaceted insights. For instance, one study 

engineered a ML algorithm rooted in NLP to automatically 

distinguish between patients with cardiac failure and those in 

a healthy state based on physician notes [1]. In parallel, a 

systematic review delved into the prevalence and underlying 

causes of misdiagnoses in heart failure cases, revealing a 

frequent misdiagnosis trend, with chronic obstructive 

pulmonary disease emerging as the primary misdiagnosis 

[17], [18]. This study's implications underscore the imperative 
need for accuracy in diagnosing cardiac failure, considering 

the prevalence of incorrect diagnoses and their associated 

conditions. 

Furthermore, a qualitative analysis conducted on 

interviews with women who had failed on contraceptives 

revealed factors such as health literacy, beliefs, interpersonal 

dynamics, and structural barriers that influence these failures. 

These findings bear implications for refining clinical 

discussions surrounding contraceptives [19]. The exploration 

of clinical narratives elucidates the multifaceted nature of 

CFR, unveiling the nuanced interplay between patient 
experiences, medical assessments, and misdiagnosis trends. 

This spectrum of insights underscores the imperative of 

leveraging diverse perspectives and refining diagnostic 

approaches for optimal patient care. 

3) Text-Based Feature Selection: 

Text-based feature selection is a fundamental step in both 
NLP and ML. Its primary aim is to simplify vast amounts of 

text data by identifying and extracting the most relevant 

features. There are diverse methods used for this purpose, 

ranging from techniques based on information theory to those 

rooted in term frequency distribution and evolutionary 

algorithms. It has been demonstrated that these techniques 

greatly increase the accuracy of text-based classification tasks 

such as sentiment analysis and email spam filtering. In order 

to guarantee uniformity across different NLP applications, 

experts emphasize the significance of developing 

standardized techniques for feature selection. Essentially, 
text-based feature selection greatly enhances the performance 

of NLP and ML models by pinpointing the most informative 

aspects within textual data [20], [21], [22]. 

At its heart, text-based feature selection involves pulling 

out essential information or characteristics from unstructured 

text, aiming to contribute significantly to the identification of 

cardiac failure. This process uses the capabilities of NLP 

techniques to convert text into organized numerical 

representations. The main goal is to select the most influential 

features, thereby refining model performance by highlighting 

the most informative elements within textual data. 

This technique is particularly vital in identifying cardiac 
failure as it serves as the mechanism to distill crucial insights 

from unstructured text. Leveraging sophisticated NLP 

methodologies, it translates the qualitative nature of 

language into measurable entities, directing attention 

towards the most critical features. In healthcare, where 

clinical narratives and medical reports hold valuable 

insights, the precision and effectiveness of feature selection 

significantly impact subsequent analysis and predictive 

modeling [20], [21], [22]. 

 

4) SHAP Technique: 

ML has shown promise in forecasting mortality risk in 

patients with heart failure (HF) brought on by coronary heart 

disease (CHD) [23]. Despite their effectiveness, many ML 
models lack interpretability, making it challenging to 

comprehend the rationale behind their decisions. To address 

this issue, a new approach leveraging ML and the SHAP 

method has been developed. This method aims to calculate 

mortality risk while providing detailed explanations for 

individual model decisions [24]. By using this method, 

physicians are able to better comprehend the major variables 

affecting the model's predictions, which increases their 

confidence in the model's reliability [25]. Notably, linear 

models and decision trees have also shown high 

interpretability in identifying cardiac failure [26]. This 
interpretability is crucial for fostering trust and 

comprehension of ML-based predictions in CFR. 

In ML, interpretability is the ability to understand the logic 

underlying the predictions produced by ML models. In 

medical contexts like CFR, interpreting these decisions is 

essential for healthcare practitioners. Several studies delve 

into the challenges and strategies involved in achieving 

interpretability in ML. One common challenge lies in the 

methods used to interpret models within analysis workflows. 

Researchers emphasize the necessity of multi-stage support to 

effectively integrate interpretability methods. Adilova et al. 

[27], for example, suggest a method for employing descriptive 
models to explain the reasoning behind comprehensive 

interpretable models.  

Investigation of the effects of interpretability elements on 

perceptions and performance emphasizes the need for 

qualitative study in order to fully understand the 

consequences of these aspects [28]. Conversely,  [29] offer a 

technique to pinpoint salient characteristics in deep learning 

models, providing insight into their mechanisms of decision-

making. These studies provide insightful information and a 

range of methods for ML interpretability. 

