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ABSTRACT 
The encryption keys with self-invertible matrix in Hill Cipher cryptography and its extension, have been 
proven through various studies reducing the complexity of obtaining its inverse. Several methods to 
generate these keys have been applied to specific systems. This paper aims to find a submatrix id2 as a 
basis for generating self-invertible keys. Then, these keys are successfully implemented on a Cipher 
Trigraphic Polyfunction cryptosystem, which uses different encryption keys for each transformation.  
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INTRODUCTION 
 
Cryptography is referred to as the science or study of secret writing methods. It is the act of 
converting an understandable message (plaintext) into an incomprehensible message (ciphertext), 
and then returning the latter to the former, using concepts and techniques. The root of the word 
cryptography, crypt- is from the Greek language which means hidden or secret. In its earliest forms, 
people have tried to hide information they intended to keep to themselves by rearranging 
information so that symbols, numbers, and pictures are used in place of particular pieces. 
 

According to Jackob (2001), today's cryptosystems are divided into two categories which are 
symmetric and asymmetric cryptosystems. Symmetric cryptosystems use the same key (the secret 
key) to encrypt and decode a message, while asymmetric cryptosystems use one key (the public 
key) to encrypt a message and a different key (the private key) to decrypt it. Public key 
cryptosystems are another name for asymmetric cryptosystems. The internet is not only considered 
the primary source of up-to-date information, but it is also utilized for business transactions, the 
sale of goods, and product advertising. Business can be conducted since it facilitates customer 
communication and all financial activities. Hence, the need to secure communications from prying 
eyes is more important than ever in today's technologically advanced world. 
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Hill Cipher is a symmetric polygraphic cipher based on linear algebra. It was first established 
by Hill (1929). It has been applied in cryptology to encrypt plaintext letters of order 𝑚𝑚 into cipher 
letters which are based ℤ𝑚𝑚  and then decrypt them back from ciphertext to plaintext. The 
encryption process can be expressed by 𝐶𝐶 ≡ 𝐾𝐾𝐾𝐾(mod 𝑚𝑚) where 𝐾𝐾 represents a secret key matrix, 
𝐾𝐾  as plaintext, and 𝐶𝐶  as ciphertext. Meanwhile, the decryption process can be expressed by         
𝐾𝐾 ≡ 𝐾𝐾−1𝐶𝐶(mod 𝑚𝑚) where the values of 𝑚𝑚 can be any positive integers. In general, there are only 
some square matrices that are invertible over ℤ𝑚𝑚. However, this algorithm has a weakness which 
is a known plaintext attack. During this attack, the adversary has both plaintext and its ciphertext 
version. This can be used to leak further secretive information. 

According to Yeh et al. (1991), a novel polygraph substitution cryptosystem was used to 
defeat the known plaintext attack. The main characteristics of the system were that system used a 
number system with different bases and enforced the matrices transformation. The process of 
encryption and decryption are simple to use and suitable for parallel processing. The design of 
encoding and decoding devices is also available. This method succeeds in defeating known 
plaintext attacks. However, it has many mathematical modifications which result in time 
consuming and inefficient when it comes for dealing with large numbers of data. 

A study by Overbey et al. (2005) is working on establishing formulas to compute the total 
number of matrices, the number of invertible matrices, and the number of involutory matrices over 
ℤ𝑚𝑚 for any modulus 𝑚𝑚 from known results of finite fields. Then, the result is compared with the 
total number of matrices and the number of involutory matrices for a given dimension and modulus, 
identifying the effects of change in dimension and modulus on the order of the keyspace. By 
observing the result, there is a rise of the dimension of key matrices which leads to a bigger 
keyspace which results from a large matrix dimension and an alphabet of prime order. 

Next, Acharya et al. (2007) proposed some methods of generating a self-invertible matrix for 
the Hill Cipher algorithm. The inverse of an encryption key does not always exist. If the key is not 
invertible, the encrypted text cannot be decrypted. There are some techniques to generate self- 
invertible matrices in order to eliminate the computational complexity for finding the inverse of 
encryption matrices. The detail of one of these techniques is presented in Section 4. The proposed 
methods was also used by some researchers such as Acharya et al. (2009), Yunos et al. (2018), 
Ching and Yunos (2019) and Yunos et al. (2023). 

