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ABSTRACT 
This study applies Extreme Value Theory (EVT) to model and quantify the risk associated with gold 
price fluctuations in the Malaysian market. Using daily gold price data from February 2010 to May 
2023, the monthly maxima of negative daily log returns are modeled using the Generalized Extreme 
Value (GEV) distribution, with parameters estimated using Maximum Likelihood Estimation (MLE). 
Value-at-Risk (VaR) estimates for high quantiles are obtained from the fitted GEV model. To quantify 
the uncertainty of these estimates, the parametric and nonparametric bootstrap methods are used for 
constructing confidence intervals (CIs). Simulation study conducted across varying return periods (10, 
20, 50, and 100 months), sample sizes (50, 100, 150, and 200), and GEV shape parameters (0.1, 0.2, 
0.3, and 0.4), reveals that the nonparametric bootstrap method generally outperforms its parametric 
counterpart. This superiority is particularly evident for larger sample sizes and longer return periods, as 
demonstrated by narrower confidence intervals and lower error metrics. Applied to the Malaysian gold 
price data, the analysis yields VaR estimates ranging from 3.16% for a 10-month return period to 5.96% 
for a 100-month return period, with corresponding probabilities of exceedance decreasing from 10% to 
1%. These results highlight the potential for significant losses in gold investments over longer time 
horizons with correspondingly decreasing probabilities of occurrence, while also demonstrating the 
effectiveness of EVT and bootstrap techniques in capturing and quantifying the uncertainty associated 
with extreme market events.  

 
Keywords: Value-at-Risk, Parametric Bootstrap, Nonparametric Bootstrap 

 
INTRODUCTION 

 
Gold, symbolized as Au from the Latin Aurum, has been a treasured commodity for millennia. Its 
enduring value and consistent price appreciation over time have cemented its status as a favored 
long-term investment. However, like all investments, gold prices are subject to fluctuations, 
making it crucial to model and understand gold price dynamics, particularly gold price returns. In 
the realm of financial risk management, Value-at-Risk (VaR) has emerged as a critical statistical 
measure. VaR quantifies the maximum potential loss on an investment over a specified period at 
a given confidence level. When dealing with extreme market conditions, such as those often 
observed in gold markets, Extreme Value Theory (EVT) methods become particularly relevant for 
calculating VaR. The study of extreme events in gold price returns is vital due to the heavy-tailed 
nature of their distribution, as evidenced by previous research. Pagan and Schwert (1990) found 
substantial evidence of heavy tails in gold returns, while more recent studies by Khan et al. (2021) 
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and Ali et al. (2020) confirmed these findings in different contexts, applying EVT approaches to 
gold price risk analysis. 
 

The importance of studying extreme events in gold price returns is further emphasized by 
various studies in the field. Jang (2007) applied an extreme value theory approach to analyze the 
extreme risk of gold prices, highlighting the effectiveness of EVT in capturing rare but significant 
price movements. Additionally, Chen and Liu (2017) examined the macroeconomic determinants 
of gold prices using a panel approach, providing insights into the factors influencing extreme price 
fluctuations. These studies underscore the need for robust statistical methods in analyzing gold 
price dynamics. In this study, we analyze daily gold price data to assess the risk associated with 
gold investments. Our methodology involves calculating daily returns from the gold price data and 
then extracting the monthly maxima of these returns. This approach allows us to focus on the 
extreme movements in gold prices, which are crucial for accurate risk assessment. We then fit the 
Generalized Extreme Value (GEV) distribution to these monthly maxima, leveraging the strengths 
of Extreme Value Theory in modeling rare events. 

 
In assessing the risk associated with gold investments, it's crucial to consider return periods 

and their associated return levels, which are intimately connected to VaR. In the context of our 
gold price return data, the return level represents the magnitude of a loss that is expected to be 
exceeded on average once every return period. For instance, a 100-month return level corresponds 
to a loss magnitude that we expect to be surpassed, on average, once every 100 months. This return 
level is equivalent to the VaR at a confidence level of 99% (1 - 1/100) for a 1-month holding period. 
Thus, by estimating return levels for various return periods, we can derive VaR estimates for 
different confidence levels, providing a comprehensive risk profile for gold investments. 