Achieving interpretability in ML models is crucial for 
enhancing trust and understanding of predictions. The SHAP 

method emerges as a powerful and widely utilized tool in this 

domain, grounded in game theory. SHAP helps to enhance 

trust in model predictions by offering local explanations for 

ML models, which facilitate a thorough comprehension of the 

underlying biomedical issues [30]. The versatility of SHAP is 

evident in its application across various domains, including 

clinical metabolomics studies. In such studies, SHAP has 

been effectively employed to explain ML models like partial 

least square discriminant analysis (PLS-DA) and RFs, 

shedding light on complex relationships within the data [31]. 

Moreover, SHAP demonstrates its utility in the context of 
distributed ML, where ensuring consistency among 

explanations from different participants is crucial. This 

application not only improves the overall interpretability of 

the ML models but also fosters trust in collaborative decision-

making processes [32]. By offering insights into feature 

importance and contributions, SHAP facilitates a more 

transparent and comprehensible view of ML model outputs, a 

vital aspect in fields like healthcare, where it is crucial to 

comprehend predictions precisely. For researchers and 

practitioners looking to decipher the complexities of 

complicated models and promote confidence in their 
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applications, the incorporation of SHAP in ML 

interpretability thus represents a useful strategy. 

5) Text-Based Feature Selection and SHAP Technique: 

Text-based feature selection and interpretability play 
pivotal roles in enhancing CFR within the domain of ML and 

text mining applications. Various research endeavors have 

focused on devising methodologies to tackle these challenges. 

Using feature selectors based on error-bound standards 

related to SVM is one such method [42]. The purpose of these 

selectors is to increase the accuracy of heart rate variability 

(HRV)-based congestive heart failure (CHF) diagnosis [33]. 

Additionally, genetic algorithms have been explored as an 

avenue for feature selection, showcasing effectiveness in 

comprehending complex clinical datasets [26]. Moreover, ML 

models like artificial neural networks (ANN) have been 
leveraged to predict heart contraction and diagnose heart 

disease, exhibiting superior prediction accuracy and holding 

potential as supportive tools for physicians [34]. These 

methodologies collectively contribute to advancing accuracy 

and interpretability in the realm of CFR, offering valuable 

insights for informed decision-making and patient diagnosis. 

Addressing challenges within ML and text mining 

domains, particularly in aligning text features with image 

features and managing the diverse nature of text descriptions 

and images, has been a focus of ongoing research. To mitigate 

these challenges, diverse methodologies have been proposed. 

A person text-image matching method that not only improves 

the interpretability of text features but also utilizes an external 

attack node to manage the diversity seen in related person 

images and text [35].  The performance of variable 

importance as a feature selection method, comparing various 

ML methods for their ability to identify relevant features was 

explored. The findings underscored that interpretable 
methods demonstrated superior performance in feature 

selection [35]. Similar to this, Munda et al. [36] presented a 

feature selection method that includes partial supervision, 

showing advantages in improving the picked feature's 

stability, relevance, and interpretability. Additionally, a 

feature extraction and selection model for information 

retrieval aimed to augment the practicality and interpretative 

capacities of the mode was proposed [1], [3], [5]. 

The SHAP technique emerges as a crucial instrument for 

feature selection in text-based classification tasks, offering a 

unique amalgamation of association analysis and data mining. 

It specifically tackles the problem of redundant data inside 
particular features [37]. In terms of ML models, the SHAP 

values method, belonging to the class of additive feature 

attribution values, plays a crucial role in identifying relevant 

features. This use goes beyond simple explanation to actively 

contribute to prediction model building as a useful feature 

selection process, especially for data center operations 

optimization [38] and improving the ML outputs' 

interpretability [39]. 

In various studies, the SHAP-assisted method has 

demonstrated its efficacy in selecting features for predictive 

models. Notably, it outperforms alternative methods, 
showcasing lower error rates and reasonable execution times 

[40]. This robustness positions the SHAP technique as a 

valuable asset in the toolkit for researchers and practitioners 

seeking to enhance feature selection in ML applications, 

particularly in the context of text-based classification tasks. 

The method's versatility extends to explaining model outputs, 

underscoring its significance in promoting transparency and 

interpretability in the increasingly complex landscape of ML 

models. 