Acharya et al. (2009) continues the study to fix the original flaws of Hill Cipher which is 
known plaintext attacks by introducing involutory, permuted, and reiterative key matrices 
generation methods. The involutory matrix generation method deals with the key matrix inversion 
problem. Meanwhile, the permuted and reiterative matrices generation methods improve the 
system security because they can generate different patterns of keys for each plaintext encryption. 

Wikramaratna (2011) defined a new type of matrix, called centro-invertible matrix where the 
inverse of the matrix can be found by rotating all the elements of the matrix through 180∘ about 
the mid-point of the matrix. They discussed the relationship between centro-invertible and 
involutory matrices and showed that there is a one-to-one correspondence between both of the 
matrices. The result allows all possible 𝑘𝑘  by 𝑘𝑘  centro-invertible matrices with integer entries 
modulo 𝑀𝑀 to be enumerated by drawing on existing theoretical results for involutory matrices 
when working with modular arithmetic. 

Yunos et al. (2018) worked on the solutions of the self-invertible matrix for Cipher 

Tetragraphic Trifunction by using methods from Acharya et al. (2007). However, they consider                     
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𝐶𝐶4×𝑗𝑗
(𝑡𝑡) ≡ 𝐿𝐿4×4

(𝑡𝑡) 𝐾𝐾4×𝑗𝑗(mod 𝑁𝑁) where 𝐶𝐶4×𝑗𝑗 ,  𝐾𝐾4×𝑗𝑗  and 𝐿𝐿4×4  are ciphertext, plaintext and encryption 

key respectively. Whereas, (𝑡𝑡)  represents the number of transformations of encryption for            

𝑡𝑡 ∈ {1,2,3}. Some solutions for self-invertible matrix 𝐿𝐿2×2
3 ≡ 𝐴𝐴2×2(mod 𝑁𝑁) are obtained when 

𝐴𝐴2×2  is considered as �0 0
0 0� , �1 0

0 1� , �𝑒𝑒 𝑓𝑓
0 0

�  and �𝑒𝑒 𝑓𝑓
0 ℎ

�  matrices. Self-invertible generating 

method form Acharya et al. (2007) is implemented to get a self-invertible 4 × 4 matrix. From there, 

ten types of self-invertible keys, 𝐿𝐿4×4 are established. From this result, they generated 𝐿𝐿4×4 from 

𝐿𝐿2×2 in the form of 

𝐿𝐿4×4 ≡ � 𝐿𝐿2×2 𝐼𝐼 − 𝐿𝐿2×2)
(𝐼𝐼 + 𝐿𝐿2×2) −𝐿𝐿2×2

� (mod 𝑁𝑁) 

with condition 𝐿𝐿2×2 = 𝐴𝐴11 should be avoided as it caused a repeating process in the cryptosystem. 

In the following year, Ching and Yunos (2019) made a research on the effect of self-invertible 
matrix on Cipher Hexagraphic Polyfunction with similar encryption key for each transformation, 
but they consider 𝐶𝐶6×𝑗𝑗

(𝑡𝑡) ≡ 𝐿𝐿6×6
(𝑡𝑡) 𝐾𝐾6×𝑗𝑗(mod 𝑁𝑁). In this system, the sender of messages kept the 

parameters �𝐴𝐴6×6, (𝑡𝑡)� as secret. The main objective of this research was to secure some patterns 
of the self-invertible matrices 𝐿𝐿6×6  and observe the effect when applying it to the Cipher 
Hexagraphic Polyfunction transformation system. There are nine solutions of 𝐿𝐿3×3 were obtained 
from 𝐿𝐿3×3

2 ≡ 𝐴𝐴3×3(mod 𝑁𝑁)  where 𝐴𝐴3×3  is a diagonal and symmetric matrices. Then, they 
generated 𝐿𝐿6×6 from 𝐿𝐿3×3 in the form of 

𝐿𝐿6×6 ≡ � 𝐿𝐿3×3 (𝐼𝐼 − 𝐿𝐿3×3)
(𝐼𝐼 + 𝐿𝐿3×3) −𝐿𝐿3×3

� (mod 𝑁𝑁). 