 
To address the uncertainty inherent in VaR estimates, we employ bootstrap methods. These 

resampling techniques allow for the estimation of standard errors, bias, and confidence intervals 
for statistical estimators. The bootstrap method, introduced by Efron in the 1970s, has become a 
powerful tool for assessing the uncertainty of statistical estimates. DiCiccio and Efron (1996) 
discuss various methods for constructing bootstrap confidence intervals, providing insights into 
their theoretical properties and practical implementation. Scholz (2007) further investigates the 
small sample properties of bootstrap methods, which is particularly relevant when dealing with 
extreme value data where sample sizes are often limited. Two primary bootstrap approaches are 
commonly employed: parametric and nonparametric. The parametric bootstrap generates pseudo-
data based on fitted model parameters, while the nonparametric bootstrap resamples directly from 
the observed data without assuming a specific parametric model. The performance of these 
bootstrap methods can vary depending on the underlying data characteristics and sample sizes. 
Previous studies, such as those by Kysely (2009) and Konietschke et al. (2015), have suggested 
that parametric bootstrap methods may outperform their nonparametric counterparts, particularly 
for heavy-tailed distributions common in financial data.  

 
This study aims to comprehensively assess the performance of parametric and nonparametric 

bootstrap methods in quantifying the uncertainty of VaR estimates for the gold price return data. 
We will conduct a simulation study comparing these methods across various scenarios, including 
different return periods (10, 50, and 100 months), sample sizes (50, 100, 150, 200), and shape 
parameters of the GEV distribution (0.1, 0.2, 0.3, 0.4). By identifying the superior bootstrap 
method through our simulation study, we will then apply it to the real gold price data. This 
application will provide robust VaR estimates and associated confidence intervals, offering 
valuable insights for risk management in gold investments. 
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The remainder of this paper is structured as follows: Section 2 outlines the methodology and 
design for simulation studies. Section 3 presents our findings, including the potential maximum 
loss of gold investments at various return periods and the quantification of VaR uncertainty 
through bootstrap confidence intervals. We also evaluate how these results depend on the tail 
bahaviour and sample size. Finally, Section 4 concludes the study, summarizing our key findings 
and their implications for gold price risk assessment. 
 
 

MATERIALS AND METHODS 
 
Data Description 
 
The data used in this study are the daily gold prices in the Malaysia bullion market over the period 
from February 2010 until May 2023. The data is taken from the following website: 
https://www.bnm.gov.my/kijang-emas-prices. The scatterplot of daily gold price of study period 
plot is shown in Figure 1. For extreme value analysis, we will consider the monthly maxima of 
negative daily log returns of gold price of weight one oz.  
 

 
 

Figure 1: Time series plot of daily gold prices from the Malaysia Bullion Market 
 

Generalized Extreme Value Distribution 
 
The significant changes in gold prices can be evaluated by analyzing the daily returns of gold 
prices per troy ounce. In the context of risk management, particular emphasis is on negative returns 
(losses) due to their critical significance. Define 
 

𝑋𝑋𝑖𝑖 = −(ln 𝑃𝑃𝑖𝑖 − ln 𝑃𝑃𝑖𝑖−1) 
 

where 𝑋𝑋𝑖𝑖  is a negative log returns of gold prices observed between day i and i-1 which follow the 
unknown cumulative distribution function 𝐹𝐹(𝑥𝑥) = Pr(𝑋𝑋𝑖𝑖 ≤ 𝑥𝑥), 𝑃𝑃𝑖𝑖 and 𝑃𝑃𝑖𝑖−1 represent the gold 
prices of day 𝑖𝑖 and day i-1. Let 𝑋𝑋(𝑛𝑛) represent the monthly maxima of negative movements in the 
daily log returns of gold prices, that is 
 

𝑋𝑋(𝑛𝑛) = max (𝑋𝑋1, 𝑋𝑋2, … , 𝑋𝑋𝑛𝑛). 
 