B. Related Works 

In leveraging ML algorithms rooted in NLP, the focus lies 
on detecting cardiac failure within clinical narratives. This 

involves utilizing physician notes and clinical language data 

for binary classification, distinguishing patients with cardiac 

failure from those in a healthy condition. Various word 

representation techniques, including term frequency-inverse 

document frequency (TF-IDF), bag-of-words, and neural 

word embeddings, are employed to enhance analysis. 

Supervised binary classification algorithms like Gaussian 

Naive-Bayes, LR, and multilayer perceptron neural networks 

are applied for training classifiers. Notably, the combination 

of TF-IDF and multilayer perceptron neural network 
consistently outperforms other configurations, demonstrating 

high accuracy, precision, recall, and F1 score. The success of 

these ML approaches is exemplified in a single French 

institution, showcasing potential applicability across 

languages and institutions [1], [5]. 

Regarding the classification of clinical narratives, a small-

scale application-specific compact Switch Transformer model 

was introduced. When compared to pre-trained BERT-based 

models such as DistillBERT, CamemBERT, FlauBERT, and 

FrALBERT, this model performed better after being trained 

from scratch on a small sample of French clinical text 

information. The Switch Transformer outperformed 
traditional Transformers with self-attention mechanisms in 

capturing a variety of patterns by utilizing a combination of 

expert mechanisms. The multi-layer perceptron neural 

network proved to be the best-performing model in this 

investigation, with the suggested model achieving noteworthy 

results of 87% accuracy, 87% precision, and 85% recall [3]. 

Contrary to expectations, traditional NLP techniques 

demonstrated superior performance over transformer models 

when applied to smaller radiology report datasets with limited 

training data [3]. Additionally, an innovative vector 

representation for sentences, termed language-model-based 
representation, was introduced to enhance sentiment 

classification in clinical narratives [41]. These findings 

collectively underscore the potential of tailored models and 

traditional NLP techniques in addressing challenges posed by 

limited datasets and varying text complexities within clinical 

contexts. 

Several studies have concentrated on discerning a patient's 

condition through natural language representation within 

clinical narratives. A retrospective clinical study by Thanh-

Dung Le et al. focused on using clinical natural language to 

diagnose heart failure in critically ill infants as early as 
possible. By utilizing ML algorithms and learning 

representation, they were able to identify heart failure with 

remarkable success, exhibiting an outstanding classification 

performance with 89% accuracy, 88% recall, and 89% 

precision [5]. This work adds to the increasing number of 

studies highlighting the usefulness of NLP in clinical 

contexts, especially when it comes to diagnosing pediatric 

heart failure. The utilization of learning representation and 
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ML techniques showcases the potential for advanced 

computational methods to play a pivotal role in early and 

accurate diagnoses based on clinical narratives, with 

implications for improving patient outcomes. 

Active learning machine techniques have proven 

instrumental in predicting cardiovascular heart disease, 

particularly utilizing the UCI repository database. Employing 

various ML algorithms such as LR, Naïve Bayes (NB), and 

ensemble models, the study achieved notable accuracies, 

reaching up to 90% for LR and 89% for NB in the Cleveland 
dataset, and 85% and 81% in the Hungarian dataset, 

respectively. Furthermore, the application of the Synthetic 

Minority Over-Sampling Technique (SMOTE) led to 

significant improvements, elevating LR and NB accuracies to 

92% and 90% for Cleveland, and 85% and 82% for Hungarian 

datasets. The pinnacle of this research was the proposed 

stacked ensemble model, showcasing remarkable metrics 

with 89.66% accuracy and an 89.16% F1-score on the 

Framingham dataset [4]. 

These findings underscore the efficacy of active learning 

machine techniques in enhancing predictive accuracy for 
cardiovascular heart disease, with a focus on diverse datasets. 

The application of ensemble models, along with strategic 

oversampling techniques, exemplifies the versatility and 

potential of these approaches in optimizing predictive models 

for real-world scenarios, providing valuable insights for 

future advancements in cardiovascular disease prediction. 

An innovative model designed for the precise identification 

of heart failure within unstructured clinical notes through 

deep learning techniques to address the challenges posed by 

large-scale electronic health record data analysis, the study 

emphasizes the critical role of accurate heart failure 
recognition in informing treatment decisions [6]. The KTI-

RNN model strategically incorporates the term frequency-

inverse word frequency (TF-IWF) model and latent dirichlet 

allocation (LDA) model for content expansion, alongside the 

gated-attention-BiRNN (GA-BiRNN) model for 

classification. The model's evaluation demonstrates 

promising outcomes, achieving an F1 score of 85.57% and an 

accuracy rate of 85.59%, underscoring its potential as an 

effective tool for enhancing heart failure recognition within 

clinical narratives. 

