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Abstract
This paper presents a comprehensive study on the design optimization of a robotic gripper, focusing on both the gripper
modeling and the optimization of its parallel mechanism structure. This study integrates the Black-winged Kite
Algorithm (BKA), Finite Element Analysis (FEA), Backpropagation Neural Network (BPNN), and response surface
optimization techniques. The Good Point Set (GPS), nonlinear convergence factor, and adaptive t-distribution method
improve BKA, which enhances exploration and exploitation performance, convergence speed, and solution quality.
Subsequently, the parallel mechanism structure is designed to minimize the total mass, total deformation, and maximum
equivalent stress. The central composite design (CCD) method was used to design the FEA experiment and establish
the BKA-BPNN regression prediction model. The RMSE of this model’s training set and test set are 0.001615 and
0.0029328. A response surface optimization model is constructed to determine the best design solution. The optimized
design achieves a 33.12% reduction in maximum equivalent stress, a 1.47% decrease in total mass, and a 0.16% reduction
in maximum total deformation. This study provides valuable insights into the design optimization process for robotic
grippers, showcasing the effectiveness of the proposed methodologies in enhancing performance while reducing mass
and improving structural integrity.
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Introduction

In the field of robot research, specific tasks must be
achieved through robot end effectors. Among the many
end effectors, grippers that mimic human manual dex-
terity are particularly important for their versatility and
adaptability in handling a variety of objects. Grippers
can perform tasks such as grasping, manipulating, and
transporting objects. A key design aspect of this type of
clamp is the mechanism used to securely clamp the
object, which directly affects its performance and
efficiency.
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Parallel gripper mechanisms have become an impor-
tant solution for achieving stable and robust gripping in
robotic systems. Using a parallelogram kinematic struc-
ture can provide balanced force distribution and precise
control of the grasping operation, thereby improving
efficiency and reliability for various tasks. The impor-
tance of parallel gripper mechanisms lies in their ability
to mimic the coordinated movements of human fingers,
allowing robots to interact with objects like human
manipulation.1

In recent years, a large amount of research effort has
been devoted to optimizing the design and performance
of robotic grippers, with a particular focus on addres-
sing challenges related to design methods, optimization
algorithms,2 and structural analysis techniques.3 Vaisi
et al. reviewed the application of robots in industrial
production and introduced the future research trends of
robots.4 Jin and Han introduced the huge potential of
robotic arms in agricultural development, which uses
different hardware to achieve multiple functions to help
agricultural development in the new era.5 Jung and
Shin studied the help of nursing robots for the aging
population, including functions such as assisted mobi-
lity, toileting, monitoring, and communication.6 Gao
et al. developed a robot end effector for tomato picking,
which uses pneumatic control, and the success rate of
automatic picking reaches 70.1%.7 Cvitanic et al. pro-
posed a robot end effector using laser tracker and iner-
tial sensor fusion, which takes into account speed and
angular acceleration to improve the working accuracy
of the robot end effector significantly.8 Chang et al.
studied a multi-degree-of-freedom wrist robot end effec-
tor, which can avoid motion singularities and achieve
better flexibility.9 Dörterler et al. proposed a multi-
strategy optimization method for designing robot grip-
pers and obtained the optimal design parameters for
robot grippers.10 AboZaid et al. reviewed the materials
and grasping technologies of soft material robot grip-
pers and discussed the application of robot grippers.11

Scholars have conducted control and application
research on robots and explored a variety of applica-
tion scenarios and design methods. Design methods
include more mathematical modeling of robot grippers,
but less combining the optimal design parameters with
structural design and verification, making it difficult to
better understand its kinematics and dynamics. Black-
winged Kite Algorithm (BKA) has been used to solve
complex optimization problems such as engineering
optimization, path planning, and scheduling problems.
In the field of robot design, the application of BKA is
still in the initial exploration stage. This study applies
BKA to the design and optimization of robot grippers,
making full use of its advantages in exploration and
development to find the optimized design parameters.
This innovative application not only expands the
application scope of BKA, but also provides a new

optimization method for robot gripper design. The
application of the BKA can optimize the design of the
gripper by effectively exploring the design space and
determining the best solution. Finite Element Analysis
(FEA) has been widely used to evaluate the structural
integrity and performance of grippers under different
operating conditions, allowing researchers to identify
design flaws and improve overall efficiency. In addi-
tion, the Back Propagation Neural Network (BPNN)
model can efficiently predict the results of interest for
multiple design schemes.