The distribution of 𝑋𝑋(𝑛𝑛) can be written as  
 

https://www.bnm.gov.my/kijang-emas-prices
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Pr�𝑋𝑋(𝑛𝑛) ≤ 𝑥𝑥� = Pr (𝑋𝑋1 ≤ 𝑥𝑥,𝑋𝑋2 ≤ 𝑥𝑥, … ,𝑋𝑋𝑛𝑛 ≤ 𝑥𝑥) 

 

           = ∏ Pr (𝑋𝑋𝑖𝑖 ≤ 𝑥𝑥)𝑛𝑛
𝑖𝑖=1  

           = 𝐹𝐹𝑛𝑛(𝑥𝑥). 

In practice, the parent distribution 𝐹𝐹 is often unknown. Suppose 𝜇𝜇𝑛𝑛 and 𝜎𝜎𝑛𝑛 > 0 are the sequences 
of constants. Allowing a linear renormalization of the variable 𝑋𝑋(𝑛𝑛) such that 
 

𝑍𝑍 =
𝑋𝑋(𝑛𝑛) − 𝜇𝜇𝑛𝑛

𝜎𝜎𝑛𝑛
 

 
leads to limit distribution of 𝑍𝑍 converge to a non-degenerate distribution function as 𝑛𝑛 → ∞ given 
by 
 

                                          𝐺𝐺(𝑧𝑧) = 𝑒𝑒𝑥𝑥𝑒𝑒 �− �1 + 𝜉𝜉 �𝑧𝑧−𝜇𝜇
𝜎𝜎
��
−1/𝜉𝜉

�,                                               (1) 
 

defined on the �𝑧𝑧: 1 + 𝜉𝜉(𝑧𝑧−𝜇𝜇)
𝜎𝜎

> 0� where the parameter satisfies −∞ < 𝜇𝜇 < ∞,𝜎𝜎 > 0 and  
−∞ < 𝜇𝜇 < ∞  . The distribution given by Eq. (1) is known as generalized extreme value 
distribution (GEV). The use of the GEV distribution in modeling extreme events has a rich history 
in statistical literature. Gumbel (1958) laid the foundation for the statistical theory of extremes, 
which has since been widely applied in various fields, including finance. Smith (1990) further 
developed the theory, providing a comprehensive overview of extreme value analysis techniques. 
These seminal works have paved the way for modern applications of EVT in financial risk 
management.  
 
Maximum Likelihood Estimation 
 
Maximum likelihood estimation (MLE) is a widely used method for parameter estimation in 
statistical modeling, including for GEV distribution. Myung (2003) provides a comprehensive 
tutorial on MLE, explaining its theoretical foundations and practical applications. The method's 
efficiency and consistency make it particularly suitable for estimating parameters in extreme 
value analysis. Let 𝑍𝑍1,𝑍𝑍2, … ,𝑍𝑍𝑛𝑛 be the independent series of monthly maxima of negative daily 
log returns. The log-likelihood of GEV is given by 
 

ℓ(𝜇𝜇,𝜎𝜎, 𝜉𝜉) = −𝑛𝑛 log 𝜎𝜎 − �1 + 1
𝜉𝜉
�∑ 𝑙𝑙𝑙𝑙𝑙𝑙 �1 + 𝜉𝜉 �𝑧𝑧𝑖𝑖−𝜇𝜇

𝜎𝜎
��𝑛𝑛

𝑖𝑖=1 − ∑ 𝑙𝑙𝑙𝑙𝑙𝑙 �1 + 𝜉𝜉 �𝑧𝑧𝑖𝑖−𝜇𝜇
𝜎𝜎
��
−1/𝜉𝜉

𝑛𝑛
𝑖𝑖=1       (2) 

 
provided that 1 + 𝜉𝜉 �𝑧𝑧𝑖𝑖−𝜇𝜇

𝜎𝜎
� > 0, for 𝑖𝑖 = 1,2, … . ,𝑛𝑛. The parameter estimates of the GEV model 

can be obtained by calculating the partial derivatives of the log-likelihood function in Eq. (2) with 
respect to μ, σ, and ξ, setting these derivatives equal to zero and solving the resulting system of 
equations using numerical optimization. 
 
