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ABSTRACT 
Quality control is a crucial practice across various industries to ensure that products and services meet 

specific standards and fulfill customer expectations. Statistical process control (SPC) is a quality control 

method that utilizes statistical techniques to monitor and manage a process. This study focuses on 

EWMA control charts along with robust estimators for monitoring the process mean. The EWMA 

control chart is particularly effective in detecting small shifts in a process. By implementing SPC, it is 

usually assumed that the data follows a normal distribution. However, in real-life scenarios, this 

assumption may not always hold true, and the actual distribution of the data might be unknown. 

Therefore, in this study, we propose the use of Qn and Biweight Midvariance estimators for constructing 

EWMA Control Charts. Two data sets, one with heavy skewed and one is slightly skewed, were used 

in this study. As a result, the EWMA-Qn Control Chart is deemed the most efficient, as it can detect 

out-of-control points more quickly, regardless of whether the data is heavy skewed or slightly skewed. 

This method is especially useful in fields such as finance and economics, healthcare and manufacturing 

where process stability and early detection of shifts are critical. Consequently, the efficiency of the 

EWMA-Qn Control Chart results in better process monitoring, fewer false alarms, and better decision-

making in practical situations, which results in better quality control and utilization of resources in 

different industries. 

 

 
Keywords: EWMA Control Chart; robust estimator; Qn estimator; Biweight Midvariance 

estimator; quality control; skewness 

 

 

INTRODUCTION 

 

Statistical Process Control (SPC) involves graphical representations of a process’s stability. As 

reported by Saeed et al. (2021), traditional SPC techniques, including EWMA Control Chart, are 

highly sensitive to deviations from normality and the presence of outliers. This sensitivity can 

result in incorrect conclusions about the stability and performance of the process. Additionally, 

classical EWMA control charts are particularly vulnerable to outliers, which can cause lasting 

effects and false alarms due to the influence of past observations. They rely on the assumption of 

normality and if this assumption is not met, then the performance of the method may deteriorate 

and result in false alarms or failure to detect process shifts. Furthermore, according to Riaz et al. 

(2020), the fixed smoothing parameter in classical EWMA charts limits flexibility, making them 

prone to excessive false alarms when detecting small shifts, especially in variable processes. While 
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traditional SPC techniques are commonly employed for quality monitoring, these methods are not 

well suited for data that are heavy tailed or contain outliers. This research aims at dealing with the 

problem of monitoring process mean using control charts that are resistant to non-normality 

especially when the distribution is non-normal.  

To address these limitations, robust estimators like Qn and Biweight Midvariance offer a 

solution to the limitations of traditional SPC methods by providing more reliable estimates of 

process parameters in the presence of outliers and non-normal data distributions. These estimators 

improve the reliability and efficiency of control charts, thus making them more appropriate for 

various industries. Razmy and Peiris (2013) emphasize the EWMA Control Chart’s ability to 

detect small process shifts, positioning it as a valuable alternative to the Shewhart control chart for 

identifying subtle changes. Montgomery (2009) suggests that the parameter   performs well within 

the interval 0.05 ≤  𝜆 ≤  0.25,  with popular choices being 𝜆 =  0.05, 0.10,  and 0.20. He 

highlights that control charts yield better results when smaller values of   are used to detect smaller 

shifts in the process. One of the most recent uses of EWMA Control Chart in real-life applications 

is demonstrated by Yupaporn and Rapin (2021), who utilized Exponentially Weighted Moving 

Average (EWMA) control charts to analyze COVID-19 case numbers across different regions, 

including Karkh General Hospital in Iraq, aiding in tracking virus transmission and pinpointing 

potential outbreaks.  