This paper aims to contribute to the existing body of
knowledge by proposing a new method for designing
and optimizing robot grippers with parallel kinematic
structures. Specifically, the research focuses on the
mathematical modeling of the clamp mechanism, the
application of heuristic optimization algorithms to
enhance clamp performance, and the use of FEA to
verify the structural integrity of the proposed design.
The BKA-BPNN model is established to accurately
predict the performance of the parallelogram mechan-
ism under different design schemes. The optimal design
parameters are determined by response surface optimi-
zation, which significantly improves the performance
indicators of the gripper. Finally, a physical prototype
is manufactured according to the optimal parameters,
and multiple experiments are carried out to verify the
effectiveness of this design. Potential innovations and
contributions of this study include:

(1) An improved BKA is proposed to optimize the
mathematical model of the gripper mechanism.
FEA is used to further refine the mass, stress
and structural parameters of the design.

(2) Development of a BKA-BPNN model to accu-
rately predict the performance of the gripper
under different design scenarios, demonstrating
the effectiveness of the neural network model.

(3) Response surface optimization was used to
determine the optimal design parameters, sig-
nificantly improving the gripper’s clamping
force, mass, and maximum equivalent stress
performance indicators.

(4) A comprehensive approach to design and opti-
mize a robotic parallel gripper was proposed by
integrating improved BKA, FEA, BPNN, and
response surface optimization techniques.

By integrating these aspects, this study aims to
provide insights into the design and optimization of
parallel grippers for robotic applications, ultimately
improving robot manipulation capabilities in various
industrial and research fields. The robot gripper
designed in this study has an actuation force limited to
50N and targets specific tasks in electronic manufac-
turing, precision assembly, and light material handling.
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The contents of this paper are: Section 2 introduces the
methodology related to this research, including robot
gripper modeling, black-winged kite algorithm and its
improvements, experimental design methods, neural
network, and response surface optimization methods;
In section 3, a case design of the robot gripper was car-
ried out, the structure of the parallel gripper was opti-
mized, and the correctness of the design was verified;
Section 4 summarizes the significance of this study and
the extension of the design methodology.

Research method

This section provides a comprehensive overview of the
methodology employed in this study to support the
design and optimization of robotic parallel grippers.
Figure 1 presents the work route of this research, with
methods ranging from theoretical modeling to practical
experiments.

Robot gripper modeling

Robotic grippers are designed taking into account the
required clamping force, precision and stability to meet
the needs of a specific application. The structure needs
to be sufficiently rigid and stable while remaining flex-
ible enough to accommodate objects of different shapes
and sizes. Taking into account the special environment
in which the robot operates, stainless steel materials are
selected to increase the service life of the gripper.

Two primary approaches commonly employed for
gripper actuation include direct motor-to-gear trans-
mission and motor-to-screw mechanism driving a slid-
ing block. While both methods offer their unique
advantages, the latter, involving motor-driven screw
mechanisms, has garnered significant attention in
robotic gripper design. As shown in Figure 2, by lever-
aging the self-locking properties of screw mechanisms,
robotic grippers can achieve enhanced stability and
holding force, thus facilitating the manipulation of
objects with varying shapes and sizes in diverse opera-
tional environments.10

Fk denotes the gripping force of the robot gripper
when working. a, b, c, and d denote the link structural
parameters of the robot gripper. e, f, and l denote the
position structural parameters of the robot gripper.
These parameters are all variables for the optimal
design of the robot gripper. z, a, and b denote a certain
moment of the motion state. At any moment, record
the length of point A to point C as g, and the angle
:CAD as u. The parameters of the structure can be
calculated, expressed as equations (1)–(4).

g =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l � zð Þ2 + e2

q
ð1Þ

a= arccos
a2 + g2 � b2

2ag

� �
+u ð2Þ

Figure 1. Flow chart for robot gripper optimization.
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b= arccos
b2 + g2 � a2

2bg

� �
� u ð3Þ

u= arctan
e

l � z

� �
ð4Þ

When the driving force of the motor screw is P,
calculate the static balance between the force passing
through the connecting link a and the gripping force
Fk, and then Fk can be calculated, as equation (5).

Fk =
Pbsin a+bð Þ

2c cos að Þ ð5Þ

Consider the displacement y of the gripper, which is
related to the opening and closing angle of the link c
and the position parameters e, f. y can be calculated as
equation (6).

y= 2 e+ f + c sin b+uð Þð Þ ð6Þ

To realize the parallel gripping capability of the
robot gripper, a parallelogram mechanism needs to be
designed, as shown in Figure 3. Add a fixed point C#,
the distance between point C and point C# is L1, and
the horizontal angle of CC# is A1. Dy is the opening
and closing distance of the holding, and Dx is the Level
difference during opening and closing.