Estimation of Value-at-Risk and Uncertainty Quantification 
 
Once the parameters of the GEV model have been estimated, the primary focus shifts to assessing 
Value at Risk (VaR), a statistical measure of the risk of loss. VaR is a financial metric used to 
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estimate the potential loss in the value of an asset (e.g., gold) over a specified time period, under 
normal market conditions, and at a given confidence level (Jorion, 2007). 
 
 To estimate VaR, it is crucial to derive the extreme quantiles of the monthly maxima of 
negative daily log returns, which can be obtained by inverting Eq. (1) and it is given by 
 

𝑧𝑧𝑝𝑝 = 𝜇𝜇 −
𝜎𝜎
𝜉𝜉
�1 − {−𝑙𝑙𝑙𝑙𝑙𝑙(1 − 𝑒𝑒)}−𝜉𝜉� 

where 𝐺𝐺�𝑧𝑧𝑝𝑝� = 1 − 𝑒𝑒, 0 < 𝑒𝑒 < 1. Generally, 𝑧𝑧𝑝𝑝  is the return level associated with the return 
period 1/𝑒𝑒. In the context of monthly maxima of negative daily log returns data, 𝑧𝑧𝑝𝑝  can be 
interpreted as the value that is expected to be exceeded, on average, once every 1/𝑒𝑒 months. This 
can be related to VaR, which represents a threshold of loss that is expected not to be exceeded 
with a certain level of confidence over a given time period.   
 
 The uncertainty of the VaR estimate is measured through the confidence interval. Bootstrap-
based confidence intervals are widely used to measure uncertainty arising from parameter 
estimates and have applications across many fields, including finance (Jorion, 2007), economics 
(Davidson, 2004), environmental science (Efron & Tibshirani, 1993), and biostatistics (Davison 
& Hinkley, 1997). Two bootstrap-based confidence interval methods, i.e., parametric (P) and 
nonparametric (NP), are used to construct the confidence interval for VaR. In this study, the 
performance of these two bootstrap methods will be compared to determine which is more 
effective in quantifying the uncertainty of VaR estimates. A simulation study will be conducted to 
evaluate the accuracy of these methods. The bootstrap method that demonstrates superior 
performance in the simulation will then be applied to evaluate the uncertainty of the VaR estimate 
in gold price data.  
 
Simulation Design 
 
To compare the performance of parametric (P) and nonparametric (NP) bootstrap methods in 
quantifying the uncertainty of VaR estimates, a simulation study is conducted with the following 
steps: 
 
i.  Synthetic Data Generation: Synthetic datasets are generated from parameter values 

obtained by fitting the Generalized Extreme Value (GEV) model to the monthly maxima of 
negative daily log returns. 

 
ii. Bootstrap Sampling: 
 a.  For the P bootstrap, 1000 bootstrap samples, each are generated from parameter values 

obtained by fitting the Generalized Extreme Value (GEV) model to the synthetic data in 
step i. 

 b. For the NP bootstrap, 1000 bootstrap samples are generated by resampling directly from 
the synthetic data in step i.  

 
iii. VaR Estimation: VaR is estimated for each bootstrap sample generated in step ii. 
 
iv. Performance Metrics: To assess the accuracy of each method, bias, mean square error 

(MSE), and root mean square error (RMSE) is calculated for the VaR estimates. 
 
v. Confidence Interval Construction: The bootstrap percentile method is applied to construct 

confidence intervals (CIs) for VaR estimates for both P and NP bootstrap methods. The CIs 
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are based on the percentiles of the bootstrapped VaR estimates. The length of the CIs is used 
to measure uncertainty, with shorter CIs indicating more precise estimates. 

