
Environmental and Sustainability Indicators 22 (2024) 100363

Available online 22 February 2024
2665-9727/© 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-
nc/4.0/).

Pollutant load estimation and load reduction target (LRT) projection for 
total maximum daily load (TMD) allocation on tropical rivers 

Nura Bello a,b, Nor Rohaizah Jamil a,c,*, Ley Juen Looi a, Keng Yap Ng d 

a Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang Selangor, Malaysia 
b Department of Geography, Usmanu Danfodiyo University, Sokoto, Nigeria, PMB 2346 Sokoto State, Nigeria 
c Aquatic Ecosystem and Management Laboratory, International Institute of Aquaculture and Aquatic Sciences (i-AQUAS), Lot 960 Jln Kemang 6, 71050 Port Dickson, 
Negeri Sembilan, Malaysia 
d Department of Software Engineering and Information Systems, Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, 43400 UPM 
Serdang Selangor, Malaysia   

A R T I C L E  I N F O   

Keywords: 
Pollutant load 
Water quality analyser 
Load reduction target 
Total maximum daily load 

A B S T R A C T   

Pollutant load may be defined as the mass of a substance that passes a particular point of a river in a specified 
amount of time. Meanwhile, estimation of pollutant loading and identification of their sources is crucial to 
environmental management and planning. For the first time (in this study), Flow rate measurement was used to 
estimate daily pollutant loading from Intermittent water quality concentration data, using a 2-dymensional 
Water Quality Analyser (WQA). Subsequently, Total Maximum Daily Load (TMDL) was determined using the 
Load duration approach, while Load Reduction Targets were projected for the future, the using regression option 
of trend analysis available in the WQA. Out of the ten parameters used for the study, BOD, NH3, and TSS have 
been identified as the most critical pollutants in the area, which require average load reduction of 3898.88 kg-day, 
1053.28 kg-day, and 444,716.50 kg-day respectively, to achieve water quality class II, until 2030. Moreover, the 
study reveals that the load reduction target for BOD and TSS would decrease in the future, while that of NH3 
increases (p < 0.001). This is even as significant variability also exists for the projected load reduction target over 
the months throughout the projected period (p < 0.01). It was concluded that WQA provides a cost and time 
effective, and a reliable means for estimation of Pollutant load and projection of Load Reduction Target. The 
study recommends source identification for the critical pollutants into the river and allocation of TMDLs using 
the dynamic flow approach.   

1. Introduction 

Pollutant load may be defined as the mass of a substance that passes a 
particular point of a river (such as a monitoring station or a watershed 
outlet) in a specified amount of time (e.g., daily, annually, etc. (Meals 
et al., 2013). According to (Han et al., 2021) an accurate accounting of 
the load of pollutants entering the water body can judge and predict the 
current and future trends of water pollution, thus providing a scientific 
basis for government decision-making and management, and providing 
data support for water resources protection and water pollution pre
vention. Meanwhile, estimation of pollutant loading and identification 
of their sources is crucial to environmental management and planning 
(Zhang et al., 2011; Zhao et al., 2015). 

Pollutant load have been used to ascertain the amount of pollutant a 

particular water body can accept before becoming impaired for a given 
standard; this is term as the Total Maximum Daily Load, which is key to 
water resource management (Hunter and Kang, 2016). It has also been 
used to ascertain the amount of pollutant flow needed to be reduced 
from pollutant sources for the purpose of water quality restoration and 
quality assurance. This is term as load reduction target, which is 
necessary for the implementation of TMDL. These can be achieve using 
“load duration approach” (Yan et al., 2019), where average Daily Loads 
(DL) are compared with the flow conditions and water quality standards 
to develop the Total Maximum Daily Loads (TMDL). 

The fundamental data requirements for pollutant load estimation 
include flow and pollutant concentration. However, unlike taking flow 
measurements, it is rather difficult and economically intensive to take 
water samples and laboratory analysis for several water quality 
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parameters daily, as required for the calculation of pollutant loads. To 
overcome this limitation, this study used Water Quality Analyser (WQA) 
to estimate pollutant loads from regular flow and intermitted concen
tration data. The result was used to project the load reduction target for 
critical pollutants to support the future implementation of TMDL for 
rivers in the tropical rainforest. Tropical rainforests are the wet areas 
around the equator. 

Effort is currently underway under the Malaysian Vision Valley 
(MVV) Development Plan, to establish an additional water treatment 
plant lower course of the River Linggi, Malaysia, with a view to ensure 
sustainable water quantity supply to the city of Port Dickson until 2030 
(RPM Engineers, 2021). However, the Linggi basin has been identified as 

one of the most polluted river basins in the country (Nather Khan and 
Begham, 2012; Semblian, 2014). Therefore, this study used the Linggi 
basin as a case study, with a view to providing data support for the 
present and future implementation of TMDL for the MVD and overall 
water resource management across the basin and other rivers in the 
tropical rainforest. 

2. Materials and methods 

2.1. Study area 

With about 1298 km2 for its total drainage area, Sungai Linggi runs 

Fig. 1. Study area.  