Improved black-winged kite algorithm

The Black-winged Kite Algorithm (BKA) is a heuristic
optimization algorithm proposed by Wang et al. in
2024.12 It was inspired by the migration and hunting
behavior of the black-winged kite. BKA has proven its
ability to achieve the best performance in 66.7, and
72.4 of the CEC-2022 and CEC-2017 test functions
with its excellent performance. After the BKA was pro-
posed, some researchers began to use this algorithm to
solve various optimization problems, including engi-
neering design and machine learning.

Like most other heuristic optimization algorithms,
the population is initialized by randomly assigning the
position of each black-winged kite. The black-winged
kite adjusts the angle of its wings and tail according to
the wind speed during flight, hovers quietly to observe
its prey, and then quickly dives to attack. The strategy
includes different attack behaviors for global explora-
tion and search. The migratory behavior of the black-
winged kite is through a dynamic selection of superior
leaders. If the fitness value of the current population is
greater than the fitness value of the random popula-
tion, the population will be guided to the destination to
ensure the success of the migration.

In this study, based on the robot gripper problem,
the original BKA was improved and upgraded to alle-
viate the shortcomings of BKA in the problem of pre-
mature convergence, easy falling into local optimality,
and low convergence accuracy.

The improved BKA (I-BKA) uses the Good Point
Set (GPS) method for population initialization.13 For
problems with i populations and j dimensions, the
method of finding the optimal point set is shown in the
equation (7).

ri
j =mod 2 cos

2pj

k

� �
i, 1

� �
k = 2j+ 3

Pi
j = lbj + ri

j ubj � lbj

� �

8>>><
>>>:

ð7Þ

Pj
i is the good point set of the i population in the j

dimension, where lbj and ubj are the lower and upper
bounds of the j-th variable. Figure 4 compares the initi-
alization results of 100 populations in 2-dimensional
space using the GPS method and randomly generated
populations. It can be seen that the population initiali-
zation distribution of the GPS method is more uniform.

During the attack behavior stage of the black-
winged kite, the original BKA selected the constant
p= 0:9 as the judgment condition to update the popu-
lation position. This study adaptively selected probabil-
ity p according to the nonlinear convergence factor to
adjust the position update, which is calculated as
shown in equation (8). The nonlinear convergence
factor can better control the step size or perturbation

Figure 2. Motion diagram of robot gripper.

Figure 3. The parallelogram mechanism of the gripper.
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size of the algorithm during the search process, thereby
achieving a balanced relationship between exploration
and exploitation.

p=
1

2
+

sin( p
2
+p( t

T
)k)

2
ð8Þ

where T is the maximum number of iterations, t is the
current number of iterations. Figure 5 depicts the con-
vergence factor of the sinusoidal nonlinearity for differ-
ent values of parameter k. The convergence factor is
used to adjust the step size in the optimization
algorithm. In this study, k= 0.8, which allows the algo-
rithm to conduct a large-scale exploration in the early
stage and focus on the development near the excellent
solution in the later stage, thereby increasing the prob-
ability of finding the global optimal solution.

The original BKA uses Cauchy distribution to dyna-
mically select excellent leaders in migration behavior to
ensure the success of migration. This process solves the
risk of falling into the local optimal solution during the
BKA algorithm solution process. Based on the original
BKA, the t distribution variation is used to help the
algorithm increase randomness in the migration stage
and help jump out of the local optimal solution. The
formula is shown in (9).

X t + 1
i, j =X t

i, j +X t
i, jtrnd e

t
Tð Þ

2� �
ð9Þ

Here Xij
t denotes the position obtained by the i-th

black-winged kite in the t-th iteration of the j-th dimen-
sional space. trnd denotes the Student’s t random num-
bers. Based on the population initialization and
nonlinear convergence factor of the Good Point Set
(GPS) method, a variety of mutation strategies were
tried, including Gaussian mutation, Cauchy mutation,
adaptive t distribution, normal cloud distribution, and
non-uniform mutation. After running the CEC2017
function many times, it was found that the adaptive t
distribution had the best improvement effect. Figure 6
plots the convergence curves to compare the perfor-
mance differences of each strategy, where Figure 6(a) is
the CEC2017 F23 function, and Figure 6(b) shows the
convergence curves of 10 average runs under different
mutation strategies. The Gaussian mutation, Cauchy
mutation, adaptive t distribution, normal cloud distri-
bution, and non-uniform mutation strategies in the
legend are Gauss-BKA, Cauchy-BKA, Self-t-BKA,
Cloud-BKA, and H-BKA, respectively.

