Developing a hybrid, carbon/glass fiber-reinforced, epoxy composite automotive drive shaft

ABSTRACT

In this study, a finite element analysis was used to design composite drive shafts incorporating carbon and glass fibers within an epoxy matrix. A configuration of one layer of carbon–epoxy and three layers of glass–epoxy with 0° , 45° and 90° was used. The developed layers of structure consists of four layers stacked as [+45glass^o/-45glass^o/0carbon^o/90glass^o]. The results show that, in changing carbon fibers winding angle from 0° to 90° , the loss in the natural frequency of the shaft is 44.5%, while, shifting from the best to the worst stacking sequence, the drive shaft causes a loss of 46.07% in its buckling strength, which represents the major concern over shear strength in drive shaft design.