Fig. 2. Simplified architectural design of the Water Quality Analyser (WQA).  
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through about 75 km across inter-state basin boundary covering part of 
Negeri Sembilan and Melaka before drains into Straits of Malacca in the 
southwest direction. It passes through Seremban town and several in
dustrial estates before discharging into the Straits of Melaka (Fig. 1). 
This contributes to the status of the river basin as one of the most 
polluted river basins in Malaysia. (Nather Khan and Begham, 2012; 
Semblian, 2014). Hence, the river was classified as class III, which 
means it water required extensive treatment for water resources (Elias 
et al., 2018). Yet the river is among the most important rivers in the 
Malaysian peninsular (Daneshmand et al., 2011), for the provision of 
domestic water (Semblian, 2014) and other ecosystem services (E.S.S., 
2021). River Linggi provides 60% drinking water requirement to Ser
emban, which is the capital city for the state of Sembilan. The river also 
provides 100% drinking water requirement to the town of Port Dickson, 
which is the second largest town in the state (Semblian, 2014). Based on 
the 2020 population census data, the two cities have a population of 
around, 692,283, and 128,689 respectively. 

With an average daily high temperature between 25 and 35 ◦C and 
average monthly rainfall between 2 and 12 mm day− 1 throughout the 
year (Abdul Zali et al., 2021). The climate of the Linggi basin is classified 
with the remaining watershed in the Malaysian peninsular as the trop
ical rainforest (Hazir et al., 2020). Tropical rainforest are the wet areas 
around the equator that are characterized by higher rainfall and 
high-level biodiversity (Bradford and Murphy, 2019). Similar climate 
zones are found in Australia, Bangladesh, Bolivia, Brazil, Indonesia, 
Peru, and may countries of the world (Doblas et al., 2020), covering 
about one-third of the world’s surface (Tawer et al., 2021). The outcome 
of this study therefore would have a wide geographical application. 

2.2. Model calibration 

In order to estimate the pollutant loads using the WQA, water quality 
data and flow/discharge (Q) measurements were obtained from the 
Department of Environment (DOE), Malaysia and the Department of 
Irrigation and Drainage (DID), Malaysia respectively for the period from 
2017 to 2019, However, the water quality data was intermitted, con
taining around five observations for each year. This underscore the 
advantage of WQA for its ability to estimate the pollutant from an 
intermitted record. 

Water Quality Analyser (WQA) (Fig. 2) is an integrated collection of 
analysis and assessment tools for time series data. It is capable of con
duction several pollutant loads analysis (TPL, EMC, TDL, etc.) as well as 
providing estimation of the pollutant load for non-sample periods. 
Where the input data is usually in Excel format the output include visual 
image and excel spreadsheet, but where the visual images can also be 
selected and export as numerical values, for further analysis. For the first 
time, this study used the WQA to project the pollutant load for a tropical 
river, using continuous flow data and intermitted concentration record. 
Although the WQA is a new methodology collection, the incorporated 
tools are not new. Example, the trend analysis tool is a commonly used 
technique to determine a trend for hydrologic time series data (Arslan 
et al., 2020). 

Fundamentally, the WQA comprises of four modules, which include 
Data management and visualization, Loads Tool, Trend Tool, as well as 
the eGuides and Guidelines tool. 

The Data Management and Visualization module functions as the 
central hub of data flow and visualization, which is designed to import, 
store, export and visualize water quality data. It consists of data files, a 
visual charts and processing tools. Each processing tool provides feed
back about the state of a time series data and a set of recommended 
actions to perform on the data. 

The load estimation module makes assumptions about the behavior 
of pollutant concentrations in-stream during times when water quality 
isn’t sampled. This task is based on nine of the most common methods 
for long-term load calculation. It can also calculate event mean con
centration (EMC) using four methods for estimating loads from storm 

events. 
The trend tool is a major enhancement of the original trend tool for 

Catchment Hydrology developed by the CRC. Based on feedback from 
CRC partners the current version consists of 13 statistical test which 
include: Spearman’s Rho, Linear Regression, Distribution-Free CUSUM, 
Cumulative Deviation, Worsley Likelihood Ratio, Rank-Sum, Student’s t, 
Median Crossing, Turning Points, Rank Difference, Autocorrelation, and 
Seasonal Mann-Kendall. 

The eGuides consists of some of commonly referred to water quality 
guidelines against which health can be tested. However, Local guide
lines can be incorporated through the Guidelines tool. The guidelines 
tool is a statistical tool developed to store relevant guideline values in a 
searchable database for later recall. It is also used to test new datasets 
against the stored guideline values to provide a statistically sound 
indication of the water health. The tool can also assist in setting up new 
water quality targets. 

2.3. Techniques of pollutant load estimate and analysis 

Averaging technique of the WQA (Fig. 2) was used to estimate the 
pollutant load, where the continuous flow record and the intermitted 
water quality monitoring data were used as input. Averaging approaches 
use some form of average in the calculation of the loads, which involves 
multiplying the average concentration for a period by the mean daily 
flow for each day in the time, to obtain a succession of estimated daily 
loads. Thus (Thomas et al., 2022): 

Loading (Kg / day)=Ci (m / L) × Qi
(
m3 / s

)

Subsequently, the average daily concentration of un-sampled days is 
determined through linear interpolation between the sampled 
concentrations. 

For the first time this study used the WQA to estimate pollutant load. 
Alternative techniques for load estimation (available within the WQA) 
include ratio, rating curve techniques, and catchment model. However, 
where Ration method has Beale ration as the only option, rating curve 
techniques and catchment model are less versatile and lack universality. 
On the other hand, the averaging techniques has numerous options, 
which include Flow weighted concentration, linear interpolation of 
concentration, Flow stratified sampling, among others. Hence, it is more 
versatile and universal. 