Adaptive t-distribution mutation dynamically
adjusts the degree of freedom parameter of t-distribu-
tion, so that the mutation strategy can adaptively adapt
to different stages of the search process. In the early
stage, the t-distribution with lower degrees of freedom
can introduce larger random perturbations and enhance
the global search capability; in the later stage, the
degrees of freedom gradually increase, making the
mutation more refined and helpful for local develop-
ment. Multiple running results show that adaptive t-
distribution mutation is superior to other mutation
strategies in terms of convergence speed and solution
quality.

Neural network regression analysis

Neural networks are composed of interconnected nodes
organized into layers and are good at capturing com-
plex patterns and relationships in data.14–16 Through
training, a neural network iteratively adjusts its internal
parameters to minimize prediction errors and improve
performance on a specific task.17,18

Figure 4. Comparison of population initialization.

Figure 5. Non-linear convergence factor.
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This study chose a neural network regression analy-
sis, specifically the backpropagation neural network
(BPNN), to model the parallelogram mechanism in
robot fixture design. The structure of BPNN is shown
in Figure 7.

The calculation of BPNN output ŷi is as equation
(10). where bij and wij represent the bias and weight of
the neuron.

ŷi = f
Xn

i= 1

wijxi � bij

 !
ð10Þ

Calculate the total error E of the total output value
according to equation (11), that is, the calculated out-
put value ŷj and the true value y of the data set.

E=
Xn

i= 1

ŷi � yið Þ2 ð11Þ

Gradient descent techniques can then be used to
minimize weights, as in equation (12), where h is the
learning rate.

wij =wij � h
∂E wij

� �
∂wij

ð12Þ

BPNN can provide a flexible and versatile regression
analysis method. When designing the parallelogram
structure of the robot gripper, the influence of the lin-
ker length, linker angle, and linker material thickness
parameters on the working intensity will be considered.
Each design option has an impact on the total mass
and deformation of the structure. Using BPNN to per-
form regression analysis on each solution, the predic-
tion results are very meaningful and can help select a
more appropriate design solution.

In this study, the choice of BPNN has its unique
advantages over other types of neural networks. BPNN
has a simple structure and is trained using the gradient
descent algorithm, which can efficiently minimize the
prediction error. Compared with some complex deep
neural networks, the training process of BPNN is rela-
tively simple and fast, ensuring that the performance of
the manipulator can be effectively predicted accurately.

However, BPNN may suffer from slow convergence
and overfitting problems, and this study proposes an
improved method that combines BPNN with improved
BKA. Figure 8 shows the improved BKA-BPNN pro-
cess. By taking advantage of BKA’s efficient and adap-
tive search capabilities, the proposed method improves
the convergence speed, enhances the exploration-
exploitation trade-off, and improves the robustness to
noisy data, making it a good solution to the problem of
robot gripper design. regression problem.

Optimizing the initialization weights of BPNN using
BKA provides a more effective and efficient method of

Figure 6. Convergence curves of different mutation strategies: (a) F23 function and (b) convergence curves of F23 function.

Figure 7. Backpropagation neural networks (BPNN) structure.
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initializing neural network parameters. Traditional
methods of initializing weights (such as random or uni-
form distributions) can result in suboptimal solutions
and slow convergence during training. By leveraging
BKA’s adaptive search strategy, initialization weights
can be optimized to better align with the problem space,
thus promoting faster convergence and improving solu-
tion quality.

Response surface optimization

In the design of the robot gripper, to better determine
the parallelogram mechanism parameters and profile
size parameters, the response surface optimization
method is used to find the optimal solution. This
method collects and analyzes a series of experimental
data and establishes a response surface model to con-
struct a mathematical model to approximate the rela-
tionship between design parameters and performance
indicators.19

Response surface models usually use the Central
Composite Design (CCD)20 and Box-Behnken Design
(BBD),21 then use polynomial functions, radial basis
functions, or neural networks to fit experimental data.
In this study, CCD was used to construct a response
surface model, and second-order polynomials were used
for fitting. CCD combines full factorial design with
additional center points and pivot points to ensure a
wider design space with fewer experiments. Second-
order polynomials as the fitting function of the response

surface model can effectively capture the nonlinear rela-
tionships in experimental data and avoid the over-
fitting problem that may be introduced by higher-order
polynomials. The second-order polynomial constructs
the response surface model, and the equation is shown
in equation (13).

Y =b0 +
Xn

i= 1

biXi +
Xn

i= 1

biiX
2
i +

Xn

i= 1:i ł j

bijXiXj + e

ð13Þ

Among them, Y is the response variable, Xi is the
independent variable, b0 is the constant term, bi is the
linear term coefficient, bii is the quadratic term coeffi-
cient of the independent variable Xi, bij is the cross-
term coefficient of the independent variables Xi and Xj,
and e is the error term. Constructing a response surface
can intuitively present the relationship between the
response variables and independent variables in the
form of images. The response surface model optimiza-
tion constructed by CCD and second-order polyno-
mials can provide reliable choices for the design of
mechanical grippers.