A number of research works have explored the prediction 

of heart failure with clinical data; one important contribution 
is the use of a lightweight ML metamodel. With an accuracy 

of 89.41% and an area under the curve (AUC) of 88.10%, this 

metamodel—trained on electronic health record (EHR) 

data—achieved remarkable results. These results highlight 

the potential value of metamodels in improving predictive 

power and accuracy when it comes to clinical data-driven 

heart failure prediction. 

In response to limitations identified in previous research 

relying on the UCI repository and the Cleveland dataset, the 

current study introduces a novel metamodel that overcomes 

these constraints. By leveraging a comprehensive dataset 
from five renowned cardiac datasets, the proposed metamodel 

enhances generalizability and accuracy, addressing issues 

related to data availability and the utilization of basic ML 

models [2]. This novel method creates opportunities for more 

accurate clinical data-driven heart failure prediction, offering 

a more complex and useful solution. 

C. Discussion 

The review of the background study systematically 

examines diverse research contributions across several key 

areas. It starts by emphasizing the pivotal role of CFR within 
clinical narratives, showcasing how studies by Thanh-Dung 

Le et al. [1], Johnson-Koenke [7], and Johnson and Driscoll 

[8] offer multifaceted perspectives on the complexities of this 

condition. These contributions range from ML algorithms 

based on NLP to understand patient notes, psychosocial 

modifications of heart failure patients, to the significance of 

clinical history and physical examination in evaluating 

children with heart failure. These studies collectively 

highlight the diversity of approaches and insights into 

recognizing and managing cardiac failure through clinical 

narratives. 
The in-depth study then focuses on critical elements such 

as clinical narratives, text-based feature selection, SHAP 

technique, and their interplay in enhancing CFR. It highlights 

how clinical narratives serve as rich sources of information 

and how leveraging NLP techniques aids in discerning cardiac 

failure within unstructured medical texts. The significance of 

text-based feature selection in distilling crucial insights from 

these narratives is emphasized, along with its role in refining 

predictive models for cardiac failure detection. Moreover, the 

review delves into the crucial aspect of ML interpretability, 

highlighting SHAP method aimed at elucidating the rationale 

behind model predictions in CFR. Collectively, these 
contributions underscore the importance of accuracy, 

interpretability, and the integration of diverse perspectives in 

refining diagnostic approaches, impacting decision-making 

and patient care in the realm of CFR within clinical narratives. 

The analysis in related works explores the complexities 

inherent in studies associated with CFR, encompassing the 

challenges of underutilization of vital sign numeric values, 

limited dataset sizes, and feature space sparsity. It delves into 

the significance of text-based feature selection to distill 

crucial information from unstructured data sources, 

addressing vital sign data underutilization and navigating 
through small datasets effectively. Moreover, the 

investigation emphasizes the pivotal role of interpretability 

within ML models, aligning accuracy with transparency for 

practical applicability in healthcare settings. This review 

highlights how well the work aligns with previous research 

and provides new understandings of feature representation, 

ML classification, and the effect of feature selection on CFR. 

One noteworthy approach addresses clinical text 

classification problems in a way that is consistent with the 

efficiency goals of the study. Successful ML algorithms for 

heart failure recognition and strategies for improving 

detection reinforce the proposed approach. The focus on 
unstructured data analysis, feature selection, and heart failure 

recognition in related works provides a connected backdrop 

to the study, collectively contributing to shaping robust 

methodologies. Insights into ML modeling and prediction 

accuracy support key aspects of the proposed study, forming 

a comprehensive foundation for enhancing CFR in clinical 

narratives. 

The proposed research aligns seamlessly with this 

backdrop, aiming to address critical limitations identified in 

the existing studies. It seeks to contribute by developing a 

robust model utilizing NLP strategies for text-based feature 
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selection, enhancing accuracy, and integration of the SHAP 

technique for interpretability of cardiac failure detection. The 

goal of this study is to close gaps in vital sign numeric values 

underutilization, feature space sparsity, and dataset sizes by 

integrating advanced ML models and assessing their 

effectiveness using a variety of clinical datasets. 