Applying control charts to real data usually contradicts normality assumptions. Hence, robust 

estimators are introduced. A robust estimator is considered good when it performs well under 

various conditions, including in the presence of outliers, nonnormality, or other departures from 

the assumptions of the statistical model. The identified robust estimators used in this study are Qn 

and Biweight Midvariance estimators. Rousseeuw and Croux (1993) introduced the Qn estimator 

as a robust alternative to the Median Absolute Deviation (MAD). The Qn estimator is particularly 

suitable for estimating the standard deviation and constructing dispersion charts for skewed and 

heavy-tailed data under various distributions, such as the Weibull and Chi-Square distributions 

(Adekeye et al., 2021). The Biweight midvariance, as reported by Goldberg and Iglewicz (1992), 

demonstrates a finite sample breakdown point of approximately 0.5. These characteristic 

underscores its robustness, as it can accommodate a significant proportion of outliers without 

influencing its performance. The main objective of this paper is to compare classical and modified 

EWMA control charts using Qn and Biweight Midvariance estimators by assessing their 𝐴𝑅𝐿 

values under various conditions and to construct classical and modified EWMA control charts 

using real data. 

 

 

METHODOLOGY 

 

EWMA Control Chart 

In this study, data with a rational subgroup of sample size, 𝑛 > 1 is used. The mean is defined as   

𝑥̅𝑖 =
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
  where the EWMA statistics is defined as 𝑧𝑖 = 𝜆𝑥̅𝑖 + (1 − 𝜆)𝑧𝑖−1 while 𝜎 is replaced 

with  𝜎𝑥̅ =
𝜎

√𝑛
  resulting in control limits 

 

𝑈𝐶𝐿 = 𝜇0 + 𝐿
𝜎

√𝑛
√

𝜆

(2−𝜆)
(1 − (1 − 𝜆)2𝑖)          (1) 

 

𝑈𝐶𝐿 = 𝜇0 − 𝐿
𝜎

√𝑛
√

𝜆

(2−𝜆)
(1 − (1 − 𝜆)2𝑖).          (2) 
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where 0 <  𝜆 ≤ 1 is the smoothing parameter, 𝐿 is the width of the control limit and the process 

goal is the initial value (needed with the first sample at 𝑖 =  1), thus 𝑧0 = 𝜇0.  

Qn Estimator 

Qn is a robust measure of dispersion introduced by Rousseeuw and Croux in 1993 and it is defined 

as a rank-based estimator with an absolute 𝑘  statistic. The Qn estimator can be computed as 

follows:by a qudrature formula as follows: 

 

𝑄𝑛 = 2.2191{|𝑥𝑖 − 𝑥𝑗|;  𝑖 < 𝑗}(𝑘); 𝑖, 𝑗 = 1, 2, … , 𝑛.         (3)   

 

 

where 𝑘 = (
ℎ
2

) =
ℎ(ℎ−1)

2
 and ℎ = [

ℎ

2
] + 1.  The unbiased estimator of 𝜎  for 𝑄𝑛  is 𝜎̂ = 𝑑𝑛𝑄𝑛

̅̅̅̅  

where 𝑄𝑛
̅̅̅̅ =

∑ 𝑄𝑛
𝑚
𝑖=1

𝑚
  and 𝑚  is the number of subgroup while 𝑑𝑛  proposed by Rousseeuw and 

Croux (1993) is a constant factor depends on the sample size 𝑛 given is as follows: 

 

Table 1: Constant factor 

𝑛 2 3 4 5 6 7 8 9 

𝑑𝑛 0.399 0.994 0.512 0.844 0.611 0.857 0.669 0.872 

 

when 𝑛 > 9,  𝑑𝑛 can be calculated as 

 

𝑑𝑛 = {

𝑛

1+1.4
, if 𝑛 is odd

𝑛

𝑛+3.8
, if 𝑛 is even.

                                                           (4) 

 

 

Biweight Midvariance Estimator 

The Biweight Midvariance estimator is not only resistant and robust but also highly efficient. For 

initial exploration across various scenarios with moderate efficiency requirements, Mosteller and 

Tukey (1977) suggest using the MAD or interquartile range. However, in cases demanding 

superior performance such as in skewed distributions, the Biweight Midvariance estimator is a 

suitable choice as it is less influenced by outliers.   