Results and discussion

In this section, a certain model of a robot gripper is
selected as the design object, and various heuristic algo-
rithms are compared to solve the problem. The optimal

Figure 8. Flow chart of improved BKA-BPNN.
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solution is selected through a comprehensive discussion
of the designed parameters, and the parallel gripping
function of the gripper is realized.

Optimization calculation

According to the established robot gripper model opti-
mization problem constraints, the key parameters are
solved with the minimum change in gripping force as
the goal. These key parameters include structural vari-
ables such as connecting rod length and position. In
addition, performance indicators including clamping
force, stability, and efficiency were established to evalu-
ate the effectiveness of the parameters.

For the robot gripper model selected in this study,
given the motor driving force p=50N, other
parameters of the robot gripper are designed. The
design variables are in equation (14), the objective
function is in equation (15), and the constraints are in
equation (16).

X=(x1, x2, x3, x4, x5, x6, x7)= (a, b, c, e, f , l, d) ð14Þ
Minimize f Xð Þ=2min

z
Fk X, Zð Þ+ max

z
Fk X, Zð Þ ð15Þ

Subject to

g1 Xð Þ=2Ymin + y X, Zminð Þł 0

g2 Xð Þ=2y X, Zmaxð Þł 0

g3 Xð Þ= Ymax � y X, 0ð Þł 0

g4 Xð Þ= y X, 0ð Þ � YG ł 0

g5 Xð Þ= l2 + e2 � a+ bð Þ2 ł 0

g6 Xð Þ= b2 � a� eð Þ2 � l � Zmaxð Þ2 ł 0

g7 Xð Þ= Zmax � l ł 0

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð16Þ

The values here are Ymin=50, Ymax=100,
YG=150, Zmax=100. The bounds of the design
variables are: 20 ł ał 100, 30 ł bł 100, 100 ł

cł 200, 10 ł eł 100, 10 ł fł 30, and 50 ł l
ł 200, p/2 ł d ł p.

To ensure the accuracy of the optimization calcula-
tion and the effectiveness of the improved BKA algo-
rithm, a variety of heuristic optimization algorithms
were implemented to solve this robot gripper model
optimization problem. Other heuristic algorithms
include the Dung Beetle Optimizer (DBO) algorithm,22

the Harris Hawks Optimization (HHO) algorithm,23

and the Gray Wolf Optimization (GWO) algorithm.24

Each algorithm is iterated to search for the best solu-
tion in the same design space. The comparative conver-
gence curve is shown in Figure 9. In the calculations,
the population number was set to 30, and the maxi-
mum number of iterations was set to 500.

The improved BKA shows excellent performance in
solving the robot gripper optimization problem,
surpassing other algorithms in terms of convergence.

BKA convergence curves show faster convergence
speeds and smoother convergence trajectories com-
pared to other optimization techniques. This superior
performance can be attributed to BKA’s ability to
effectively explore the solution space while effectively
exploiting promising regions, resulting in faster and
more consistent convergence to the optimal solution.

The optimal solutions and mean comparison values
solved by different algorithms are shown in Table 1,
which respectively shows the worst value, optimal
value, standard deviation value, average value, and
median value of different algorithms. Table 2 presents
the variable optimal solutions obtained by the four
algorithms.

The convergence results demonstrate the effective-
ness of the improved BKA in solving the design optimi-
zation of robotic grippers. To facilitate the continued
design of the robot gripper, the obtained design
variables are summarized as X=(a,b,c,e,f,l,d)= (100,
85, 120, 10, 25, 100, 105).

Parallelogram gripping mechanism

After finalizing the overall dimensions of the gripper,
attention turned to the design of the actuation mechan-
ism to achieve parallel gripping, known as the paralle-
logram mechanism. Drawing inspiration from existing
parameters of parallelogram mechanisms, simulations
were conducted to analyze the load-bearing characteris-
tics under operational conditions.

Referring to the gripper in Figure 3, when it grips
the object, it generates force and moment on point D.
In this study, it is assumed that the supporting force is
50N and the offset distance of the force is 50mm, then
the moment applied on point D is 250N�mm. Apply
this load condition to the parallelogram mechanism
and obtain its FEA results, as shown in Figure 10.
Figure 10(a) shows the total deformation under the

Figure 9. Convergence curves for robotic gripper design.
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action of gripping torque, and Figure 10(b) shows the
equivalent stress under the gripping working state.

