CHARACTERIZATION OF *EPERYTHROZOOON OVIS* ISOLATED FROM SHEEP AND GOATS IN MALAYSIA

MD. ERSADUZZAMAN

FPV 2001 6
CHARACTERIZATION OF *EPERYTHROZOON OVIS* ISOLATED FROM SHEEP AND GOATS IN MALAYSIA

MD. ERSHADUZZAMAN

DOCTOR OF PHILOSOPHY
UNIVERSITI PUTRA MALAYSIA
2001
CHARACTERIZATION OF \textit{EPERYTHROZOON OVIS} ISOLATED FROM SHEEP AND GOATS IN MALAYSIA

By

MD. ERSHADUZZAMAN

Thesis Submitted in Fulfilment of the Requirement for the Degree of Doctor of Philosophy in the Faculty of Veterinary Medicine
Universiti Putra Malaysia.

December 2001
DEDICATION

TO MY PARENTS, BROTHERS, SISTERS, MY WIFE FERDOUSI BEGUM, MY DAUGHTER JARIN TASNIM, LATE BROTHER-IN-LAW SHAMJIDUL HAQUE AND LATE MOTHER-IN-LAW FOZILATUN NESA FOR THEIR MORAL SUPPORT AND ENCOURAGEMENT
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

CHARACTERIZATION OF *EPERYTHROZOOON OVIS* ISOLATED FROM SHEEP AND GOATS IN MALAYSIA

By

MD. ERSHADUZZAMAN

December 2001

Chairman: Associate Professor Che’ Teh Fatimah Nachiar Iskandar, Ph.D.

Faculty: Veterinary Medicine

The characteristics of *Eperythrozoon ovis* isolated from sheep and goats blood were studied by several approaches. Detection of *E. ovis* from naturally infected sheep and goats was compared by light microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), indirect immunofluorescent antibody test (IFAT) and confocal microscopy. It was concluded that the Giemsa staining is cheap, fast and easy to perform, but it may not be specific when *E. ovis* become difficult to distinguish from stain deposits or dust particles. The IFAT was rapid, specific and sensitive, but it required specific hyperimmune serum and sometimes it produced background glow that degrades the images. The confocal microscopic examination greatly enhanced images of *E. ovis* and was more sensitive than IFAT. The SEM and TEM are indispensable tools for the unambiguous identification of *E. ovis* morphology and it also provide ultrastructural detail of the organism.
In *vitro* culture and maintenance of *E. ovis* was successfully done up to 408 hours in tissue culture media. After intensive screening, the following conditions were found to be optimal for maintenance of red blood cell attachment by *E. ovis*: heparin as the anticoagulant for blood collection, incubation with Eagle’s medium under 5% CO$_2$ and supplemented with inosine and foetal calf serum, and refreshment of medium every 12 hours. An attempt to propagate *E. ovis* in 8 days old embryonated chicken eggs by inoculating through the yolk sac, chorioallantoic membrane and allantoic sac was carried out. Infectivity was checked impression smears made from organs (liver, spleen and yolk sac membrane) of dead and live embryos and stained with Giemsa and further confirmed by IFAT. Among the three routes of inoculation, yolk sac was the most suitable route for propagation of *E. ovis*. Large number of *E. ovis* organisms were seen in yolk sac membrane.

Western blotting analysis of the purified sample using hyperimmune serum prepared by injecting purified *E. ovis* antigens collected from infected sheep into rabbits, revealed five protein bands with MW 180, 172, 118, 95 and 80 kDa were identified as the *E. ovis* specific bands. Among the 5 selected proteins MW 95 kDa was the most dominant. These protein were detected from infected sheep and goats indicating that the protein profiles of *E. ovis* isolated from sheep and goats were similar.

Polymerase chain reaction (PCR) of the 16S rRNA gene was investigated to determine its potential as a means of detecting *E. ovis* infection in sheep and goats. PCR produced a specific product of approximately 1500 bp from infected but not uninfected
samples. Sensitivity studies indicated that the PCR protocol was capable of amplifying total genomic \textit{E. ovis} DNA in quantities as low as 20 ng.