2.4. Techniques of TMDL calculation and projection of LRT 

Total maximum Daily Load (TMDL) concept lies in assessment of the 
maximum pollutant load a water body can accept before becoming 
impaired (Hunter and Kang, 2016). In this study, TMDL was calculated 
using Load duration approach, Thus: TMDL (Kg/day) = WQS × flow 
(m3/s) * unit conversion factor (EPA, 2007). 

Where: WQS is the maximum limit of concentrations for respective 
parameters in the Water Quality Standard. In this case, the National 
Water Quality Standard for Malaysia (NWQSM) (DOE, 2023) was used. 
86.4 is the unit conversion factor (Yan et al., 2019; Chen et al., 2022) 
also used mathematical optimization method to developed TMDL. 

The difference between the TMDLs at different class of water quality 
standard and pollutant loads were taken as the load reduction target. 
However, this was with consideration to Margin of Safety (MoS), which 
according to the review of MoS conducted by (Nunoo et al., 2020), is 
mostly 10%. However, (Adnan et al., 2022) used 15%, but in this study 
the 10% MoS was used. Thus: 

TMDL = WLA + LA + MoS (Adnan et al., 2022; EPA, 2022). 
Where: WLA = Waste Load Allocation (kg/day) (from point source). 
LA = Load Allocation (Kg/day) (from non-point source). 
MoS = Margin of Safety. 
Within the WQA, regression option of the trend analysis was 

employed for the projection the load reduction targets. Thus: 
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b=
∑n

i=1 ( xi − x̃ ) ( yi − ỹ )
∑n

i=1 ( xi − x̃)2  

Intercept : y . bx  

σ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

12
∑n

i=1( yi − α − bxi)
2

n(n − 2) (n2 − 1)

√

The test statistic s= b/σ 
The test statistic ‘S’ follows a Student-t distribution where df = n-2. 
The beta coefficient “S” was used for the future projection. 
Other alternative tools for trend analysis within the WQA include 

Mann-Kendall, Spearman’s Rho, and Seasonal Kendall, which are non- 
parametric tests. Therefore having satisfied the requirements of the 
parametric test, the data was subjected to the parametric test for the 
trend analysis. 

2.5. Variability test for the load reduction target (LRT) 

Analysis of Variance (ANOVA) was used to examine the monthly 
dynamics for the projected load reduction target. This is with the view to 
determine the appropriate technique for the TMDL implementation in 
the area (Zainudin et al., 2019). 

3. Results and discussion 

3.1. Daily load (DL) 

Pollutant loads were estimated for six heavy metals (Cr, Cd, Fe, Hg, 
Pb, Zn) and four (BOD, COD, NH3, TSS) out of the six water quality 
parameters contained in the Malaysian Water Quality Index (DOE, 2023; 
Karim and Kamsani, 2020); except for DO and pH, which doesn’t sup
port pollutant load calculation. The load was estimated for the six DOE 
monitoring stations (Fig. 1) for the three years period (2017–2019). One 
sample graph output (for BOD, station 1, 2017) is shown on Fig. 3, while 
the remaining 179 graphs were presented in Appendix 1). 

Subsequently, the estimated daily loads were used for the determi
nation of TMDL and Load reduction targets, using the Load duration 
approach (EPA, 2007; Yan et al., 2019). Thus. 

3.2. Total maximum daily load (TMDL) and load reduction target (LRT) 

The foundation of water resource management embodied in the 
TMDL concept, which lies in assessment of the maximum pollutant load 
a water body can accept before becoming impaired (Hunter and Kang, 
2016) for a particular use at a particular standard; and establishing the 
amount of pollutant allowed into the river for a particular standard to be 
maintained (Adnan et al., 2022). Typically a TMDL is developed for each 
pollutant/waterbody (EPA, 2022). Therefore, Fig. 4 show the TMDL at 
varying flow conditions and the average daily loads, for River Linggi, for 

Fig. 3. Daily load for BOD for DOE 01 in 2017.  

Fig. 4. DLBOD and TMDL at varying flow conditions.  
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BOD, while the remaining (COD, NH3, SS, Cd, Cr+3, Fe+2, Hg, Pb, and 
Zn) were compressed in Appendix 2. Thus. 

3.2.1. TMDL and LRT for BOD 
Based on the information on Fig. 4 and Appendix 2a, the DLBOD 

ranged (811.91–110,920.91 kg-day) at varying flow condition. However, 
a potential outlier has been observed in the month of February 2017, 
which need to be investigated. Moreover, the river suffered several 
accidental pollution from pipelines of sewage treatment plant in recent 
years (E.S.S., 2021) On the other hand, TMDLI, TMDLII, and TMDLIII for 
the BOD, ranged (374.73–6567.87 kg-day), (1124.18–19,703.61 kg-day) 
and (2248.35–39,407.21 kg-day) respectively. 

The average DLBOD (8203.16 kg-day) is greater than the average 
TMDLI (1552.24 kg-day) and TMDLII (4656.72 kg-day), but less than the 
average TMDLIII (9313.44 kg-day) Appendix 3a). This means the BOD 
load into the river already exceeded the Assimilation Capacity of the 
river for the water quality class I and II, by an average of 6650.92 kg-day 

and 3544.44 kg-day respectively. Hence, the river is within the WQ-class 
III given it present BOD load, and should not receive BOD addition of 
more than 1110.28 kg-day to remain within its present status (class III). 