It can be seen that the most dangerous component
of the parallel gripping mechanism of the robot gripper
corresponds to the connecting link b-d-c in Figure 2.
The width parameter of the connecting rod is set to R2.
R2 and the parameters A1 and L1 in Figure 3 are
response surface optimization parameters. The optimi-
zation goal is to minimize the total mass and the
maximum equivalent stress of the parallelogram
mechanism.

The CCD method is used for experimental design,
and the influence of three factors (L1, A1, R2) on the
maximum total deformation, maximum equivalent
stress, and total mass is analyzed. Variable value range:
31.5 ł L1 ł 38.5, 74.7 ł A1 ł 91.3, 4.5 ł R2 ł 5.5.
The 15 sets of experimental results are shown in
Table 3.

After obtaining experimental data related to the
length (L1), angle (A1), material width (R2), overall
structural mass, maximum deformation, and maximum

equivalent stress, BKA-BPNN regression is used to
predict a variety of different design options.

BKA-BPNN regression prediction

In the design of robotic grippers, a three-input, two-
output framework is adopted, where the length (L1),
angle (A1), and material width (R2) serve as inputs,
while the overall structural mass and maximum defor-
mation represent the outputs.

The BKA-BPNN framework establishes predictive
models for estimating the gripper’s performance metrics
based on input parameters. By training the BKA-
BPNN regression model on historical data encompass-
ing various gripper configurations and corresponding
performance measurements, the overall structural mass
and maximum deformation of prospective gripper
designs can be accurately predicted.

BKA-BPNN is used to train the data of the paralle-
logram mechanism of the robot gripper. Initialize the
parameters of BKA, the evolution generation is 30

Table 1. Optimal solution and mean comparison of algorithm solution.

Name I-BKA DBO HHO GWO

Worst 4.010218788 4.244410828 1018.872605 4.286281804
Best 4.440081641 253658.3464 187966.1084 6.959525306
Std 0.17514738 113436.8138 76521.43803 1.101789248
Mean 4.261542521 50736.40494 55464.74408 5.012970231
Median 4.268047556 4.463612474 33112.29566 4.562299487

Table 2. Optimize the results of calculated variables.

Method a (mm) b (mm) c (mm) e (mm) f (mm) l (mm) d (deg)

I-BKA 99.32303122 88.82640175 106.7638743 10 27.28784101 100.7928933 104.8566526
DBO 100 89.55925621 102.2660319 10 14.85240926 100.6692296 98.270505
HHO 100 46.01051204 140.6353874 15.22102993 12.48763443 98.99681877 93.56850347
GWO 100 88.6404011 109.1843607 10.18606774 28.68392612 111.6884013 107.943737

Figure 10. FEA results of the initially designed parallelogram structure: (a) total deformation and (b) equivalent stress.
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generations, and the population size is 5. Through con-
tinuous optimization training, the BPNN prediction fit-
ness curve is obtained, as shown in Figure 11.

Through continuous training of the training set data
and prediction calculation of the test set data, the Root
Mean Square Error (RMSE) comparison of the paralle-
logram structure prediction of the robot gripper after
BKA-BPNN optimization is obtained, as shown in
Figure 12. Figure 12(a) shows the RMSE of the training
set is 0.001615, indicating that the accuracy of predict-
ing the structural quality and maximum deformation
based on the input parameters is very high. Figure
12(b) shows that the RMSE of the test set is 0.0029328,
which further confirms the generalization ability of the
developed model.

The BKA-BPNN model accurately predicts the per-
formance of the parallelogram mechanism of the robot
gripper, which is the basis for response surface design.

By fitting the BKA-BPNN prediction model to the
response surface model, it can more intuitively and
effectively identify the optimal design configuration to
minimize structural mass and maximize stiffness.

Selection of optimal design parameters

A response surface model can be constructed based on
the BKA-BPNN predictive model. The model is
designed to capture the complex nonlinear relationships
between input parameters (L1, A1, R2) and output
responses (structural mass, maximum deformation,
maximum equivalent stress). As shown in Figure 13(a)
is the response surface diagram of A1 and R2 to the
total deformation, Figure 13(b) is the response surface
diagram of L1 and R2 to the total mass of the struc-
ture, Figure 13(c) is the response surface diagram of L1
and R2 to the maximum equivalent stress. Figure 13(d)
is the response surface diagram of A1 and R2 to the
maximum equivalent stress.

Through regression analysis and curve fitting tech-
nology, a robot parallel gripper response surface model
was developed to present the influence behavior of
design parameters on the design objectives. Utilizing
the developed response surface model, an optimization
algorithm is employed to systematically explore the
design space and identify numerous samples that yield
the desired performance target. The design objectives in
this study are to minimize structural mass and mini-
mize equivalent stress.