 

      

𝑠𝑏𝑖
2 =

∑ (𝑦−𝑦′)
2

(1−𝜇𝑖
2)4𝑛

𝑖=1

[∑ (1−𝜇𝑖
2)25(1−𝜇𝑖

2)𝑛
𝑖=1 ]

2                                                           (5) 

 

where 𝑦’ is the median of 𝑦, 𝜇𝑖 =
𝑦𝑖−𝑦′

9𝑀𝐴𝐷
  and 𝑀𝐴𝐷 = 1.4826𝑚𝑒𝑑𝑖𝑎𝑛(|𝑥𝑖 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑥)|). The 

unbiased estimator of 𝜎  for Biweight Midvariance is 𝜎̂ = 𝐵𝑖𝑀𝑖𝑑̅̅ ̅̅ ̅̅ ̅̅  where 𝐵𝑖𝑀𝑖𝑑̅̅ ̅̅ ̅̅ ̅̅ =
∑ 𝐵𝑖𝑤𝑒𝑖𝑔ℎ𝑡 𝑀𝑖𝑑𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑚

𝑖=1

𝑚
  and 𝑚 is the subgroups. 
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Performance Evaluation 

The average number of points that must be plotted before a point indicates an out-of-control 

condition is referred to as average run length (𝐴𝑅𝐿). It is used to compare the performance of two 

or more control charts and to measure control chart performances. The two most prevalent varieties 

of 𝐴𝑅𝐿 are 𝐴𝑅𝐿 for in control process (𝐴𝑅𝐿0) and 𝐴𝑅𝐿 for out-of-control process (𝐴𝑅𝐿1). Given 

that the process is under control, 𝐴𝑅𝐿0 signifies the average number of samples until a control 

chart notifies a false alarm. Because the process is in command, the 𝐴𝑅𝐿0must be as large as 

possible to reduce the number of false alarms. Contrast to that, given that the process is out-of-

control, 𝐴𝑅𝐿1 is the average number of samples until a control chart shows that the mean has 

shifted. Because the process is out-of-control, the  𝐴𝑅𝐿1 must be as minimal as possible in order 

to identify the out-of-control points as quickly as possible. 

Each control chart will be tested by seven level of δ times standard deviation for shifting 

process mean (𝛿 =  0, 0.25, 0.5, 0.75, 1.0, 2.0 and 3.0). Hence, for the seven different shifts, the  

𝐴𝑅𝐿1 values acquired from the classical control chart and the modified control chart (EWMA-Qn 

and EWMA-Biweight Midvariance) control charts will be tabulated. The simulation will be 

performed using R programming. 

 The simulations will be carried out by varying three conditions which are weighing constant 

(𝜆), the width of the control limit (𝐿) and the type of population distribution. The width of the 

control limit which is between 2.1 ≤  𝐿 ≤  3.5  will be used to identify the appropriate 

combination ( 𝜆, 𝐿) to obtain 𝐴𝑅𝐿0 ≈  500 for data with normal distribution. Whereas the width 

of the control limit 4.5 ≤  𝐿 ≤  5.0 with 𝐴𝑅𝐿0 ≈  500 will be utilized for skewed data by varying 

𝑔 and ℎ distributions based on a study by Hoaglin D.C. (2006) which 𝑔 represents skewness, while 

ℎ represents kurtosis. The table below distinguishes the different distributions. 

 

Table 2: 𝑔 and ℎ properties for each distribution 

𝑔 ℎ Distribution 

0.0 0.0 Normal 

0.0 0.225 Mild Skewness 

0.5 0.5 Heavy Skewness 

 

 

The selection of an 𝐴𝑅𝐿0 ≈ 500 for an EWMA control chart is done to ensure that while the chart 

is sensitive to process shifts, it does not give many false alarms. This means that on average the 

chart will give a false alarm once in every 500 observations when the process is still in control. 

This 𝐴𝑅𝐿0 offers a reasonable compromise because if set higher, it would minimize false alarms 

but might take time to detect actual shifts, and if set lower, it would produce many false alarms 

and hence many unnecessary interventions (Huang, 2022). In many industrial applications, the 

𝐴𝑅𝐿0 ≈ 500 is typical because it provides a reasonable frequency of false alarms while at the same 

time is sensitive enough to detect small shifts. This value is normally derived under the assumption 

that the process data is normally distributed and that the control limits are set in that regard. For 

non-normal distributions, the 𝐴𝑅𝐿0 ≈ 500 may not be valid because of the dissimilarities in the 

distribution of data such as skewness or kurtosis (Graham et al., 2011). In such cases, the actual 



 

M. M. Nooh and N. M. Ali                                                             Menemui Matematik (Discovering Mathematics) 47(1) (2025) 16-27 
 

20 

 

𝐴𝑅𝐿0 may be lower or higher and hence the rate of false alarms and the chart’s performance. To 

achieve an 𝐴𝑅𝐿0 ≈ 500, modifications of the control limits or the use of robust estimators are 

required to make the chart functional with non-normal data (Koshti and Kalgonda, 2011). 