 
 

RESULTS AND DISCUSSION 
 

Descriptive Statistics 
 
The descriptive statistics of the monthly maxima of negative daily log returns are summarized in 
Table 1. The mean value of 0.002569 indicates that, on average, the maximum monthly loss is 
about 0.26%. The standard deviation of 0.0126 reflects moderate variability in these monthly 
maximum losses. The distribution exhibits heavy tails and significant right skewness, with a 
kurtosis of 22.35 and skewness of 3.44. These characteristics suggest frequent occurrence of 
extreme losses, with some particularly large losses skewing the distribution to the right. 
 
 Before fitting the GEV model, the stationarity of the series was tested using the Augmented 
Dickey-Fuller (ADF) test at the 5% significance level. The p-value of the test is 0.01754, which is 
less than 0.05, leading to the rejection of the null hypothesis of non-stationarity. Therefore, we can 
conclude that the series is stationary. 
 

Table 1: Descriptive statistics of monthly maxima of negative daily log returns 
Sample Size 160 
Minimum 0.002569 
Maximum 0.111994 
Mean 0.018431 
Standard Deviation 0.012599 
Skewness 3.438986 
Kurtosis 22.349550 

 
 
Model Fitting and Model Diagnostics  
 
The GEV model was fitted to the monthly maxima of negative daily log returns, with parameters 
estimated using the MLE method. The estimated location parameter, 𝜇𝜇 = 0.013136 and the scale 
parameter,  𝜎𝜎 = 0.006771. Additionally, the estimated shape parameter, 𝜉𝜉 = 0.1638102 where a 
positive value indicates a right-heavy tail in the distribution. This suggests that extreme negative 
log returns are more likely to occur than would be expected under a light-tailed distribution. 
 
 To evaluate the goodness of fit for the fitted GEV model, we employed the Anderson-Darling 
(AD) test, the Kolmogorov-Smirnov (KS) test, and Quantile-Quantile (Q-Q) plots. The results 
indicate that the p-values from both tests are greater than 0.05, specifically, 0.7471 for the AD test 
and 0.3271 for the KS test. Consequently, we fail to reject the null hypothesis, suggesting that the 
monthly maxima of negative log returns follow a GEV distribution. Additionally, the Q-Q plot 
shown in Figure 2 is nearly linear, further supporting that the GEV distribution provides a good fit 
for the monthly maxima of negative daily log returns. 
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Figure 2: QQ plot of Monthly maxima of negative daily log returns of gold price data 
 
 

Simulation Result 
 
Tables 2 present the results of the simulation study comparing parametric (P) and nonparametric 
(NP) bootstrap methods for quantifying the uncertainty of Value at Risk (VaR) estimates. Both 
methods generally demonstrate improved performance with increasing sample size, as evidenced 
by lower bias, Mean Square Error (MSE), and Root Mean Square Error (RMSE). However, the 
nonparametric bootstrap method appears to have a slight edge overall, outperforming its 
parametric counterpart in approximately 64% of the scenarios examined. This advantage is 
particularly pronounced for larger sample sizes (150 and 200) and longer return periods (50-
months and 100-months). Conversely, the parametric method shows some strengths in scenarios 
with shorter return periods and smaller sample sizes, although this trend is not consistent across 
all cases.  
  

Table 2: Bias, MSE and RMSE of VaR estimates at various return period, sample size and tail 
behaviour for sample generated from parametric and nonparametric bootstrap 

Return 
Period 

Sample 
size Shape Nonparametric (NP) Parametric (P) 

bias MSE RMSE bias MSE RMSE 

10-
months 

50 

0.1 0.00015 0.00001 0.00282 0.00020 0.00001 0.00319 
0.2 0.00337 0.00004 0.00665 0.00323 0.00004 0.00645 
0.3 0.00486 0.00004 0.00605 0.00476 0.00004 0.00603 
0.4 0.00380 0.00008 0.00872 0.00378 0.00008 0.00909 