Figure 14(a) is a sample scatter plot of L1 and A1 to
the total mass of the structure. Figure 14(b) is a sample
scatter plot of L1 and R2 to the total mass of the struc-
ture. Figure 14(c) is a sample scatter plot of L1 and A1
to the maximum equivalent stress of the structure.
Figure 14(d) is the sample scatter plot of L1 and R2 to
the maximum equivalent stress.

Table 3. Experimental results designed by CCD method.

Name L1 (mm) A1 (deg) R2 (mm) Total deformation (mm) Equivalent Stress (Mpa) Geometry Mass (kg)

1 35 83 5 0.63961144 126.9934661 0.162833181
2 31.5 83 5 0.639886797 126.9326451 0.160131904
3 38.5 83 5 0.63967512 127.0380305 0.16553645
4 35 74.7 5 0.639282496 125.1829357 0.163067919
5 35 91.3 5 0.640230177 127.9215767 0.162590071
6 35 83 4.5 0.86969331 114.24314 0.154318257
7 35 83 5.5 0.484871737 110.1924803 0.171408229
8 32.15438117 76.25181821 4.593483025 0.818759876 109.6185329 0.153900351
9 37.84561883 76.25181821 4.593483025 0.819373131 145.1197717 0.15829562
10 32.15438117 89.74818179 4.593483025 0.818960808 118.9152727 0.153512456
11 37.84561883 89.74818179 4.593483025 0.819376438 118.9871953 0.157905844
12 32.15438117 76.25181821 5.406516975 0.508922851 85.11177172 0.167795079
13 37.84561883 76.25181821 5.406516975 0.509089355 94.18700571 0.172190348
14 32.15438117 89.74818179 5.406516975 0.510204055 114.8762382 0.167407183
15 37.84561883 89.74818179 5.406516975 0.509867146 114.9531015 0.171800571

Figure 11. Diagram of the fitness curve of BPNN.
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Figure 12. Comparison of prediction result errors: (a) training set prediction results and (b) test set prediction results.

Figure 13. Diagram of response surface model: (a) A1 and R2 to the total deformation, (b) L1 and R2 to the total mass, and (c) L1
and R2 to the equivalent stress, (d) A1 and R2 to the equivalent stress
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The robot gripper is designed according to the opti-
mal design scheme marked in red in the sample scatter
plot, and the FEA results are shown in Figure 15. The
values of this design plan are L1=31.535mm,
A1=74.783�, R2=5.0026mm. Figure 15(a) shows
that the total deformation obtained is 0.6385884mm,
Figure 15(b) shows that the maximum equivalent stress

is 84.927MPa, and the total mass is 0.16043 kg.
Compared with the initial plan (total mass 0.16283 kg,
maximum total deformation 0.63961mm, maximum
equivalent stress 126.99MPa, the maximum equivalent
stress of the optimized plan is reduced by 33.12%, the
total mass is reduced by 1.47%, and the maximum
total deformation is reduced by 0.16%.

Figure 14. Scatter plot of samples: (a) L1 and A1 to the total mass, (b) L1 and R2 to the total mass, (c) L1 and A1 to the equivalent
stress, and (d) L1 and R2 to the equivalent stress.

Figure 15. FEA results of the optimized parallelogram structure: (a) total deformation and (b) equivalent stress.
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It can be seen that the use of FEA to evaluate the
structural integrity and performance of the robot’s par-
allel gripping mechanism provides valuable data for
building a response surface model. Through iterative
refinement guided by FEA results, the optimal para-
meters of the parallelogram mechanism were deter-
mined. This comprehensive approach ensures that the
parallelogram mechanism not only meets the functional
requirements of parallel gripping but also exhibits
robustness and reliability under different operating
conditions.

Experimental validation

The evaluation of robotic grippers requires multifaceted
validation, including gripping force, gripping stability,
structural strength, gripping accuracy, and gripping effi-
ciency. This study focused on optimizing stable gripping
force as a primary objective. Using an improved BKA,
approximate structural parameters were derived, which
were further refined throughFEA, BKA-BPNN
modeling, and response surface analysis. Considerations
encompassed part strength, deformation, and overall
mass. The operational stability and gripping accuracy
of the robotic gripper heavily depend on machining pro-
cesses, which were not within the scope of this study.
Identify optimal solutions through response surface
design and transform theoretical designs into a virtual
prototype as depicted in Figure 16. Figure 16(a) shows
the kinematic pair design of the robot gripper. The
structure has nine movable components, 13 low-motion
pairs, the degree of freedom is equal to 1, and a motor
drives the screw pair of the screw to drive stable move-
ment. Figure 16(b) is the three-dimensional model con-
structed using computer-aided design (CAD) software,
which adopts the dimensions and specifications of the
optimal gripper design.