This section outlines the comprehensive methodology 

designed to enhance pattern recognition in clinical narrative 

datasets for effective CFR. The approach integrates advanced 

text-based feature selection techniques with SHAP 
interpretability to improve model accuracy and provide 

actionable insights. The methodology begins with an 

extensive literature review to contextualize the research, 

followed by detailed data acquisition and exploration. 

Separate models are developed for each dataset using ML 

classifiers and feature selection methods, culminating in a 

final, robust model that combines all datasets. Each 

methodological step is carefully detailed to ensure clarity and 

reproducibility. 

D. Data Acquisition and Exploration 

To achieve the objectives of this research, four datasets 

were carefully selected based on their relevance to CFR and 

their diverse attributes. Each dataset played a critical role in 

training and validating the models developed in this study. 

The "Framingham" dataset was used to forecast the 10-year 

risk of developing coronary heart disease (CHD). It was 

derived from an ongoing cardiovascular study carried out in 

Framingham, Massachusetts, and made publicly available on 

Kaggle. With more than 4,240 records and 15 attributes, this 

dataset provides a solid framework for model building. An 
additional dataset, the "Heart Disease" dataset from Kaggle, 

is essential for determining heart disease risk based on clinical 

data. It consists of 918 records and 11 clinical variables 

intended to predict heart disease events. 

Records from Cleveland, Hungary, Switzerland, and Long 

Beach V are included in the extensive 1988 compilation 

known as the Cleveland dataset, which has 1,025 records 

altogether and 76 attributes. However, a subset of 14 attributes 

was primarily utilized, as it has been widely referenced in 

published experiments. Additionally, the Heart Failure 

Clinical Records dataset, which focuses on predicting 

mortality due to heart failure, contains 12 features and 313 

records, highlighting the significance of early detection and 

management of cardiovascular disease risk factors. 

Initial data exploration involved a thorough analysis of the 

datasets to ensure their suitability for model development. 
Descriptive statistics were calculated to summarize the data, 

while visualizations such as histograms and box plots were 

employed to assess data distribution. Missing values were 

identified and addressed using imputation techniques, and 

correlations between variables were examined through 

correlation matrices and heatmaps. Class distribution analysis 

was conducted to detect any class imbalance issues that could 

impact model performance. Furthermore, data cleaning 

processes included text normalization, outlier detection and 

removal using statistical methods like the Z-score method, 

and handling of missing data. Data transformation involved 
scaling and normalization of numerical features, in addition 

to utilizing methods such as label encoding to encode 

categorical variables in order to prepare the data for efficient 

model training and assessment. 

E. Model Development 

The methodology used to develop a robust and 

interpretable model for CFR from clinical narrative datasets 

involved multiple experiments, beginning with separate 

model development for each dataset and culminating in a 
combined dataset model. The key steps in this process 

included loading and preprocessing data, initial model 

training, feature selection, hyperparameter tuning, 

implementing a voting classifier, and applying SHAP 

interpretability techniques. 

 
Fig. 1  Conceptual Combined Dataset Model 

F. Loading and Preprocessing Data 

After loading the four datasets utilized in this study into the 

environment, missing value handling, categorical variable 

encoding, numerical feature scaling, and outlier removal were 

all done as part of the preparation stage. This guaranteed that 

the datasets were free of errors and appropriate for training 

models. 

G. Initial Model Training 

Using three classifiers—SVM, LR, and RF—the first 

model training was carried out separately on each dataset and 
on a combined dataset model. Cross-validation scores were 

used to evaluate these models' performance and create a 

baseline for comparison between individual and aggregated 

datasets. 

H. Feature Selection Methods 

To determine which features were most pertinent for each 

dataset, three feature selection techniques were used: Forward 

Selection, L1 Regularization (Lasso), and Chi-Squared Test. 

By concentrating on the best predictive features, these 

techniques assisted in enhancing the model's performance by 

narrowing down the feature set. 
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I. Hyperparameter Tuning 

GridSearchCV was used to optimize the classifiers for each 

feature selection technique through hyperparameter tuning. 

By taking this step, the models were optimized for optimal 
performance. 

J. Voting Classifier 

To leverage the strengths of different classifiers, a voting 

classifier was implemented. Both hard and soft voting 

strategies were explored. This approach aimed to combine the 

advantages of each classifier, potentially leading to better 

overall performance. 