100 

0.1 0.00044 0.00001 0.00231 0.00046 0.00001 0.00238 
0.2 0.00375 0.00002 0.00447 0.00371 0.00002 0.00444 
0.3 0.00159 0.00001 0.00368 0.00176 0.00002 0.00402 
0.4 0.00058 0.00002 0.00494 0.00077 0.00002 0.00491 

150 

0.1 0.00062 0.00000 0.00178 0.00063 0.00000 0.00190 
0.2 0.00283 0.00001 0.00379 0.00286 0.00002 0.00399 
0.3 0.00371 0.00002 0.00417 0.00380 0.00002 0.00427 
0.4 0.00153 0.00001 0.00315 0.00158 0.00001 0.00332 

200 0.1 0.00053 0.00000 0.00178 0.00046 0.00000 0.00168 
0.2 0.00171 0.00001 0.00278 0.00177 0.00001 0.00284 
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0.3 0.00154 0.00001 0.00304 0.00156 0.00001 0.00305 
0.4 0.00352 0.00002 0.00443 0.00347 0.00002 0.00427 

20-
months 

50 

0.1 0.00619 0.00006 0.00757 0.00625 0.00006 0.00792 
0.2 0.00035 0.00005 0.00692 0.00013 0.00006 0.00767 
0.3 0.01578 0.00036 0.01908 0.01656 0.00043 0.02070 
0.4 0.02379 0.00085 0.02912 0.02450 0.00093 0.03051 

100 

0.1 0.00742 0.00007 0.00817 0.00723 0.00006 0.00809 
0.2 0.00379 0.00003 0.00563 0.00377 0.00003 0.00560 
0.3 0.02115 0.00052 0.02284 0.02081 0.00050 0.02236 
0.4 0.01593 0.00035 0.01871 0.01615 0.00035 0.01864 

150 

0.1 0.00724 0.00006 0.00766 0.00725 0.00006 0.00779 
0.2 0.00195 0.00002 0.00497 0.00199 0.00002 0.00483 
0.3 0.01958 0.00043 0.02069 0.01974 0.00044 0.02107 
0.4 0.00991 0.00012 0.01093 0.00985 0.00012 0.01111 

200 

0.1 0.00372 0.00002 0.00433 0.00369 0.00002 0.00431 
0.2 0.00471 0.00003 0.00533 0.00459 0.00003 0.00511 
0.3 0.01325 0.00020 0.01402 0.01308 0.00019 0.01385 
0.4 0.00765 0.00008 0.00906 0.00782 0.00008 0.00903 

50-
months 

50 

0.1 0.01568 0.00030 0.01726 0.01571 0.00032 0.01797 
0.2 0.02402 0.00074 0.02720 0.02370 0.00071 0.02672 
0.3 0.04422 0.00255 0.05051 0.04554 0.00291 0.05391 
0.4 0.06634 0.00641 0.08009 0.06777 0.00691 0.08311 

100 

0.1 0.01714 0.00033 0.01807 0.01729 0.00034 0.01833 
0.2 0.01788 0.00039 0.01966 0.01748 0.00037 0.01928 
0.3 0.03083 0.00108 0.03279 0.03149 0.00114 0.03382 
0.4 0.04630 0.00269 0.05188 0.04618 0.00258 0.05079 

150 

0.1 0.01666 0.00029 0.01717 0.01640 0.00029 0.01708 
0.2 0.01795 0.00035 0.01881 0.01797 0.00036 0.01898 
0.3 0.01536 0.00027 0.01648 0.01441 0.00024 0.01548 
0.4 0.02944 0.00095 0.03074 0.02953 0.00098 0.03133 

200 

0.1 0.01248 0.00017 0.01306 0.01262 0.00017 0.01316 
0.2 0.01425 0.00024 0.01547 0.01434 0.00025 0.01567 
0.3 0.01683 0.00043 0.02071 0.01787 0.00049 0.02214 
0.4 0.02717 0.00084 0.02900 0.02772 0.00085 0.02924 