Moreover, an average BOD load reduction target of not less than 
3544.44 kg-day would be needed for the river to be restored to water 
quality class II. However, restoration should also take cognisance of the 
margin of 10% safety (MoS) (Nunoo et al., 2020). 

Therefore the restoration target for BOD = 3544.44 + (3544.44 x 
0.1) = 3898.88 kg-day 

3.2.2. TMDL and LRT for COD 
DLCOD ranged from a minimum of 2841.68 kg-day to the maximum of 

225,436.47 kg-day at varying flow conditions. The TMDLI, TMDLII, and 
TMDLIII on the other hand, ranged from minimum of 3747.26, 9368.14, 
and 18,736.27 kg-day respectively to maximum of 65,678.69, 
164,196.72, and 328,393.44 kg-day respectively (Appendix 2b). 

The average DLCOD (27,120.93 kg-day) was less than TMDLII 
(38,805.99 kg-day) and TMDLIII (77,611.98 kg-day), but greater than the 
average TMDLI (15,522.40 kg-day) Appendix 3b). Therefore, the COD 
load into the river was within the water quality class II, as its exceeded 
the river assimilation capacity of class I, by an average of 11,598.53 kg- 

day. Hence, the river requires no restoration as per COD. Moreover, an 
average addition of 11,685.06 kg-day of COD load into the river could 
deteriorate the COD status of the river to WQ-class III. 

3.2.3. TMDL and LRT for NH3 
DLNH3 ranged 5.49–20,523.19 kg-day as it responds to different flow 

conditions, while TMDLI, TMDLII, and TMDLIII ranged 47.47–656.79 kg- 

day, 112.42–1970.36 kg-day, and 337.25–5911.03 kg-day respectively 
(Appendix 2c). However, (Abdulkareem et al., 2018) reported an esti
mated average annual TSS load from non-point sources in Kelantan 
River basin, between 1984 and 2013, at 656 Kg. 

Unlike the case of BOD and COD, the average DLNH3 (1423.20 kg-day) 
was greater than the average TMDLI (155.22 kg-day), TMDLII (465.67 kg- 

day), and TMDLIII (1397.53 kg-day) Appendix 3c). This means the NH3 
load was within water quality class IV, as it exceeded the Load assimi
lation capacity of the river for the water quality class I, II, and III by 
1267.98 kg-day 957.53 kg-day and 26.19 kg-day respectively. NH3 was 
since identified with, TSS, as “the primary causes for water quality 
impairment in Linggi River” (Daneshmand et al., 2011). Similarly (E.S. 
S., 2021) predicted future deterioration of NH4 for the river. 

Going by the above result, an average reduction of NH3 load allo
cation of 957.53 kg-day from any source or combination of sources would 
be needed to restore the river to water quality class II, while a little 
average reduction of 26.19 kg-day could restore it to water quality class 
III. 

Therefore restoration target to water quality class II for NH3 =

957.53 + (957.53 x 0.1) = 1053.28 kg-day 

3.2.4. TMDL and LRT for TSS 
DLSS, TMDLI, TMDLII, and TMDLIII ranged 655.83–31,691,520.69 kg- 

day, 9368.14–164,196.72 kg-day, 18736.29–328,393.44 kg-day, and 
56,208.87–985,180.32 kg-day respectively (Appendix 2d). (Abdulkar
eem et al., 2018) estimated an annual TSS load from non-point sources 
in Kelantan River basin, between 1984 and 2013, at 1,581,167 Kg. 

Of all the WQI parameters used for this study, SS seems to be the 
most critical, as the average DLSS (481,899.71 kg-day) is greater than the 
average TMDLI (38,805.99 kg-day), TMDLII 77611.98 kg-day), and even 
the TMDLIII (232,853.95 kg-day) Appendix 3d). This means the SS load 
into the river exceeded its assimilation capacity by 443,093.72 kg-day, 
404,287.73 kg-day, and 249,063.76 kg-day for the water quality class I, II, 
and III respectively. Therefore, any effort to restore the river to water 
quality class II must include reduction of SS load allocation by an 
average of 404,287.73 kg-day. As mentioned earlier, (Daneshmand et al., 
2011) reported that SS was among the primary cause of pollution in 
Linggi River. 

Considering the 10% MoS (Nunoo et al., 2020) the load reduction 
requirement for restoration to class II = 404,287.73 + (404,287.73 x 
0.1) = 444,716.50 kg-day 

Therefore, an average load reduction of 249,063.76 kg-day + MoS 
could only restore the river to water quality class III as per TSS. 

3.2.5. TMDL and LRT for cd 
The DLCd ranged 0.37 kg-day to 6.57 kg-day at varying flow conditions 

(Appendix 2e); which was less than the TMDLII (3.75–65.68 kg-day). 
Moreover, the mean DLCd (1.51 kg-day) was less than that of the TMDLII 
(15.52), but greater than the TMDLI (0.00 kg-day) Appendix 3e); which 
means the water quality status of the river as per Cd, is class II. It also 
means the stream can assimilate an average addition of Cd load up to 
14.01 kg-day and remain within the water quality class II. 

3.2.6. TMDL and LRT for Cr+2 

Although it shows less variability as compere to DLCd, DLCr range 
from a minimum of 0.37 kg-day to the maximum of 18.29 kg-day, which 
was less than the range of TMDLII (1878–328.37 kg-day) Appendix 2f) 
throughout the year. Hence, the average DLCr (1.66 kg-day) was greater 
than the average TMDLI (0.00 kg-day), but by far, less than the average 
TMDLII (77.61 kg-day) Appendix 3f). This means the stream can assimi
late an average daily load addition of 75.96 kg-day of Cr and remain in 
water quality class II. 