After observing the patterns, it was found that plaintext would be easily obtained by the 
adversary if these encryption keys were used in the system. It was due to the repeating process of 
the self-invertible encryption keys in the system. From there, nine self-invertible matrices, 𝐿𝐿6×6 
were generated. 

Yunos et al. (2023) worked on solutions of 𝐿𝐿2×2
2 ≡ 𝐴𝐴2×2(mod 𝑁𝑁) where matrix 𝐴𝐴2×2 act as 

public key with six categories which are �0 0
0 0� , �𝑒𝑒 𝑓𝑓

0 0
� , �0 𝑓𝑓

0 ℎ
� , �𝑒𝑒 0

0 0� , �0 0
0 ℎ� and �𝑒𝑒 𝑓𝑓

0 ℎ
�. 

The work was based on a method from Acharya et al. (2007). The objective of the study is to 

generate suitable involutory matrices that will be used in the Cipher Trigraphic Polyfunction 

system with similar encryption keys. However, they consider 𝐶𝐶3×𝑗𝑗
(𝑡𝑡) ≡ 𝐿𝐿3×3

(𝑡𝑡) 𝐾𝐾3×𝑗𝑗(mod 𝑁𝑁) . It 

proposed six properties for different cases of matrices covered 𝐴𝐴2×2. It also covered nonsingular 

matrices 𝐿𝐿2×2 = �𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑� and three more cases: Case 1 with 𝑐𝑐 = 0 and 𝑎𝑎 + 𝑑𝑑 ≠ 0, Case 2 with 𝑐𝑐 ≠

0 and 𝑎𝑎 + 𝑑𝑑 = 0 and Case 3 with 𝑐𝑐 = 0 and 𝑐𝑐 + 𝑑𝑑 = 0. As a result, 
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𝐿𝐿2×2 ≡ �
𝑒𝑒
1
2 𝑓𝑓 �𝑒𝑒

1
2 + ℎ

1
2�

−1

0 ℎ
1
2

� (mod 𝑁𝑁) 

was chosen and subsequently generate two types of involutory matrices 𝐿𝐿3×3 in the form of 

𝐿𝐿3×3 ≡

⎣
⎢
⎢
⎢
⎡−𝑒𝑒

1
2 (1 − 𝑒𝑒)𝑘𝑘−1 −𝑓𝑓𝑘𝑘−1

𝑘𝑘 𝑒𝑒
1
2 �𝑒𝑒

1
2 + 1�

−1
𝑓𝑓

0 0 1 ⎦
⎥
⎥
⎥
⎤

(mod 𝑁𝑁) 

and 

𝐿𝐿3×3 ≡

⎣
⎢
⎢
⎢
⎡ −ℎ

1
2 0 𝑘𝑘

−𝑓𝑓𝑘𝑘−1 1 �ℎ
1
2 + 1�

−1
𝑓𝑓

(1 − ℎ)𝑘𝑘−1 0 ℎ
1
2 ⎦

⎥
⎥
⎥
⎤

(mod 𝑁𝑁). 

However, it faced the same problem as Yunos et al. (2018) and Ching and Yunos (2019) where 
the plaintexts can easily be obtained by the parties when these keys are used in Cipher Trigraphic 
Polyfunction transformations due to the repeating process on finding plaintext and ciphertext. So, 
𝐿𝐿2×2 with this type should be avoided as encryption key in this system. 