In this study, two datasets were used to investigate the performance of the control charts. The 

first dataset was obtained from Harvard Dataverse by Spatial Data Lab (2020) on Air Quality: 

Maximum Nitrogen Content. This dataset includes the measurements from cities in China, starting 

from January 1, 2020, and updated to March 24, 2021. The data features daily measurement of 

maximum, minimum, and standard deviation values for indicators such as AQI, CO, NO2, O3, 

PM10, PM2.5, and SO2. The data's variability and potential outliers make it an excellent candidate 

for testing the robustness and sensitivity of different control charts, particularly in detecting shifts 

that could signal changes in air quality conditions. Meanwhile, the second dataset was obtained 

from the U.S Geological Survey (2005) on Water Quality: Suspended Sediment Mean 

Concentration. The data was collected at Brewster Creek Near Valley View, IL and features daily 

mean discharge, mean concentration and sediment discharge from October 2004 to September 

2005. It is used for evaluating water quality and the processes of sedimentation which are 

important for the evaluation of water environments and water treatment. This is useful for testing 

control charts and for detecting shifts and controlling the environment where sediment changes 

are important for ecology and operations. These datasets were used to construct the Classical 

EWMA Control Chart and modified EWMA Control Chart which are EWMA-Qn Control Chart 

and EWMA-Biweight Midvariance Control Chart. 

Initially, the data is subjected to a normality test using two different methods, namely the 

QQ-plots and Shapiro-Wilk test. Subsequently, a Classical EWMA Control Chart and modified 

EWMA Control Charts are constructed using the data. The Upper Control Limit (UCL) and Lower 

Control Limit (LCL) for each of the three control charts are calculated. The statistics for each 

sample are then computed and plotted on the EWMA control charts. If the plotted statistics fall 

beyond the control limits, the process is identified as out-of-control; otherwise, it is considered in 

control. Finally, the control chart with the smallest 𝐴𝑅𝐿 for out-of-control 𝐴𝑅𝐿1 is selected as the 

best-performing chart. 

RESULTS AND DISCUSSION 

 

The simulated data sets are being tested for classical EWMA and modified EWMA Control Chart 

(EWMA-Qn and EWMA-Biweight Midvariance) and the performance of each control chart are 

measured using their ARL values. The simulation is conducted using R programming iteratively 

until the optimal combination of (𝜆, 𝐿)and 𝐴𝑅𝐿0 ≈  500 are obtained. The results are as follows: 

 

Table 3: 𝐴𝑅𝐿0 Setup for each distribution 

Type of Distribution Classical Qn Biweight Midvariance 

Normal 505.285 501.199 472.697 

Mild Skewed 507.008 499.407 491.016 

Heavy Skewed 460.026 506.338 509.859 
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Table 4: Combination of ( , L) for each distribution 

Type of Distribution 
Classical Qn 

Biweight 

Midvariance 

 L  L  L 

Normal 0.1 2.9 0.1 3.43 0.1 3.5 

Mild Skewed 0.1 3.5 0.1 4.7 0.1 4.8 

Heavy Skewed 0.03 5 0.001 6 0.01 8 

 

This observation holds true across all distributions analysed, indicating a consistent trend. While 

there are subtle differences among the distributions, they generally exhibit similar patterns in terms 

of ARL behaviour with increasing shifts. Consequently, these findings suggest that the three 

control charts under study demonstrate comparable efficiency in detecting deviations from the 

expected process behaviour. 