100-
months 

50 

0.1 0.02662 0.00097 0.03116 0.02403 0.00078 0.02786 
0.2 0.05787 0.00435 0.06593 0.05913 0.00474 0.06887 
0.3 0.07372 0.00745 0.08632 0.07649 0.00875 0.09356 
0.4 0.11999 0.02251 0.15004 0.12065 0.02283 0.15110 

100 

0.1 0.02558 0.00072 0.02691 0.02569 0.00074 0.02721 
0.2 0.02798 0.00094 0.03062 0.02847 0.00098 0.03135 
0.3 0.07465 0.00682 0.08260 0.07224 0.00596 0.07720 
0.4 0.07800 0.00770 0.08774 0.07948 0.00762 0.08729 

150 
0.1 0.02220 0.00053 0.02296 0.02211 0.00053 0.02310 
0.2 0.02834 0.00087 0.02955 0.02810 0.00087 0.02943 
0.3 0.07845 0.00677 0.08226 0.07917 0.00699 0.08360 
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0.4 0.04868 0.00258 0.05075 0.04930 0.00273 0.05229 

200 

0.1 0.01962 0.00041 0.02032 0.01979 0.00042 0.02055 
0.2 0.00326 0.00010 0.00988 0.00345 0.00011 0.01028 
0.3 0.06801 0.00497 0.07053 0.06797 0.00497 0.07052 
0.4 0.04614 0.00239 0.04890 0.04712 0.00243 0.04933 

 
 

 Figures 3-6 illustrate the width of confidence intervals (CIs) for both 90% and 95% levels, 
spanning return periods of 10, 20, 50, and 100 months, with sample sizes ranging from 50 to 200, 
and shape parameters from 0.1 to 0.4. Consistently, the nonparametric method demonstrates 
superior performance, evidenced by narrower CIs, particularly for larger sample sizes and longer 
return periods. This advantage becomes more pronounced as the shape parameter increases, 
suggesting enhanced efficacy in capturing uncertainty for more extreme events. While both 
methods exhibit improved precision with increasing sample size, the nonparametric approach 
maintains a clear edge, especially in scenarios with 50-month and 100-month return periods and 
shape parameters of 0.3 and 0.4. The parametric method occasionally performs comparably for 
smaller sample sizes and lower shape parameters but lacks the consistent robustness of its 
nonparametric counterpart across diverse scenarios.  
 
 Based on the comprehensive analysis of the simulation study results, the nonparametric 
bootstrap method is recommended as the superior approach for quantifying the uncertainty of VaR 
estimates, particularly for larger sample sizes and longer return periods, due to its consistently 
better performance across a majority of scenarios and its apparent robustness to varying data 
characteristics. Therefore, nonparametric bootstrap will be used to measure the uncertainty of VaR 
estimates of monthly maxima of negative daily log returns gold price dataset.   

 

 
Figure 3: Width of confidence interval (CI) of VaR estimate at 10-months return period at  

𝑛𝑛 = 50, 100, 150, 200 and 𝜉𝜉 = 0.1, 0.2, 0.3, 0.4. The left panel is 90% CI and right panel is 95% CI. 
Black dashed line represents width of CI by nonparametric approach while red solid line represents width 

of CI by parametric approach  
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Figure 4: Width of confidence interval (CI) of VaR estimate at 20-months return period at  

𝑛𝑛 = 50, 100, 150, 200 and 𝜉𝜉 = 0.1, 0.2, 0.3, 0.4.  The left panel is 90% CI and right panel is 95% CI. 
Black dashed line represents width of CI by nonparametric approach while red solid line represents width 

of CI by parametric approach    

 
Figure 5: Width of confidence interval (CI) of VaR estimate at 50-months return period at  

𝑛𝑛 = 50, 100, 150, 200 and 𝜉𝜉 = 0.1, 0.2, 0.3, 0.4. The left panel is 90% CI and right panel is 95% CI. 
Black dashed line represents width of CI by nonparametric approach while red solid line represents width 

of CI by parametric approach   
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Figure 6: Width of confidence interval (CI) of VaR estimate at 100-months return period at 𝑛𝑛 =