In conclusion, this study discussed for the first development of PCR based assay to detect \textit{E. ovis} from naturally infected sheep and goats. It seems that the PCR assay is specific and very sensitive compared to other test. Development of \textit{in vitro} maintenance study provides information about the establishment of \textit{in vitro} culture system for the maintenance and propagation of \textit{E. ovis}. This study also indicated that the protein profiles of \textit{E. ovis} isolated from sheep and goats were similar.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENCIRIAN EPERYTHROZOOON OVIS YANG DIPENCILKAN DARIPADA BIRI-BIRI DAN KAMBING DI MALAYSIA

Oleh

MD. ERSHADUZZAMAN

December 2001

Pengerusi: Profesor Madya Che' Teh Fatimah Nachiar Iskandar, Ph.D.

Fakulti: Perubatan Veterinar

Ciri-ciri Eperythrozoon ovis yang dipencil daripada darah biri-biri dan kambing telah dikaji melalui beberapa pendekatan. Pengesanan E. ovis daripada biri-biri dan kambing yang terjangkit secara semulajadi telah dibandingkan menggunakan mikroskop cahaya, mikroskop elektron penapis (SEM), mikroskop elektron transmissi (TEM), ujian antibodi imunopendarfluor tak langsung (IFAT) dan mikroskop konfocal. Secara kesimpulan, pewarnaan Giemsa adalah murah, cepat dan mudah untuk dijalankan tetapi ia mungkin tidak spesifik apabila E. ovis sukar dikenali daripada pewarna atau partikal habuk. IFAT adalah cepat, spesifik dan sensitif, tetapi ia memerlukan serum hiperimun spesifik dan kadang kala ia menghasilkan latar belakang yang mengurai imej. Ujian mikroskop konfocal sememangnya meningkatkan imej E. ovis dan lebih sensitif daripada IFAT. SEM dan TEM adalah alat yang perlu bagi pengecaman tidak kabur morfologi E. ovis dan ia juga menyedrakan butir-butir ultrastruktur bagi organisma tersebut.
Kultur *in vitro* dan pengekalan *E. ovis* telah berjaya dilakukan sehingga 408 jam di dalam medium kultur tisu. Selepas penyaringan secara intensif, keadaan berikutnya didapati optima untuk mengekalkan pelekat sel darah merah oleh *E. ovis*; heparin sebagai antigumpal untuk pengumpulan darah, pengeraman dengan medium Eagle di bawah 5% CO₂ dan ditambah dengan inosina dan serum fetus anak (bovin), dan pertukaran medium setiap 12 jam. Satu percubaan untuk membiakkan *E. ovis* dalam telur ayam berembrio berumur lapang hari dengan menginokulat melalui kantung yolka, membran korioalantois dan kantung alantois telah dijalankan. Kadar jangkitan adalah tekanan lumuran yang terhasil daripada organ-organ (hati, limpa dan membran kantung yolka) yang mati dan embrio yang hidup dan diwarnakan dengan Giemsa dan seterusnya dipastikan melalui IFAT. Di antara tiga laluan penginokulatan, kantung yolka merupakan laluan yang paling sesuai untuk pembiakan *E. ovis*. Sebilangan besar organisma *E. ovis* telah dilihat di dalam membran kantung yolka.

Analisis penurapan Western bagi sampel yang ditulenkan menggunakan serum hiperimun yang disediakan dengan menyuntik antigen *E. ovis* tulen yang dikumpulkan daripada biri-biri terjangkit ke dalam arnab, menunjukkan lima jalur protein dengan berat molekul 180, 172, 118, 95 dan 80 kDa telah dikenalpasti sebagai jalur spesifik *E. ovis*. Di kalangan lima protein, berat molekul 95 kDa adalah paling dominan. Protein ini telah dikesan daripada biri-biri dan kambing terjangkit menunjukkan bahawa profil protein *E. ovis* yang dipencilkkan daripada biri-biri dan kambing adalah serupa.
Tindak balas rantai polimerase (PCR) bagi gen 16S rRNA telah diselidiki untuk menentukan potensi gen tersebut sebagai satu cara pengesanan jangkitan *E. ovis* dalam biri-biri dan kambing. PCR menghasilkan produk spesifik kira-kira 1500bp daripada sampel terjangkit tetapi sebaliknya bagi sampel tidak terjangkit. Kajian kepekaan menunjukkan bahawa protokol PCR boleh mengamplifikasi keseluruhan genom DNA *E. ovis* dalam kuantiti serendah 20 ng.