3.2.7. TMDL and LRT for Fe+2 

Daily load for Fe+2 ranged 4.06–7655.18 kg-day, while that of the 
TMDLII ranged 374.73–6567.87 kg-day (Appendix 2g). Moreover, the 
average DLFe (572.69 kg-day) was greater than the average TMDLI (0.00 
kg-day), but less than the average TMDLII (1552.24 kg-day) Appendix 3g). 
This mean the river can still assimilate an average Fe addition of 979.55 
kg-day within its current class II status for Fe+2. Occasionally however, 
DLFe hike to exceed the assimilation capacity at class II (Appendix 2g), 
yet the average stood within the class II. 

3.2.8. TMDL and LRT for hg 
Like the case of Fe+2, DLHg also exceeds the simulation capacity of 

the river for water quality class II in some occasions. However, the range 
of the DLHg (0.11–6.57 kg-day) was largely within the class II, as when 
compared to TMDLII range (0.37–6.57 kg-day) Appendix 2h). Moreover, 
the mean DLHg (1.31 kg-day) was less than the mean TMDLII (1.55) 
(Appendix 3h), but less than the average TMDLI (0.00 kg-day), which 
means in the average, the river can receive an additional Hg load of 
about 0.24 kg-day and remain in the same class II status for the Hg. 

3.2.9. TMDL and LRT for pb 
Except on one occasion, the daily pollutant loads for Pb 

(0.41–577.26 kg-day) were less than the TMDLII for the Pb 
(18.74–328.39 kg-day) throughout the period in review (Appendix 2i). 
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Therefore the average DLPb (13.10 kg-day) was also greater than the 
average TMDLI (0.00 kg-day), less than the average TMDLII (77.61 kg-day) 
(Appendix 3i), which means the river can assimilate and average addi
tion of up to 64.51 kg-day and remain in water quality class II as per Pb. 

3.2.10. TMDL and LRT for zn 
Daily pollutant load for Zn ranged from 1.82 to 429.23 kg-day (Ap

pendix 2j) as it fluctuates based on the flow rate over time. This was less 
than the TMDLII, which ranged from 1873.63 to 32,839.34 kg-day. Which 
means the daily loads of Zn were within the river assimilation capacity 
for water quality class II, throughout the three-year period used for this 
study. Similarly, the average DLZn (39.95 kg-day) was greater than the 
average TMDLI (0.00 kg-day), but less than the TMDLII (7761.20 kg-day) 
Appendix 3j). This means the river was on water quality class II, and can 
assimilate an additional Zn load up to 8705.33 kg-day and remain within 
the same water quality class II for Zn. 

3.3. Critical pollutants and the variabilities of their LRT 

The forgoing results affirmed the previous findings that TSS and NH3 
were the most critical pollutant in the study area (river Linggi) 

(Daneshmand et al., 2011; E.S.S., 2021). The river therefore fall under 
water quality class IV as per the pollutant load analysis and TMDL for the 
two parameters. The next were COD and BOD, which fall under water 
quality class II and III respectively. Except for Hg, which in some oc
casions exceed the water quality class II, on the average, all the heavy 
metals used for the load analysis fall within the water quality class II, 
including the Hg. This coincides with the study conducted by (Razak 
et al., 2021), which also put the river status at class II for most of the 
heavy metals, using concentration values. 

Therefore, the river required restoration only for TSS, NH3 and TSS, 
but need no restoration for COD and heavy metals. Hence, this study 
identified TSS, NH3, and BOD as most critical pollutant in the Linggi 
basin in the order of priority. Therefore, future projection of load 
reduction target and TMDL allocation would be based on the three 
critical parameters. 

Moreover, the ANOVA used revealed a significant temporal vari
ability for the pollutant loads and the corresponding assimilation ca
pacities over the months of a year, throughout the three years period 
used for the study (Appendix 4). Therefore dynamic flow approach 
(Zainudin et al., 2019) would be the best alternative for the imple
mentation TMDL allocation for the river. Hence, the TMDL allocation 

Fig. 5. Projected load reduction target to water quality class II for BOD until 2030.  

Fig. 6. Projected load reduction target to water quality class II for NH3 until 2030.  
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implementation should be on monthly basis. 
For example, the load reduction target for BOD to water quality class 

range from minimum of 2637.81 Kg-day (+MoS) being an average for the 
month of May, to a Maximum of 6096.68 Kg-day (+MoS) being the 
average for the month of February. However, due to potential outlier 
observed for the month of February (Fig. 3), the nearest maximum value 
was upheld, which is 4947.04 Kg-day, which was the average for the 
month of March. It should be recalled at this juncture that the average 
load reduction target for BOD to the water quality class to was 3544.44 
Kg-day + the 10% MoS. 

Similarly, the load reduction target for NH3 to the water quality class 
II ranged from 324.49 Kg-day to 1963.81 Kg-day (+MoS) being averages 
for the months of January and August respectively. On the other hand, 
the load reduction target to water quality class II range from 284,653.15 
to 1,001,816.27 Kg-day (+MoS) being averages for the months of 
November and February respectively. 