50, 100, 150, 200 and 𝜉𝜉 = 0.1, 0.2, 0.3, 0.4. The left panel is 90% CI and right panel is 95% CI. Black 
dashed line represents width of CI by nonparametric approach while red solid line represents width of CI 

by parametric approach    
 

VaR Estimates for Gold Price Data 
 
Table 3 presents the VaR estimates with 90% and 95% confidence intervals constructed using 
nonparametric bootstraps for monthly maxima of negative daily log returns of gold price datasets. 
The table shows that for a 10-month return period, the estimated VaR is 3.16%, meaning there is 
a 10% probability that losses will exceed this value over any given 10-month period. This suggests 
that moderate losses of this magnitude occur relatively frequently. As the return period increases 
to 20 months, the estimated VaR rises to 3.9%, with the probability of exceedance dropping to 5%. 
This indicates that while the potential loss is slightly larger, the chances of it occurring become 
less frequent. For a 50-month return period, the VaR estimate further increases to 5.01%, and the 
probability of exceedance falls to 2%, showing that while the losses may become more severe, 
such extreme losses are rarer over this longer horizon. Finally, for the 100-month return period, 
the estimated VaR is 5.96%, with only a 1% chance of the loss exceeding this value. This reflects 
the risk of very large losses occurring over a long time frame, but with a very low likelihood. 
Overall, as the return period lengthens, the VaR estimates increase, indicating higher potential 
losses, while the probability of these extreme losses occurring decreases, highlighting the 
infrequent but severe nature of extreme events over extended periods. 
  
 The 95% CIs are consistently wider than the 90% CIs across all return periods. This is 
expected, as a higher confidence level necessitates a broader range of values to ensure that the true 
parameter is captured with greater assurance. For example, at the 10-month return period, the 90% 
CI is (2.835%, 3.546%), while the 95% CI expands to (2.781%, 3.613%). This pattern continues 
across all return periods, highlighting the trade-off between confidence and precision. 
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Table 3: Estimate of VaR with 90% and 95% confidence interval using nonparametric bootstrap  
Return 
Period 

Estimated 
VaR 90% CIs 95% CIs Probability of 

Exceedances 
10-month 0.03156 (0.02835, 0.03546) (0.02781, 0.03613) 0.1 
20-month 0.03904 (0.03365, 0.04514) (0.03269, 0.04705) 0.05 
50-month 0.05013 (0.04095, 0.05996) (0.03942, 0.06221) 0.02 
100-month 0.05962 (0.04652, 0.07431) (0.04462, 0.07826) 0.01 

 
 

CONCLUSION 
 

This study has effectively demonstrated the application of Extreme Value Theory (EVT) in 
modeling and quantifying risk associated with gold price fluctuations in the Malaysian market. By 
analyzing monthly maxima of negative daily log returns using the Generalized Extreme Value 
(GEV) distribution, we found that EVT techniques successfully capture the heavy-tailed nature of 
gold price movements. Our findings align with those of Pratiwi et al. (2019), who similarly applied 
the GEV distribution for VaR analysis on gold prices. Their study, like ours, demonstrated the 
effectiveness of EVT techniques in capturing the extreme risk characteristics of gold price 
movements. The consistency of these results across different markets and time periods reinforces 
the robustness of EVT approaches in financial risk management, particularly for commodities like 
gold that can exhibit significant price volatility. Our comprehensive comparison of parametric and 
nonparametric bootstrap methods revealed that the nonparametric approach generally outperforms 
in quantifying uncertainty in Value-at-Risk (VaR) estimates, particularly for larger sample sizes 
and longer return periods. This was evidenced by narrower confidence intervals and lower error 
metrics produced by the nonparametric method. 

The VaR estimates obtained from our analysis show increasing potential losses over longer 
time horizons, ranging from 3.16% for a 10-month period to 5.96% for a 100-month period, with 
correspondingly decreasing probabilities of occurrence. This highlights the infrequent but 
potentially severe nature of extreme events in the gold market.  
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