ACKNOWLEDGEMENTS

Praises to almighty Allah, the cherisher and sustainer of the world, whose blessings have enabled me to complete this study.

I would like to express my most sincere gratitude and deep appreciation to Associate Professor Dr. Che’Teh Fatimah Nachiar Iskandar, Deputy Dean, Faculty of Veterinary Medicine and the chairman of the supervisory committee, for her invaluable guidance, encouragement, constructive comments and generous help during the research work and preparation of this thesis.

I am deeply indebted to my co-supervisor Dr. Abdul Rahman Omar for his constant encouragement, unfailing help during the research work. Gratuities are due to Associate Professor Dr. Mohd. Hair Bejo and Dr. Ungku Chulan Ungku Mohsin, the members of the supervisory committee for their fruitful suggestions and effective corrections in order to improve the quality of the manuscript.

I gratefully acknowledge the “Government of the Peoples Republic of Bangladesh” for providing me the scholarship during the course of the study. I am also indebted to my supervisor, Associate Professor Dr. C.T.N. Fatimah Iskandar for providing me few months graduate assistanship from the IRPA project (No. 51493, UPM) at the end of my study.
I wish to express the assistance of the Bangladesh Livestock Research Institute (BLRI) for allowing me to pursue the study programme smoothly by providing the study leave throughout the period. A very special thanks are due to Director General, Bangladesh Livestock Research Institute (BLRI) who always encouraged me during the course of the study.

I would like to express gratitude to the staff members of Biologics Laboratory, Mrs. Rodiah Hussein and Mr. Adam and also to Mr. Islah Uddin and Mr. Kumar for always being so willing to render assistance throughout the course of the study. Special thanks are due to Mr. Ho Oi Kuan, Miss Azilah Abd Jalil and Mr. Fauzi Che Yusuf for their technical assistance and convenience.

It is worth to mention my friends and colleagues from whom I received direct and indirect support I would like to thank Mrs. Mariah Hossein, Mrs. Marina Hossain, Mr. Shankar, Dr. Mahfuzul Hoque, Dr. Ziqrul Haq Chowdhury, Dr. Firoz Mian, Mr. Awad, Mr. Taufiq, Mr. Belal and Mr. Chunnu for their companionship support and concern.

Last but not least, very special thanks to my parents, brothers, sisters and my wife, Mrs. Ferdousi Begum for their sacrifices, patience, understanding, help and encouragement throughout the study. My daughter, Jamin Tasnim (Aunti) also deserve appreciation for her co-operation.
I certify that an Examination Committee met on 7th December 2001 to conduct the final examination of Md. Ershaduzzaman on his Doctor of Philosophy thesis entitled “Characterization of *Eperythrozoon ovis* Isolated from Sheep and Goats in Malaysia” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Daud Ahmad Israf Ali, Ph.D.
Associate Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Chairman)

Che’ Teh Fatimah Nachiar Iskandar, Ph.D.
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Abdul Rahman Omar, Ph.D.
Lecturer
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Mohd. Hair Bejo, Ph.D.
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Mohd. Ungku Chulan Ungku Mohsin
Lecturer
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Weilgama, D. J., Ph.D.
Professor
Faculty of Medicine
University of Peradeniya, Sri Lanka
(Independent Examiner)

MOHD. GHAZALI MOHAYIDIN, Ph.D.
Professor/ Deputy Dean of Graduate School
Universiti Putra Malaysia

Date: 28 DEC 2001
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy.

AINI IDEERIS, Ph.D.
Professor
Dean of Graduate School
Universiti Putra Malaysia

Date: 01 JAN 2002
I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Putra Malaysia or other institutions.