3.4. Trend analysis for the projection of the load reduction target (LRT) 

Prior to the TMDL allocation, and bearing in mind, the need to 
provide data support for the Malaysian Vision Valley (MVV) Develop
ment Plan for 2030. The Water Quality Analyser (WQA) was used to 
project the load reduction targets for the critical pollutants (BOD, NH3, 
and TSS) until 2023. This is with a view to provide framework for future 
implementation of TMDL in the study area. Appendix 5 summarized the 
results of the projection while Figs. 5–7 provides the details. 

Trend analysis conducted reveal a decresing trends of load reduction 
target for BOD (S = 0.29; t = − 3628.57 (df = 6558) α = 0.01). Therefore 
the result was used to project the future load reduction target (Fig. 4). 

The average restoration target projected, varried among the years, 
which range from 2467.94 Kg-day + MoS (for the year 2026) to 5124.87 

Kg-day + MoS (for the year 2023), while the average for the projected 
load for the eight years is 3618.59 Kg-day + MoS (Appenedix 5a). Sig
nificant variabilities also exist over the mounts for each of the years (F =
27.41 (df = 11, 2910)p = 0.01) (Table 1), where the month of January 
2024, 2027 and 2030 would require no load reduction, while other 
mouth would require the load reduction that range from <1000 Kg-day 

+ MoS to > 10,000 Kg-day + MoS (Fig. 5). This is even as the lowest 
averages would be obtained in the months of Janauary and December, 
while the highest averages would be obtained in the mouths of February 
to March. This futher underscore the need for the adoption of dynamic 
flow approach (Zainudin et al., 2019) for the implementation of TMDL 
in the study area. 

Unlike the case of BOD, the trend analysis conducted for the load 
reduction target for NH3 reveal an incresing trends (S = 0.083; t =
2033.92 (df = 6558) α = 0.01). Hence the result was used to project the 
future load reduction target for the NH3 (Fig. 6). 

Like the case of BOD, the lowest average of the load reduction target 
for NH3 would be obtained in the months of December and January, 
while the month of August would have the highest average load 
reduction target (1939.00 kg-day + MoS (Appendix 5b). Moreover, the 
river would require no restoration to the water quality class II in the 
month of December 2024, 2027, and 2030. Hence, the ANOVA used 
revealed a significant variabilities (F = 99.63 (df = 11, 2910)p = 0.01) 
among the months throughout the projected period (Table 1). Therefore 
dynamic flow approach (Zainudin et al., 2019) would be recommended 
for the implementation of TMDL as per NH3. 

Similar to BOD, the trend analysis conducted for TSS also reveal a 
decresing trends (S = 36.14; t = − 3384.46 (df = 6558) α = 0.01), which 
was used to project the future load reduction target (Fig. 7). 

Although the outcome indicated the need for load reduction 
throughout the projected period (Appendix 5c), significant variabilities 

Fig. 7. Projected load reduction target to water quality class II for TSS until 2030.  

Table 1 
Variabilities of projected load reduction target over the months.  

ANOVA Sum of Squares df Mean Square F Sig. 

Load reduction target for BOD Between Groups 2,864,509,754.048 11 260409977.641 27.412 0.000 
Within Groups 27,644,126,366.208 2910 9,499,699.782   
Total 30,508,636,120.256 2921    

Load reduction target for NH3 Between Groups 639869373.485 11 58,169,943.044 99.631 0.000 
Within Groups 1,699,021,163.257 2910 583,856.070   
Total 2,338,890,536.741 2921    

Load reduction target for TSS Between Groups 114838873224116.700 11 10439897565828.791 100.063 0.000 
Within Groups 303611023511062.600 2910 104333685055.348   
Total 418449896735179.300 2921     
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exist over the months (F = 100.06 (df = 11, 2910)p = 0.01) (Table 1), 
where the months of December (148,933.50 Kg-day + MoS) and February 
(924,446.67 Kg-day + MoS) would have the minimum and maximum 
load reduction targets respectively. As mention earlier, the implication 
of this finding is that the dynamic flow approach (Zainudin et al., 2019) 
would be recommended for the implementation of TMDL in the study 
area. 

Load reduction targets for the three critical pollutants (BOD, NH3, 
and TSS) exhibit significant temporal variabilities over the months of the 
years throughout the predicted period (F = 27.41 (df = 11, 2910)p =
0.01), (F = 99.63 (df = 11, 2910)p = 0.01), and (F = 100.06 (df = 11, 
2910)p = 0.01) respectively (Table 1). Therefore, dynamic flow 
approach (Zainudin et al., 2019) is recommended for the implementa
tion of TMDL in the study area. Previous studies (Adnan et al., 2022) 
often used only flow variabilities (High – low flows) to explain the 
variation in pollutant load for TMDL implementation. This will further 
require flow measurements for the TMDL implementation. This study 
therefore came up with a framework that will assist the water managers 
in the TMDL implementation on monthly basis, without relying on 
additional measurement of flow conditions. 

4. Result validation 

The result of the projected pollutant loadings coincides with that of 
the water quality classification from the field data. Where the average 
BOD (5.7 mg/L) was classified into the water quality class III. COD 
(18.33 mg/L), Cd (<0.001 mg/L), Cr (<0.001 m/L), Fe (0.42 mg/L), Hg 
(<0.001 mg/L), Pb (0.0087 mg/L), and Zn (0.029) were classified into 
water quality class II; while NH3 (0.92 mg/L) and SS (295 mg/L) above 
class III respectively (Table 2). 