Previous studies by Yunos et al. (2018), Ching and Yunos (2019) and Yunos et al. (2023) had 
implemented some type of self-invertible keys in the encryption process for each transformation 
when using Cipher Tetragraphic Trifunction, Cipher Hexagraphic Polyfunction and Cipher 
Trigraphic Polyfunction respectively. All of them had the same weakness which is the plaintext 
can be obtained by the adversary when the encryption keys are similar for each transformation and 
the transformation is even-th. 

The organization of this paper is as follows. Section 1 explains the varied implementation of 
self-invertible matrices in Hill cipher with its advantages and disadvantages. Section 2 consists of 
the preliminaries of this study. Section 3 of the cipher discussion on how to find some solutions of 
𝐿𝐿2×2
2 ≡ 𝐴𝐴2×2(mod 𝑁𝑁). Section 4 gives a detail method for generating a self-invertible matrix. 

Followed by the implementation of encryption key with self-invertible matrices an different 
encryption for each transformation in Cipher Trigraphic Polyfunction. The concluding section 
contains a summary of the paper. 

PRELIMINARIES 

 
The Cipher Trigraphic Polyfunction is constructed based on Cipher Polygraphic Polyfunction 
(Yunos et al., 2023) which is as follows: 

Encryption Process 

The encryption from 𝐾𝐾𝑖𝑖×𝑗𝑗 to 𝐶𝐶𝑖𝑖×𝑗𝑗
(𝑡𝑡)  is as follows: 



 

F. Yunos et al.                                                                               Menemui Matematik (Discovering Mathematics) 46(3) (2024) 30-41 
 

 

34 

 

𝐶𝐶𝑖𝑖×𝑗𝑗
(𝑡𝑡) ≡� 

𝑡𝑡−1

𝑢𝑢=0

𝐴𝐴𝑖𝑖×𝑖𝑖
(𝑡𝑡−𝑢𝑢)𝐾𝐾𝑖𝑖×𝑗𝑗(mod 𝑁𝑁) where 𝑡𝑡 ∈ ℤ+ 

where 𝐴𝐴𝑖𝑖×𝑖𝑖
(𝑡𝑡)  act as an encryption key. 

Decryption Process 

If �𝐴𝐴𝑖𝑖×𝑖𝑖
(𝑡𝑡) � ≠ 0 and ��𝐴𝐴𝑖𝑖×𝑖𝑖

(𝑡𝑡) �,𝑁𝑁� = 1 for each 𝑡𝑡, then 𝐾𝐾𝑖𝑖×𝑗𝑗 has a unique solution and the decryption 

from 𝐶𝐶𝑖𝑖×𝑗𝑗
(𝑡𝑡)  to 𝐾𝐾𝑖𝑖×𝑗𝑗 is as follows: 

𝐾𝐾𝑖𝑖×𝑗𝑗 ≡� 
𝑡𝑡

𝑢𝑢=1

�𝐴𝐴𝑖𝑖×𝑖𝑖
(𝑢𝑢)�

−1
𝐶𝐶𝑖𝑖×𝑗𝑗

(𝑡𝑡) (mod 𝑁𝑁). 

The following concept involves modular arithmetic, which will be used in proving Theorem 
3.1 in the upcoming section. 

Theorem 2.1. (Rosen, 2011) If (𝑎𝑎,𝑁𝑁) = 1, then 𝑎𝑎𝑎𝑎 ≡ 𝑏𝑏(mod 𝑁𝑁) has exactly one solution in 
modulo 𝑁𝑁. 

Definition 2.2. (Silverman et al., 2008) Let 𝑝𝑝 be an odd prime number and let 𝑎𝑎 be a number with 
𝑝𝑝 ∤ 𝑎𝑎. We say that 𝑎𝑎 is a quadratic residue modulo 𝑝𝑝 if 𝑎𝑎 is a square modulo 𝑝𝑝, i.e., if there is a 
number 𝑐𝑐 so that 𝑐𝑐2 ≡ 𝑎𝑎(mod 𝑝𝑝). If 𝑎𝑎 is not a square modulo 𝑝𝑝, i.e., if there exists no such 𝑐𝑐, then 
𝑎𝑎 is called a quadratic nonresidue modulo 𝑝𝑝. 