MD. ERSADUZZAMAN

Date: December 27, 2001
TABLE OF CONTENTS

DEDICATION 2
ABSTRACT 3
ABSTRAK 6
ACKNOWLEDGEMENTS 9
APPROVAL 11
DECLARATION 13
LIST OF TABLES 19
LIST OF FIGURE 22
LIST OF ABBREVIATIONS 26

CHAPTER

1 INTRODUCTION 28

2 LITERATURE REVIEW 35
2.1 The Organism and Disease 35
 2.1.1 Classification 35
 2.1.2 History and Epidemiology 37
 2.1.3 Transmission 41
 2.1.4 Clinical Signs 43
 2.1.5 Clinical Pathology and Pathophysiology 44
 2.1.6 Pathology 46
 2.1.7 Immunity 47
2.2 Diagnosis of *E. ovis* 50
 2.2.1 Detection of Antigens 50
 2.2.1.1 Staining 50
 2.2.1.2 Electron Microscopy (SEM and TEM) 51
 2.2.1.3 Confocal Microscopy 51
 2.2.1.4 Indirect-Immunofluorescent Antibody Test (IFAT) 52
 2.2.1.5 Polymerase Chain Reaction (PCR) 53
 2.2.2 Detection of Antibody 53
 2.2.2.1 Antiglobulin Test (AT) 53
 2.2.2.2 Complement Fixation Test (CFT) 55
 2.2.2.3 Indirect Haemagglutination Assay (IHA) 56
 2.2.2.4 Enzyme Linked Immunosorbent Assay (ELISA) 57
2.3 Characterization of Eperythrozoon 57
 2.3.1 Source of Antigens 57
 2.3.1.1 Harvesting 57
 2.3.1.2 Lang’s Method 58
 2.3.1.3 Hall’s Method 58
 2.3.1.4 Method D’spin-Es 59
3 ESTABLISHMENT OF IN VITRO CULTURE SYSTEM FOR THE MAINTENANCE AND PROPAGATION OF E. OVIS

3.1 Introduction 76

Study-I: In vitro maintenance and propagation of E. ovis in tissue culture media

3.2 Materials and Methods 80
 3.2.1 Organisms 80
 3.2.2 Media 81
 3.2.2.1 RPMI-1640 media 82
 3.2.2.2 Eagle's minimum essential medium (EMEM) 82
 3.2.3 Culture Procedures 82
 3.2.3.1 Whole Blood (WB) 82
 3.2.3.2 Red Blood Cell (RBC) 83
 3.2.3.3 Culture Monitoring 83
 3.2.4 Indirect Immunofluorescent Antibody Test (IFAT) 84
 3.2.5 Electron Microscope (EM) 84
 3.2.6 Experimental Designs 84
 3.2.6.1 The effects of anticoagulants on the percentage of parasitized WB in culture (Exp. I-A) 84
 3.2.6.2 The effects of media on E. ovis growth or maintenance in vitro (Exp. I-B) 84
 3.2.6.3 The effects of adding inosine to medium (Exp. I-C) 85
 3.2.6.4 The effects of adding EDTA to medium (Exp. I-D) 85
 3.2.6.5 The effects of refreshing medium on the culture (Exp. I-E) 86
 3.2.7 Statistical analysis 86

3.3 Results 87
 3.3.1 The effects of anticoagulants on the percentage of parasitized WB in culture (Exp.I-A) 87
 3.3.2 The effects of media on E. ovis growth or maintenance in vitro (Exp. I-B) 87
3.3.3 The effects of adding inosine to medium (Exp. I-C) 88
3.3.4 The effects of adding EDTA to medium (Exp. I-D) 88
3.3.5 The effects of refreshing medium on the culture (Exp. I-E) 89

3.4 Discussion 102

Study 2: Propagation *E. ovis* in embryonated hen eggs. 107

3.5 Materials and Methods 107
3.5.1 Source of eggs 107
3.5.2 Sample preparation 107
3.5.3 Routes of Inoculations 108
3.5.4 Harvesting culture 109
3.5.5 Preparation of inoculum from infected embryo 110

3.6 Results 111
3.6.1 Inoculation of *E. ovis* into embryonated eggs 111
3.6.2 Propagation of *E. ovis* in embryonated eggs 112