This also shows that the water quality classification could be obtain 
from the projected result of the pollutant load. It also justifies the reli
ability of the Water Quality analyser (WQA) and Load duration 
approach for the estimation of pollutant load and the Total Maximum 
Daily Load (TMDL) respectively. 

5. Conclusions 

Having estimated the pollutant loads and projected the load reduc
tion targets using WQA, it was found that.  

i. The WQA provides a cost and time effective, and a reliable tool 
for the projection of pollutant loads for tropical rivers.  

ii. BOD load into the river exceeded its assimilation capacity for 
water quality class II, while NH3 and SS loads exceeded the 
assimilation capacity of the river for water quality class III 
respectively. However, COD, Cd, Cr, Fe, Hg, Pb, and Zn were 
within the assimilation capacity for the water quality class II.  

iii. This study identified TSS, NH3, and BOD as most critical pollutant 
in the Linggi basin in the order of priority.  

iv. Restoration of the river to water quality class II for the critical 
pollutants (BOD, NH3, and SS) would require load reduction 

target of 3898.88 kg-day, 1053.28 kg-day, and 444,716.50 kg-day 

respectively.  
v. Although the river require no restoration for COD and heavy 

metals, load addition of more than 11,685.06 kg-day, 14.01 kg-day, 
75.96 kg-day, 979.55 kg-day, 0.24 kg-day, and 64.51 kg-day, and 
8705.33 kg-day would deteriorate the water quality of the river to 
class III for the COD, Cd, Cr, Fe, Hg, Pb, and Zn respectively.  

vi. Load reduction target for BOD and TSS would decrease towards 
the future, while that of NH3 increases.  

vii. Significant variability exists for the projected load reduction 
target over the months throughout the projected period.  

6. Recommendations  
i. The basin need restoration from excessive BOD loads and 

more critical, the NH3 and SS loads. This should be achieve 
through TMDL allocation, after identification of respective 
pollutant sources.  

ii. Implementation of the TMDL allocation should take into 
cognizance, the temporal variation of the load reduction tar
gets. Hence the dynamic flow approach (Zainudin et al., 2019) 
is recommended for the implementation of TMDL for the 
tropical rainforest areas. 
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Table 2 
Result validation.  

Parameter (kg/day) Field data (Avr.) (Mg/L) Water Quality class DL (Avr.) TMDL (Avr.) WQ class I TMDL (Avr.) WQ class II TMDL (Avr.) WQ class III 

BOD 5.7 III 8203.16 1552.24 9646.72 9313.44 
COD 18.33 II 27,120.93 15,522.40 38,805.99 77,611.98 
NH3 0.92 IV 1423.20 155.22 465.67 1397.53 
SS 328 481,899.71 38,805.99 77,611.98 232,853.95 
Cd <0.001 II 1.51 0.00 15.52 – 
Cr <0.001 1.66 0.00 77.61 – 
Fe 0.42 572.69 0.00 1552.24 – 
Hg <0.001 1.31 0.00 1.55 – 
Pb 0.0087 13.10 0.00 77.61 – 
Zn 0.029 39.95 0.00 7761.20 –  
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which provide Concentration and flow data respectively, which was 

used for the Pollutant load estimation.  

Appendix 1. Daily Load
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Appendix 2. Daily loads and TMDLs at varying flow conditions and time_2017–2019
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Appendix 3. Average DLs and TMDLs_2017–2019

Appendix 4. Variabilities of pollutant loads over the months of the year_2017–2019  

ANOVA Sum of Squares df Mean Square F Sig. 

BOD Between Groups 10,866,489,694.872 11 987862699.534 22.346 0.000 
Within Groups 289910708515.277 6558 44,207,183.366   
Total 300777198210.149 6569    

(continued on next page) 
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(continued ) 

ANOVA Sum of Squares df Mean Square F Sig. 

COD Between Groups 98,236,106,007.962 11 8,930,555,091.633 22.970 0.000 
Within Groups 2549645956940.689 6558 388784073.946   
Total 2647882062948.650 6569    

NH3 Between Groups 1,592,201,629.648 11 144745602.695 67.415 0.000 
Within Groups 14,080,524,255.818 6558 2,147,075.977   
Total 15,672,725,885.466 6569    

TSS Between Groups 317638601431217.500 11 28876236493747.047 39.928 0.000 
Within Groups 4742741439591170.000 6558 723199365597.922   
Total 5060380041022388.000 6569    

Cd Between Groups 239.884 11 21.808 35.441 0.000 
Within Groups 4035.339 6558 0.615   
Total 4275.223 6569    

Cr Between Groups 405.479 11 36.862 29.270 0.000 
Within Groups 8259.009 6558 1.259   
Total 8664.488 6569    

Fe Between Groups 173319633.206 11 15,756,330.291 62.123 0.000 
Within Groups 1,663,300,987.970 6558 253,629.306   
Total 1,836,620,621.176 6569    

Hg Between Groups 497.819 11 45.256 86.628 0.000 
Within Groups 3426.026 6558 0.522   
Total 3923.845 6569    

Pb Between Groups 63,704.231 11 5791.294 18.477 0.000 
Within Groups 2,055,467.202 6558 313.429   
Total 2,119,171.433 6569    

Zn Between Groups 492,942.835 11 44,812.985 48.940 0.000 
Within Groups 6,004,965.178 6558 915.670   
Total 6,497,908.013 6569     

Appendix 5. Projected load reduction target to water quality class II (Kg-day)  