The following lemma is Euler's Criterion which is suitable to determine whether 𝑎𝑎2 ≡ 𝑎𝑎(mod 𝑁𝑁) 
has solutions or not. 

Lemma 2.3. (Niven et al., 1991) If 𝑁𝑁  is an odd prime and 𝑁𝑁 ∤ 𝑎𝑎 , then 𝑎𝑎2 ≡ 𝑎𝑎(mod 𝑁𝑁)  has  
(1) solution if 

𝑎𝑎
𝑁𝑁−1
2 ≡ 1(mod 𝑁𝑁). 

(2) no solution if 

𝑎𝑎
𝑁𝑁−1
2 ≡ −1(mod 𝑁𝑁). 

Since Eulers Criterion is not suitable if 𝑎𝑎 and 𝑁𝑁 in a large size, then Legendre Symbol can be 
used to check whether the integer is a quadratic residue modulo prime as follows: 
 
Theorem 2.4. (Raji, 2013) Given 𝑁𝑁 is an odd prime and 𝑁𝑁 ∤ 𝑎𝑎, then the Legendre symbol 𝑎𝑎

𝑁𝑁
 is 

defined as 

�
𝑎𝑎
𝑁𝑁
� = �1,  if a is quadratic residue modulo 𝑁𝑁 and 𝑎𝑎

𝑁𝑁−1
2 ≡ 1(mod 𝑁𝑁)

−1,  if 𝑎𝑎 is quadratic nonresidue modulo𝑁𝑁 and 𝑎𝑎
𝑁𝑁−1
2 ≡ −1(mod 𝑁𝑁)

 

 

SOLUTIONS FOR 𝑳𝑳𝟐𝟐×𝟐𝟐
𝟐𝟐 ≡ 𝑨𝑨𝟐𝟐×𝟐𝟐(𝐦𝐦𝐦𝐦𝐦𝐦 𝑵𝑵) 
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In this section, we proposed the following property in order to find the solution of                      
𝐿𝐿2×2
2 ≡ 𝐴𝐴2×2(mod 𝑁𝑁). 

Theorem 3.1. Let (𝑔𝑔,𝑁𝑁) = 1. The solution to 𝐿𝐿2×2
2 ≡ �𝑒𝑒 𝑓𝑓

𝑔𝑔 ℎ� (mod 𝑁𝑁) is 

𝐿𝐿2×2 ≡ �
�𝑒𝑒 − 𝑓𝑓𝑔𝑔−1𝑦𝑦 𝑓𝑓𝑔𝑔−1�𝑦𝑦

�𝑦𝑦 �ℎ − 𝑓𝑓𝑔𝑔−1𝑦𝑦
� (mod 𝑁𝑁), (1) 

where 𝑦𝑦 = −𝑔𝑔2(ℎ+𝑒𝑒)±2𝑔𝑔2�𝑒𝑒ℎ−𝑓𝑓𝑔𝑔
−((ℎ−𝑒𝑒)2+4𝑓𝑓𝑔𝑔) , �𝑦𝑦

𝑁𝑁
� = 1, �𝑒𝑒ℎ−𝑓𝑓𝑔𝑔

𝑁𝑁
� = 1, �𝑒𝑒−𝑓𝑓𝑔𝑔

−1𝑦𝑦
𝑁𝑁

� = 1, and �ℎ−𝑓𝑓𝑔𝑔
−1𝑦𝑦

𝑁𝑁
� = 1. 