 

Simulation Results for Normal Distribution 

Figure 1 shows the simulation results under normal distribution with prefix 𝐴𝑅𝐿0 ≈  500 and n = 

5 by varying values of width of control limit between L = 2.1 and L = 3.5 with fixed  = 0.1 under 

parameters 𝑔 =  0 and ℎ =  0. It is observed that ARL values decrease as the magnitude of shifts 

in the normal distribution increases. The results of the analysis conducted under the standard 

normal distribution revealed a consistent pattern across the control charts, indicating comparable 

performance and efficiency among them. This similarity in results suggests that all three control 

charts are equally effective in monitoring and detecting deviations from the expected process 

behavior when applied to data following a standard normal distribution. 

 

Simulation Results for Mild Skewed Distribution 

Figure 2 shows the simulation results under mild skewed distribution with prefix 𝐴𝑅𝐿0 ≈  500 and 

n = 5 by varying values of width of control limit between L = 3.0 and L = 5 with fixed  = 0.1 

under parameters 𝑔 =  0.225 and ℎ =  0. It is observed that as the shift mean increases, there is 

a clear trend of decreasing ARL values for EWMA-Qn and EWMA-Biweight Midvariance control 

charts. However, there is a slight increase for Classical EWMA Control Chart at shift = 3.  

 

EWMA Control Chart is designed to be more responsive to small, persistent shifts in the mean 

rather than large, sudden changes. Its emphasis on recent observations, controlled by the 

smoothing parameter  means that it might not react as strongly to outliers or large shifts, 

especially in distributions with skewness. If a large shift occurs in a mild skewed distribution, the 

EWMA chart might not exhibit the rapid response typically associated with detecting such shifts 

in more symmetric distributions. Notably, the robust Qn method stands out significantly in swiftly 

detecting out-of-control (OOC) points within a shorter time frame when a shift occurs.  

 

Simulation Results for Heavy Skewed Distribution 

Figure 3 shows the simulation results under heavy skewed distribution with prefix 𝐴𝑅𝐿0 ≈  500 

and n = 5 by varying values of  and L under parameters 𝑔 =  0.5 and ℎ =  0.5. It is observed 

that as the shift mean increases, there is a clear trend of decreasing 𝐴𝑅𝐿 values for EWMA-Qn 
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and EWMA-Biweight Midvariance Control Charts. However, at larger shifts, there is an increase 

in the 𝐴𝑅𝐿  values for Classical EWMA Control Chart. This is because, in a heavily skewed 

distribution, the tail of the distribution contains a significant portion of the data, and extreme values 

can exert a substantial influence on the mean. The EWMA chart's sensitivity to these extreme 

values might be limited due to its design, which prioritizes the detection of small, persistent shifts. 

Notably, the robust Qn method stands out significantly in swiftly detecting OOC points within a 

shorter time frame when a shift occurs.    

 

 
Figure 1: Simulation Results under Normal Distribution 

    

 
Figure 2: Simulation Results under Mild Skewed Distribution 

 



 

M. M. Nooh and N. M. Ali                                                             Menemui Matematik (Discovering Mathematics) 47(1) (2025) 16-27 
 

23 

 

 
Figure 3: Simulation Results under Heavy Skewed Distribution 

 

 

Application to Real Data 

Prior to determining the most appropriate control chart, the normality of both datasets is evaluated 

using two methods which are the QQ-plot and the Shapiro-Wilk test. In the QQ-plot analysis, data 

points should align along a straight line for normal distribution. However, the plot in the Figure 4 

and Figure 5 below indicates deviations from this linearity, suggesting that the data is not adhere 

to a normal distribution due to some points diverging from the expected straight line. 

 

 

 

 

 

 

 

 

 

 

 

 

    

  

 

 

The Shapiro-Wilk test, a widely used statistical method for assessing normality, operates by 

subjecting data to a hypothesis test. This test is designed to determine whether a given dataset 

conforms to a normal distribution. By comparing observed data to what would be expected under 

a normal distribution, the Shapiro-Wilk test provides a quantitative measure of how closely the 

data aligns with normality. The hypothesis tested in this test are: 

 

𝐻0: Data is normally distributed 

𝐻1:  Data is not normally distributed 

 

Figure 4: QQ-plot for Data A Figure 5: QQ-plot for Data B 
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The null hypothesis (𝐻0) is rejected if the p-value is less than the significance level (𝛼). For 

Data A (0.01449) and Data B (0.0118), both p-values are below 𝛼 =  0.05, leading to the rejection 

of 𝐻0  and suggesting significant deviations from normality. This result indicates the data is 

unlikely to be normally distributed. Additionally, skewness measures the asymmetry of the 

distribution. Values between -5 and 5 indicate mild skew, while values outside this range suggest 

heavy skew. Data A, with a skewness of -0.5842719, is categorized as heavily skewed. In contrast, 

Data B shows mild skewness with a value of 0.09925527. Both datasets thus demonstrate non-

normal distributions based on these measures. 