K. Best Prediction Classifier 

By comparing the highest performance metrics of the best 

single classifier, hard voting classifier, and soft voting 

classifier for each of the developed models, the best prediction 

classifier was determined. The final classifier was determined 

by looking at parameters like accuracy, precision, recall, F1-

score, and AUC-ROC and selecting the one that performed 

better overall. The final model was chosen from among these 

final classifiers based on its overall performance indicators. 

L. Applying SHAP Interpretability Technique 

The resulting model was interpreted using SHAP. Insights 

into how each feature affects the model's predictions are 

provided by SHAP values, which improve interpretability and 

transparency. The process involved initializing SHAP, 

producing SHAP explainers, and producing SHAP summary 

and force plots. 

M. Model Performance Evaluation 

To ensure accuracy, reliability, and generalizability, the 

performance of the ML models built in this study was 

thoroughly assessed using a range of measures across 

numerous datasets. Four distinct datasets were used to train 

the models: the Framingham, Heart Disease, Cleveland, and 

Heart Failure Clinical Records datasets. Each dataset offered 

special insights and difficulties that enhanced the final 

model's resilience. Many assessment criteria, including 

accuracy, precision, recall, F1-score, and AUC-ROC, were 

used to evaluate the models' performance. Accuracy, 
precision, recall, F1-score, and AUC-ROC were used to 

evaluate the models' performance. Precision evaluated the 

percentage of genuine positives among the positive forecasts, 

whereas accuracy evaluated the predictions' total correctness. 

The model's recall assessed its capacity to identify true 

positives; its precision and recall were balanced by the F1-

score, and its discriminative power across various threshold 

settings was gauged by AUC-ROC. 

The model evaluation process involved training the models 

on features selected through various feature selection 

methods, with hyperparameter tuning performed using 
GridSearchCV. Performance was then measured on test sets, 

and voting classifiers were utilized to combine the strengths 

of individual models. The comprehensive evaluation against 

established benchmarks further ensured the robustness of the 

models, confirming their accuracy, reliability, and 

interpretability. The inclusion of diverse datasets validated the 

models' generalizability across different clinical scenarios, 

enhancing their potential applicability in real-world 

healthcare settings. 

III. RESULTS AND DISCUSSION 

The study's results are shown in this section, with particular 

attention paid to how well the developed models predicted 

cardiac failure using clinical narrative datasets. It 

distinguishes the methodology employed from the results 

obtained, ensuring clarity in the presentation of key outcomes. 

The impact of various feature selection methods and ML 

classifiers on model accuracy and interpretability is discussed, 

with comparisons made to existing literature to underscore the 

advancements and contributions of this research. 

A. Results 

The models were evaluated using four diverse clinical 

datasets: Framingham, Heart Disease from Kaggle, Cleveland 

Heart Disease, and Heart Failure Clinical Records. Each 

dataset underwent preprocessing, feature selection, and model 

training using SVM, LR, and RF classifiers. The best-

performing models were identified based on cross-validation 

scores and further refined through hyperparameter tuning. 
The final model was developed by combining all datasets and 

leveraging SHAP interpretability to enhance the 

understanding of feature importance.

TABLE I 

MODELS PERFORMANCE METRICS 

Dataset Best Feature Selection Method and Classifier Accuracy Precision Recall F1 Score AUC-ROC 

Framingham L1 Regularization with Logistic Regression 0.88 0.50 0.01 0.02 0.73 

Heart Disease Chi-Squared with Random Forest 0.88 0.82 0.78 0.80 0.92 

Cleveland L1 Regularization with Logistic Regression 0.90 0.88 0.93 0.90 0.96 

Heart Failure Chi-Squared with Random Forest 0.90 0.86 0.97 0.91 0.93 

Combined Forward Selection with Random Forest 0.91 0.87 0.97 0.91 0.94 

B. Individual Dataset Models 

The performance analysis of individual dataset models 

revealed variations across different datasets and feature 

selection methods. For instance, the Framingham dataset 

showed that L1 Regularization combined with Logistic 

Regression yielded an accuracy of 0.88, while in the Heart 

Disease dataset from Kaggle, Chi-Squared with Random 

Forest achieved the most effective results. The Cleveland 

Heart Disease dataset performed best with L1 Regularization 

and Logistic Regression, and the Heart Failure Clinical 

Records dataset saw the highest accuracy with Chi-Squared 

and Random Forest. 