3.7 Discussion 118

4. CHARACTERIZATION OF *EPERYTHROZOON OVIS* ISOLATED FROM SHEEP AND GOATS. 121
4.1 Introduction 121
4.2 Materials and Methods 124
4.2.1 *E. ovis* proteins 124
4.2.1 *E. ovis* protein preparation 124
4.2.3 Blood samples for control 125
4.2.4 Quantitation of whole cell protein 125
4.2.5 Hyperimmune sera 125
4.2.6 Gel Components and preparation 126
4.2.7 Protein Transfer to the Nitrocellulose Membrane 128
4.2.8 Immunodetection of the Blotted Proteins 129

4.3 Results 130
4.3.1 Protein profiles of *E. ovis* isolated from sheep and goats 130
4.3.2 Immunodetection of *E. ovis* blotted Proteins. 130

4.4 Discussion 137

5. DETECTION OF *EPERYTHROZOON OVIS* IN SHEEP AND GOATS BY POLYMERASE CHAIN REACTION (PCR) 142
5.1 Introduction 142
5.2 Materials and Methods 145
5.2.1 Blood Samples 145
5.2.2 Yolk Sac 145
5.2.3 DNA extraction 146
5.2.4 Determination of DNA concentration and purity 147
5.2.5 Primer quantitation 147
5.2.6 Primers 148
5.2.7 PCR 148
5.2.7.1 Agarose gel electrophoresis 150
6. COMPARISON OF DIFFERENT DIAGNOSTIC TECHNIQUES FOR THE DIAGNOSIS OF *E. OVIS*

6.1 Introduction

6.2 Materials and Methods

 6.2.1 Animals
 6.2.2 Sample collection
 6.2.3 *E. Ovis* antigen preparation from field level
 6.2.3.1 Lang's method
 6.2.4 Sample preparation
 6.2.4.1 Fresh Blood
 6.2.4.2 Culture samples
 6.2.4

 6.2.5 Hyperimmune serum
 6.2.6 Techniques to detect *E. Ovis*
 6.2.6.1 Giemsa stain
 6.2.6.2 Indirect immunofluorescent antibody test (IFAT)

6.2.7 Electron microscope

 6.2.7.1 "Scanning electron microscopy (SEM)
 6.2.7.2 Transmission electron microscopy (TEM)