Figure 6, Figure 7 and Figure 8 display the results for Data A. From the observed charts, it is 

evident that deviations from the center line are present. These deviations indicate where large shifts 

have occurred. Despite these deviations, a majority of the plotted points appear clustered around 

the center line, suggesting a relatively stable process with minor shifts. Classical EWMA Control 

Chart is deemed to be in control as no points exceed the control limits. In the case of the EWMA-

Qn Control Chart and EWMA-Biweight Midvariance Control Chart, some points exceed the upper 

and lower control limits. This indicates the occurrence of very large shifts at these points.  

 

                    
Figure 6: Classical EWMA Control Chart                           Figure 7: EWMA-Qn Control Chart 

                   

 
Figure 8: EWMA-Biweight Midvariance Control Chart 

 

Figure 9, Figure 10 and Figure 11 display the results for Data B. From the observed charts, it 

is evident that deviations from the center line are present. These deviations indicate instances 

where large shifts have occurred. Despite these deviations, some of the plotted points appear 

clustered around the center line, suggesting a relatively stable process with minor shifts. Classical 

EWMA Control Chart and EWMA-Biweight Midvariance Control Chart are deemed to be in 

control as no points exceed the control limits. However, in the EWMA-Qn chart, some points 

exceed the upper control limits, indicating very large shifts. Its heightened sensitivity makes it 

more reliable for maintaining process control. Additionally, the presence of a downward trend in 

the control chart suggests a consistent movement in one direction over time, indicating a systematic 

shift potentially due to special cause variation. 
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            Figure 9: Classical EWMA Control Chart                  Figure 10: EWMA-Qn Control Chart 

 

 
Figure 11: EWMA-Biweight Midvariance Control Chart 

    

Analysis of Data A revealed that the classical EWMA failed to detect OOC points. Given that 

Data A was heavily skewed, it appears that the classical EWMA was less effective in detecting 

OOC points in this scenario. In contrast, EWMA-Qn successfully detected three OOC points, 

beginning at point 1, whereas EWMA-Biweight Midvariance detected two OOC points, also 

beginning at point 1. Turning to Data B, both the classical EWMA and EWMA-Biweight 

Midvariance failed to detect any OOC points. This suggests that in the case of mildly skewed data, 

these methods were less adept at identifying OOC points. However, EWMA-Qn was able to detect 

OOC points starting at point 13, which occurred later than in the case of heavily skewed data. This 

consistent ability of EWMA-Qn to detect more OOC points in both heavily and mildly skewed 

datasets demonstrates its superior robustness and effectiveness compared to the classical EWMA 

and EWMA-Biweight Midvariance methods. 

 

 

CONCLUSION 

 

The similarity in results under normal distribution suggests that all three control charts are equally 

effective in monitoring and detecting deviations from the expected process behavior. In the case 

of violation of the normality assumption, specifically under mild and heavy skewness. EWMA-

Qn generally produced smaller 𝐴𝑅𝐿1 values, indicating its superiority in detecting OOC points. 

The second approach involves constructing control charts using real-world data. Upon 

analysing both Data A and Data B, it was observed that the EWMA-Qn Control Charts 

demonstrated a superior ability to detect out-of-control points compared to other methods. This 

finding justifies the use of the EWMA-Qn Control Chart as the preferred and most efficient option 

for monitoring and maintaining process stability in real-world scenarios. 
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Upon comparing the results obtained from both the simulation and real data analyses, a 

consistent pattern emerges, indicating that the EWMA-Qn control chart stands out as the most 

effective among the control charts studied. This consistency across simulation and real-world 

application lends strong support to the conclusion that the Qn estimator is the most suitable choice 

for this study. 
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