(a) BOD 

Year/month 2023 2024 2025 2026 2027 2028 2029 2030 Average 

Jan. 9133.76 − 257.27 879.81 9699.28 − 156.32 879.53 10,120.25 − 57.27 3780.22 
Feb. 10,877.51 2656.12 4521.31 10,553.59 2691.99 4600.00 10,353.08 2828.15 6135.22 
March 9270.37 2121.39 3101.07 9215.85 2121.11 2976.44 9167.64 1971.78 4993.21 
April 6160.23 1062.86 2671.23 6182.57 1062.58 2626.41 6172.72 1067.70 3375.79 
May 4371.68 1344.30 2310.68 4396.04 1344.01 2387.29 4360.58 1352.29 2733.36 
June 4317.57 1979.46 3468.03 4207.17 1979.18 3423.04 4344.11 2062.91 3222.68 
July 3588.97 3424.90 2591.56 3562.65 3424.62 2579.68 3397.48 3407.94 3247.22 
Aug. 3121.24 4971.90 1984.87 3108.86 4971.62 1968.59 3119.89 4985.29 3529.03 
Sept. 4139.38 4583.65 2321.91 4153.01 4583.37 2351.75 4126.17 4573.49 3854.09 
Oct. 3045.57 2950.88 3690.77 3014.52 2950.59 3767.99 2995.49 2929.80 3168.20 
Nov. 2421.70 3036.10 5264.02 2393.76 3035.82 5215.61 2384.68 3028.32 3347.50 
Dec. 1050.50 1607.00 4419.76 967.38 1606.72 4281.85 867.85 1491.69 2036.59 
Average 5124.87 2456.77 3102.08 5121.22 2467.94 3088.18 5117.50 2470.17 3618.59  

(b) NH3 

Year/Month 2023 2024 2025 2026 2027 2028 2029 2030 Average 

Jan. 226.08 422.79 492.78 250.99 458.51 492.86 270.89 493.57 388.56 
Feb. 731.67 1222.53 1697.78 739.17 1233.73 1722.12 751.22 1286.60 1173.10 
March 1425.59 1005.71 1035.61 1427.24 1005.80 986.69 1428.36 944.54 1157.44 
April 979.95 574.08 750.90 982.47 574.16 736.41 980.11 577.11 769.40 
May 679.62 748.39 642.55 682.11 748.47 664.93 676.02 754.47 699.57 
June 640.94 1205.94 1151.11 624.02 1206.02 1157.15 642.50 1265.98 986.71 
July 510.17 2482.54 1801.95 505.81 2482.63 1827.50 481.87 2482.24 1571.84 
Aug. 440.98 3498.41 1867.40 440.84 3498.50 1839.36 444.31 3482.19 1939.00 
Sept. 685.45 1791.23 1014.49 690.45 1791.31 994.78 689.33 1750.79 1175.98 
Oct. 640.88 404.60 541.46 640.52 404.68 546.73 642.43 386.33 525.95 
Nov. 759.99 141.02 990.20 758.30 141.11 991.12 763.43 132.97 584.77 
Dec. 440.36 − 76.20 913.63 419.25 − 76.12 883.56 391.87 − 78.36 352.25 
Average 680.14 1118.42 1074.99 680.10 1122.40 1070.27 680.19 1123.20 943.71  

(c) TSS 

Year/Month 2023 2024 2025 2026 2027 2028 2029 2030 Average 

Jan. 981,665.52 184,846.87 499,100.22 1,030,949.60 193,289.46 499,064.08 1,066,748.87 201,575.92 582,155.07 
Feb. 1,107,098.47 359,035.55 1,520,279.05 1,075,847.65 362,088.60 1,532,936.64 1,056,561.68 381,725.73 924,446.67 
March 961,649.59 414,072.66 632,077.59 955,540.95 414,036.52 578,728.25 950,012.59 395,421.35 662,692.44 
April 608,455.58 337,707.49 70,497.86 609,386.07 337,671.35 64,249.08 607,331.25 340,278.14 371,947.10 
May 408,888.79 344,458.14 119,011.58 409,533.26 344,422.00 126,429.61 405,290.80 342,953.66 312,623.48 
June 368,885.97 318,563.67 306,297.85 358,434.31 318,527.53 305,851.23 368,036.77 326,103.23 333,837.57 
July 280,406.05 401,751.50 275,140.25 277,516.68 401,715.36 274,809.15 263,769.80 396,859.85 321,496.08 

(continued on next page) 
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(continued ) 

(c) TSS 

Year/Month 2023 2024 2025 2026 2027 2028 2029 2030 Average 

Aug. 231,572.62 511,204.71 221,035.75 231,540.78 511,168.57 218,303.11 233,590.03 511,917.07 333,791.58 
Sept. 396,128.39 467,054.38 193,316.07 399,572.78 467,018.24 193,964.35 399,472.64 465,886.94 372,801.72 
Oct. 347,793.50 294,466.71 234,621.33 344,999.34 294,430.57 237,496.15 343,433.56 292,018.89 298,657.51 
Nov. 290,399.70 290,919.93 256,545.25 287,638.78 290,883.79 252,002.03 286,999.45 289,679.57 280,633.56 
Dec. 149,289.24 165,995.76 134,059.28 144,875.07 165,959.62 133,837.30 138,337.60 159,114.09 148,933.50 
Average 511,019.45 340,839.78 371,831.84 510,486.27 341,767.64 368,139.25 509,965.42 341,961.20 412,001.36  
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