6.2.8 Negative staining technique

6.2.9 Confocal Microscope

6.2.10 Comparative analysis of diagnosis method

6.3 Results

 6.3.1 Giemsa stain
 6.3.2 IFAT
 6.3.3 Microscopic techniques
 6.3.4 Light microscopy
 6.3.5 Fluorescence microscopy
 6.3.6 Confocal microscopy
 6.3.7 SEM (Clotted Blood)
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Species of Eperythrozoon and their site of detection</td>
</tr>
<tr>
<td>2.2</td>
<td>Prevalence and mortality due to E. ovis and E. suis in sheep, goats and pig population reported from different countries</td>
</tr>
<tr>
<td>2.3</td>
<td>Eperythrozoon and their arthropod vector</td>
</tr>
<tr>
<td>2.4</td>
<td>Results of antiglobulins tests in sheep kept under laboratory conditions</td>
</tr>
<tr>
<td>3.1</td>
<td>Inoculation of serially diluted E. ovis into 8 days old embryonated eggs via different routes</td>
</tr>
<tr>
<td>3.2</td>
<td>E. ovis infection grade in spleen, yolk sac membrane and liver of embryonated eggs following inoculation with E. ovis into yolk sac route of inoculation</td>
</tr>
<tr>
<td>3.3</td>
<td>Inoculation of two serial dilutions (10^{-2} and 10^{-3}) of E. ovis infected spleen and yolk sac suspension into embryonated eggs via yolk sac route</td>
</tr>
<tr>
<td>3.4</td>
<td>E. ovis infection grade in spleen, yolk sac membrane of embryonated eggs following incubation with E. ovis infected spleen and yolk sac suspension</td>
</tr>
<tr>
<td>3.5</td>
<td>Inoculation of two serial dilution (10^{-2} and 10^{-3}) of yolk sac suspension into embryonated eggs via yolk sac route</td>
</tr>
<tr>
<td>3.6</td>
<td>E. ovis infection grade in spleen, yolk sac membrane of embryonated eggs following incubation with E. ovis infected yolk sac suspension</td>
</tr>
<tr>
<td>3.7</td>
<td>The percentage of parasitized erythrocytes in whole blood culture with two anticoagulants</td>
</tr>
<tr>
<td>3.8</td>
<td>The percentage of parasitized cells in whole blood (WB) and infected red blood cells (IRBC) in both media (RPMI-1640 and EMEM) at different hours</td>
</tr>
<tr>
<td>3.9</td>
<td>The percentage of parasitized erythrocytes in rEMEMI and RPMI-1640</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>3.10</td>
<td>The percentage of parasitized erythrocytes in infected red blood cell incubation with reduced Eagle’s medium containing inosine with EDTA (rEMEMI-EDTA) and RPMI-1640 medium with EDTA (RPMI-1640-EDTA)</td>
</tr>
<tr>
<td>3.11</td>
<td>The percentage of parasitized erythrocytes in infected red blood cell culture with medium refreshment every 12 hours and 24 hours and without changing medium.</td>
</tr>
<tr>
<td>4.1</td>
<td>Molecular weight of polypeptide bands generated by 10% PAGE of purified E. ovis after staining with coomassie blue.</td>
</tr>
<tr>
<td>4.2</td>
<td>E. ovis blotted polypeptide bands immunologically detected by hyperimmune serum against anti-E. ovis</td>
</tr>
<tr>
<td>4.3</td>
<td>E. ovis blotted polypeptide bands immunologically detected by normal serum.</td>
</tr>
<tr>
<td>5.1</td>
<td>Oligonucleotide primers used for 16S rRNA amplification</td>
</tr>
<tr>
<td>5.2</td>
<td>PCR reaction mixture for the amplification of 16S rRNA of E. ovis</td>
</tr>
<tr>
<td>5.3</td>
<td>Detection of E. ovis by polymerase chain reaction in sheep, goats and yolk sac samples.</td>
</tr>
<tr>
<td>5.4</td>
<td>Quantitation of E. ovis DNA isolated from sheep and goats blood and yolk sac membrane by a spectrophotometer.</td>
</tr>
<tr>
<td>5.5</td>
<td>Sensitivity of PCR in different dilution in sheep and goats</td>
</tr>
<tr>
<td>6.1</td>
<td>Diagnostic techniques for Eperythrozoon antigens from blood samples.</td>
</tr>
<tr>
<td>6.2</td>
<td>Sensitivity and specificity formula</td>
</tr>
<tr>
<td>6.3</td>
<td>Detection of E. ovis by indirect immunofluorescent antibody test (IFAT) and Giemsa stain from fresh blood, blood culture and embryonated eggs</td>
</tr>
<tr>
<td>6.4</td>
<td>Sensitivity and specificity of IFAT and Giemsa stain for the detection of E. ovis from fresh blood, culture blood and yolk sac membrane</td>
</tr>
<tr>
<td>6.5</td>
<td>Grade of infection of E. ovis infected blood by Giemsa and IFAT</td>
</tr>
<tr>
<td>6.6</td>
<td>Detection of E. ovis by different microscopic techniques</td>
</tr>
</tbody>
</table>
6.7 Sensitivity and specificity of light microscope and fluorescence microscope for the detection of *E. ovis* from sheep and goats blood.

6.8 Sensitivity and specificity of light microscope and confocal microscope for the detection of *E. ovis* from sheep and goats blood.