C. Combined Dataset Model 

The combined dataset model, using Forward Selection with 

Random Forest, exhibited superior performance with an 

accuracy of 0.91. This outcome implies that combining 
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various datasets and using advanced feature selection 

methods can greatly increase the interpretability and accuracy 

of the model. The optimal strategy was the combined dataset 

model, which outperformed the individual dataset models in 

terms of total performance. 

D. Discussion 

1) Impact of Text-Based Feature Selection and SHAP 

Technique: 

The study highlights the significant enhancement in 

accuracy and interpretability achieved through the integration 

of advanced text-based feature selection methods. Techniques 

such as Chi-Squared, L1 Regularization, and Forward 

Selection effectively reduced the dimensionality of the 

datasets while retaining the most relevant features for cardiac 

failure prediction. The SHAP interpretability technique 

provided valuable insights into feature importance, enabling a 

deeper understanding of the factors influencing model 

predictions. 

2) Comparison with Existing Literature: 

The study's findings are in line with earlier research that 

has shown ML models to be effective in clinical narrative 

analysis. The methodology proposed in this study not only 

aligns with but also extends the findings of prior work by 

integrating SHAP values for enhanced feature importance and 
model interpretability. This approach addresses common 

challenges such as feature space sparsity and limited datasets, 

offering a robust solution for clinical applications.  

3) Visualization of Results 

The number of true positive, true negative, false positive, 

and false negative predictions is displayed in the confusion 

matrix for the final model, which shows the classification 

performance. This matrix highlights the model's high 

sensitivity and specificity in correctly identifying cardiac 

failure instances while preserving a low rate of 

misclassification. The model's practical usefulness in clinical 

settings is reinforced by the balance between true positives 

and true negatives in the matrix, which supports the model's 

effectiveness in differentiating between patients with and 

without cardiac failure. 

With an AUC score of 0.94, the final model's AUC-ROC 

curve further illustrates its ability to discriminate. The 
model's high AUC value suggests that it can accurately and 

significantly distinguish between positive and negative cases 

of heart failure. Plotting the true positive rate against the false 

positive rate at different threshold settings, the ROC curve 

indicates how well the model works consistently across 

thresholds, implying dependable performance in a range of 

clinical circumstances. 

The precision-recall curve sheds light on how well the 

model performs when it comes to correctly predicting positive 

classes, particularly when datasets are unbalanced. The model 

shows great precision (87%) and recall (97%), with a high 
area under the curve. This means that it correctly identifies a 

high percentage of true positives while keeping the number of 

false positives low. The model's accuracy and reliability in 

forecasting cardiac failure are ensured by this delicate balance 

between precision and recall, which is essential for clinical 

decision-making and patient care. 

A thorough breakdown of how each attribute affects the 

model's output may be found in the SHAP summary plot. 

The important contributions of features such as ST_Slope, 

ChestPainType, and ExerciseAngina to the prediction of 

cardiac failure are illustrated in this plot. This figure improves 

the interpretability and transparency of the ML model by 

showing the distribution of SHAP values over all patients, 

which offers a nuanced knowledge of how specific features 

affect model predictions. 

 
 Fig. 2  SHAP Summary Plot 

 

The SHAP force plot allows for a detailed understanding 

of the model's decision-making process by visualizing the 

contribution of each attribute to the final forecast for 
particular instances. This representation is especially helpful 

in clinical contexts, as trusting AI-driven tools requires 

knowing the logic behind each prediction. For instance, in one 

prediction, the blue section shows features like ST_Slope, 

ExerciseAngina, and MaxHR driving the prediction towards 

the absence of cardiac failure, while the red section highlights 

feature like Sex, FastingBS, and ChestPainType as factors 

pushing the prediction towards cardiac failure. 

Finally, a clear hierarchy of feature relevance is provided 

by the SHAP feature importance plot, which ranks the 

features according to their mean absolute SHAP values. The 

highest significance features, such as ST_Slope, 
ChestPainType, and ExerciseAngina, are demonstrated to 

have a significant impact on the model's predictions. This 

ranking helps determine which clinical factors are most 

important for predicting cardiac failure, which in turn helps to 

direct clinical focus in patient assessments as well as model 

refining. 