A physical prototype was fabricated to validate the
design’s functionality after determining the robotic
gripper’s overall transmission and parallelogram struc-
ture dimensions. The drive motor uses a 34mm stepper
motor 42HS34, a T8�2mm trapezoidal screw with a
length of 100mm and a brass nut. The physical
prototype produced is shown in Figure 17, where
Figure 17(a) shows the arbitrary state of the gripper,
and Figure 17(b) shows the working state of gripping
an object.

The experimental setup involved testing the gripping
and clamping functionality of the prototype, evaluating
its operational stability, and measuring displacement
parameters during movement as shown in Figure 18.
Figure 18(a) presents the displacement curve of the
drive slider and the parallelogram structure during the
gripping task, which can be seen that the gripper gradu-
ally clamps when the slider moves to the elongation at
an average speed. Figure 18(b) shows the displacement
curve of the separation of the driving slider and the par-
allelogram structure after completing the grasping task,
which can be seen that when the slide moves to the
shortened position at an average speed, the clamps gra-
dually separate. The physical prototype demonstrated
reliable operation during gripping and clamping tasks,
with smooth and stable motion observed throughout
the operational cycle. Displacement parameters were
measured to assess the accuracy and consistency of the
gripper’s movements. The experimental validation con-
firmed the correctness and effectiveness of the designed
robotic gripper, validating its suitability for real-world
applications in various industrial and research settings.

By designing a virtual prototype and manufacturing
a physical prototype, the correctness and reliability of
the robot parallel gripper design proposed in this study
were verified. Overall, the experiments verified the
effectiveness of the comprehensive approach proposed
in this study for designing robot grippers.

Figure 16. Virtual prototype of the robotic gripper: (a) kinematic design of robot gripper and (b) 3D model of robot gripper.
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Conclusion

This study demonstrates the effectiveness of a compre-
hensive approach to robotic parallel gripper design
optimization. By integrating improved BKA, FEA
technology, and neural network model, gripper perfor-
mance has been significantly improved. The improved
group initialization and adaptive dynamic selection
strategy in the improved BKA significantly improve
the optimization efficiency. Through the population
initialization of the GPS method, the BKA can explore
a wider range of solutions from the beginning, prevent-
ing premature convergence to suboptimal solutions.
Furthermore, the adaptive dynamic selection strategy
ensures a balance between exploration and exploitation
throughout the optimization process, enabling the algo-
rithm to efficiently navigate complex solution environ-
ments and converge to high-quality solutions faster.
These improvements make BKA more robust to
changes in problem characteristics, thus enhancing its
performance in different optimization tasks.

The utilization of FEA provides valuable insights
into the structural integrity and performance of the

robotic gripper, allowing informed decisions to be made

during the optimization process. The BKA-BPNN

model was established to regression predict the perfor-

mance of the parallelogram mechanism of the robot

gripper under different design schemes. The RMSE of

the neural network model training set and test set are

0.001615 and 0.0029328 respectively, which proves the

effectiveness of the neural network model. The BKA-

BPNN model provides numerical support for fitting the

response surface design.
The application of response surface optimization

helps determine optimal design parameters, thereby sig-

nificantly improving fixture performance metrics. In

this study, the maximum equivalent stress was reduced

by 33.12%, the total mass was reduced by 1.47%, and

the maximum total deformation was reduced by 0.16%.

The developed fused neural network and response sur-

face model provide a reliable framework to effectively

explore the design space and guide the optimization

process to achieve the desired performance goals.
The optimal design of the robot gripper needs to

consider not only the gripping force, stability, and

Figure 18. Displacement measurement of robot gripper: (a) motion curve of gripping task and (b) motion curve of separation
process.

Figure 17. Robot gripper physical prototype: (a) physical prototype of the gripper and (b) the gripper holds an object.
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structural strength, but also the material cost, manufac-
turing cost, assembly cost, and maintenance cost. This
study did not involve research in this area. In the
future, a cost model or cost function will be introduced
as part of the optimization goal to achieve a balance
between the performance and cost of the robot gripper
by adjusting the design parameters, to achieve a more
comprehensive and sustainable design and optimization
of the robot gripper.

Overall, this study highlights the importance of a
multidisciplinary approach to optimizing fixture design
utilizing advances in improved BKA, FEA, BPNN,
and response surface optimization techniques. The
optimized robotic gripper design proposed in this study
demonstrates the effectiveness of the proposed
approach in enhancing gripper performance while
reducing mass and improving structural integrity.
Going forward, insights gained from this study can
inform the development of more efficient and reliable
robotic grippers for a wide range of industrial and
research applications.
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