6.9 Sensitivity and specificity of light microscope and TEM for the detection of *E. ovis* from sheep and goats blood.

6.10 Sensitivity and specificity of light microscope and SEM for the detection of *E. ovis* from sheep and goats blood.

6.11 Comparison of the results of IFAT and Giemsa stain in fresh blood, culture and yolk sac membrane.

6.12 Comparison of the results of light microscope and fluorescence microscope for the detection of *E. ovis*.

6.13 Comparison of the results of light microscope and confocal microscope for the detection of *E. ovis*.

6.14 Comparison of the results of light microscope and TEM and SEM for the detection of *E. ovis*.
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>The percentage of parasitized erythrocytes in whole blood culture with two anticoagulants. Significant difference observed (p < 0.05) between heparin and EDTA anticoagulant in whole blood incubation over the 408 hours of observations.</td>
<td>91</td>
</tr>
<tr>
<td>3.2</td>
<td>The percentage of parasitized cells in whole blood (WB) and infected red blood cells (IRBC) in both media (RPMI-1640 and EMEM) at different hours. Significant difference (p < 0.05) observed between RPMI-1640 and EMEM in WB and IRBC incubation over the 408 hours of observations.</td>
<td>92</td>
</tr>
<tr>
<td>3.3</td>
<td>The percentage of parasitized erythrocytes in infected red blood cell culture with reduced Eagle's medium containing inosine (rEMEMI) and RPMI-1640 medium without inosine. Significant difference (p < 0.05) observed between reduced Eagle's medium containing inosine and RPMI-1640 medium without inosine over the 408 hours of observations.</td>
<td>93</td>
</tr>
<tr>
<td>3.4</td>
<td>The percentage of parasitized erythrocytes in infected red blood cell incubation with reduced Eagle's medium containing inosine with EDTA (rEMEMI - EDTA) and RPMI-1640 medium with EDTA (RPMI-1640-EDTA). Significant difference (p < 0.05) observed between rEMEMI - EDTA and RPMI-1640-EDTA in infected red blood cell incubation over the 408 hours of observations.</td>
<td>94</td>
</tr>
<tr>
<td>3.5</td>
<td>The percentage of parasitized erythrocytes in infected red blood cell culture with medium refreshment every 12 hours and 24 hours, and without changing medium. Significant difference (p < 0.05) observed between no change and 12 hours and between no change and 24 hours over the 408 hours of observations.</td>
<td>95</td>
</tr>
</tbody>
</table>
LIST OF PLATES

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Giemsa stained smears of the E. ovis (arrow) from culture containing RPMI-1640 medium in 12 hours (x 100).</td>
<td>96</td>
</tr>
<tr>
<td>3.2</td>
<td>Giemsa stained smears of the E. ovis (arrow) from culture containing EMEM medium in 12 hours (x 100).</td>
<td>96</td>
</tr>
<tr>
<td>3.3</td>
<td>Giemsa stained smears of the E. ovis (arrow) from culture containing RPMI-1640 medium in 24 hours (x 100).</td>
<td>97</td>
</tr>
<tr>
<td>3.4</td>
<td>Giemsa stained smears of the E. ovis (arrow) from culture containing EMEM medium in 24 hours (x 100).</td>
<td>97</td>
</tr>
<tr>
<td>3.5</td>
<td>Giemsa stained smears of the E. ovis (arrow) from culture containing RPMI-1640 medium in 48 hours (x 100).</td>
<td>98</td>
</tr>
<tr>
<td>3.6</td>
<td>Giemsa stained smears of the E. ovis (arrow) from culture containing EMEM medium in 48 hours (x 100).</td>
<td>98</td>
</tr>
<tr>
<td>3.7</td>
<td>Giemsa stained smears of the E. ovis (arrow) from culture containing RPMI-1640 medium in 156 hours (x 100).</td>
<td>99</td>
</tr>
<tr>
<td>3.8</td>
<td>Giemsa stained smears of the E. ovis (arrow) from culture containing EMEM medium in 156 hours (x 100).</td>
<td>99</td>
</tr>
<tr>
<td>3.9</td>
<td>Giemsa stained smears of the E. ovis (arrow) from culture containing EMEM medium in 408 hours (x 100).</td>
<td>100</td>
</tr>
<tr>
<td>3.10</td>
<td>Electron micrographs of E. ovis from culture (TEM x 40,000)</td>
<td>100</td>
</tr>
<tr>
<td>3.11</td>
<td>Presence of green fluorescence color (arrow) of E. ovis on the surface of infected culture red blood cell by indirect immuno-fluorescent antibody test (IFAT) (x 400)</td>
<td>101</td>
</tr>
<tr>
<td>3.12</td>
<td>Presence of E. ovis (arrow) in yolk sac membrane of embryonated egg culture by Giemsa stain (x 100).</td>
<td>116</td>
</tr>
<tr>
<td>3.13</td>
<td>Presence of green fluorescence color (arrow) in yolk sac membrane of embryonated egg culture by indirect immuno-fluorescent antibody test (IFAT) (x 400)</td>
<td>116</td>
</tr>
</tbody>
</table>