TABLE II 

SHAP FEATURE IMPORTANCE 

Feature Mean Absolute SHAP Value 

ST_Slope 0.166517 

ChestPainType 0.110089 

ExerciseAngina 0.082738 

Oldpeak 0.060024 

Cholesterol 0.047152 

Sex 0.040420 

MaxHR 0.038780 

FastingBS 0.027112 

RestingBP 0.017649 

RestingECG 0.012366 
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By using multiple diverse datasets, the study exhibits 

resilience and guarantees the reliability and generalizability of 

its conclusions. Applying SHAP values to feature importance 

greatly improves the models' interpretability, increasing their 

transparency and usefulness in clinical contexts. Additionally, 

the comprehensive evaluation using various performance 

metrics provides a thorough assessment of the models, 

ensuring that the results are well-supported and credible. 

Despite these strengths, the study does have some 

limitations. For instance, the Framingham dataset exhibited 
lower recall and F1 scores, which may indicate challenges 

related to feature representation or specific characteristics of 

the dataset. Furthermore, the reliance on historical datasets 

may limit the applicability of the models to contemporary 

clinical practices, as medical knowledge and practices evolve 

over time. It is important to take these limitations into account 

when evaluating the findings and planning future research. 

An extensive investigation of the developed models' ability 

to predict cardiac failure using clinical narrative datasets is 

presented in this section. A thorough analysis of the data 

revealed that the combined dataset model—which 
incorporated Forward Selection and Random Forest—

performed better than the individual dataset models in terms 

of F1 score, AUC-ROC, accuracy, precision, and recall. The 

models' improved performance and transparency were due to 

the incorporation of advanced feature selection methods and 

SHAP interpretability. The strengths of this study lie in its use 

of diverse datasets and rigorous evaluation metrics, which 

ensure the generalizability and reliability of the findings. 

However, the limitations related to specific dataset 

characteristics and the use of historical data must be 

acknowledged. 
These findings underscore the importance of integrating 

diverse datasets and employing advanced feature selection 

techniques to enhance model interpretability and predictive 

performance in clinical situations. The knowledge acquired 

from this research aids in the continuous creation of AI-

powered instruments for CFR, which may have consequences 

for patient care and clinical judgment. 

IV. CONCLUSION 

This study successfully developed accurate and 

interpretable models for CFR within clinical narrative 

datasets by leveraging advanced text-based feature selection 

methods and the SHAP interpretability technique. Using four 

diverse datasets—Framingham Heart Study, Heart Disease 

from Kaggle, Cleveland Heart Disease, and Heart Failure 

Clinical Records—this research addressed key challenges in 

clinical data analysis, such as limited datasets, feature space 

sparsity, and the underutilization of vital sign relations. 

Through rigorous preprocessing, feature selection, and 

model training, effective combinations of methods and 
classifiers were identified, enhancing both predictive 

performance and model transparency. For example, L1 

Regularization with Logistic Regression performed best for 

the Framingham and Cleveland datasets, while Chi-Squared 

with Random Forest excelled for the Heart Disease and Heart 

Failure datasets. The final model, which integrated all datasets 

using Forward Selection with Random Forest, achieved the 

highest accuracy and interpretability, highlighting the 

advantages of combining diverse clinical data sources. 

The study's findings highlight the significance of 

combining advanced feature selection methods with SHAP 

interpretability to create models that are transparent, reliable, 

and accurate for use in clinical decision-making. By reducing 

dimensionality while retaining crucial features, techniques 

like Chi-Squared, L1 Regularization, and Forward Selection 

proved to be instrumental in enhancing model performance 

across multiple datasets. 

The results of the study have important ramifications for 

clinical practice and research. The methodology proposed 
here is robust and generalizable, making it suitable for use in 

a variety of clinical contexts and eventually improving patient 

outcomes by increasing cardiac failure prediction. Still, the 

study also pointed out several directions for additional 

investigation. To further improve feature extraction and 

model performance, future research should investigate the 

integration of more recent and varied clinical datasets as well 

as advanced NLP techniques like transformer models. 

Moreover, expanding the exploration of interpretability 

techniques beyond SHAP values and developing user-friendly 

interfaces for model predictions are crucial steps toward 
fostering trust in AI-driven tools in healthcare. Real-time 

clinical decision-support systems and cross-institutional 

validation should be explored to validate the models' 

resilience and flexibility and guarantee their applicability to 

various patient populations and healthcare settings. 

This study's conclusion emphasizes how crucial it is to 

combine diverse datasets and apply robust feature selection 

methods to create precise and understandable CFR models. 

With the potential to improve clinical decision-making and 

patient care, this work advances AI applications in healthcare 

by tackling important obstacles in clinical data processing and 
offering precise paths for future research. 
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