 

Proof. It is to show the condition to generate the suitable key feature for 𝐿𝐿2×2 = �𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑� and 

𝐴𝐴2×2 = �𝑒𝑒 𝑓𝑓
𝑔𝑔 ℎ�  with 𝑒𝑒, 𝑓𝑓,𝑔𝑔,ℎ  are integers such that 𝐿𝐿2×2

2 ≡ 𝐴𝐴2×2(mod 𝑁𝑁)  using simultaneous 

equations as follows: 
𝑎𝑎2 + 𝑏𝑏𝑐𝑐 ≡ 𝑒𝑒(mod 𝑁𝑁), (2)
𝑎𝑎𝑏𝑏 + 𝑏𝑏𝑑𝑑 ≡ 𝑓𝑓(mod 𝑁𝑁), (3)
𝑎𝑎𝑐𝑐 + 𝑐𝑐𝑑𝑑 ≡ 𝑔𝑔(mod 𝑁𝑁), (4)
𝑏𝑏𝑐𝑐 + 𝑑𝑑2  ≡ ℎ(mod 𝑁𝑁), (5)

 

From (3) and (4), we have 
𝑏𝑏 ≡ 𝑓𝑓(𝑎𝑎 + 𝑑𝑑)−1(mod 𝑁𝑁), (6) 

and 
𝑐𝑐 ≡ 𝑔𝑔(𝑎𝑎 + 𝑑𝑑)−1(mod 𝑁𝑁), (7) 

for (𝑎𝑎 + 𝑑𝑑,𝑁𝑁) = 1 respectively. Followed by 

𝑏𝑏 ≡ 𝑐𝑐𝑓𝑓𝑔𝑔−1(mod 𝑁𝑁), where (𝑔𝑔,𝑁𝑁) = 1. (8) 

Substituting (6), (7) and (8) into (2) and (5), we have 

𝑎𝑎 ≡ �𝑒𝑒 − 𝑐𝑐2𝑓𝑓𝑔𝑔−1(mod 𝑁𝑁), for �
𝑒𝑒 − 𝑐𝑐2𝑓𝑓𝑔𝑔−1

𝑁𝑁
� = 1 (9) 

and 

𝑑𝑑 ≡ �ℎ − 𝑐𝑐2𝑓𝑓𝑔𝑔−1(mod 𝑁𝑁), for �
ℎ − 𝑐𝑐2𝑓𝑓𝑔𝑔−1

𝑁𝑁
� = 1 (10) 

respectively. Now, from (7) we get 

𝑎𝑎 + 𝑑𝑑 ≡ 𝑐𝑐−1𝑔𝑔(mod 𝑁𝑁), for (𝑐𝑐,𝑁𝑁) = 1. (11) 

Substitute (9) and (10) into (11) gives the following: 
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�𝑒𝑒 − 𝑐𝑐2𝑓𝑓𝑔𝑔−1 + �ℎ − 𝑐𝑐2𝑓𝑓𝑔𝑔−1 ≡ 𝑐𝑐−1𝑔𝑔(mod 𝑁𝑁)
�𝑔𝑔𝑒𝑒 − 𝑐𝑐2𝑓𝑓 + �ℎ𝑔𝑔 − 𝑐𝑐2𝑓𝑓 ≡ 𝑐𝑐−1𝑔𝑔�𝑔𝑔(mod 𝑁𝑁)

2�(𝑔𝑔𝑒𝑒 − 𝑐𝑐2𝑓𝑓)(ℎ𝑔𝑔 − 𝑐𝑐2𝑓𝑓) ≡ 𝑐𝑐−2𝑔𝑔3 − 𝑔𝑔𝑒𝑒 + 2𝑐𝑐2𝑓𝑓 − ℎ𝑔𝑔(mod 𝑁𝑁)
2𝑐𝑐2�(𝑔𝑔𝑒𝑒 − 𝑐𝑐2𝑓𝑓)(ℎ𝑔𝑔 − 𝑐𝑐2𝑓𝑓) ≡ 𝑔𝑔3 − 𝑔𝑔𝑒𝑒𝑐𝑐2 + 2𝑐𝑐4𝑓𝑓 − ℎ𝑔𝑔𝑐𝑐2(mod 𝑁𝑁)

4𝑐𝑐4(𝑔𝑔𝑒𝑒 − 𝑐𝑐2𝑓𝑓)(ℎ𝑔𝑔 − 𝑐𝑐2𝑓𝑓) ≡ (𝑔𝑔3 − 𝑔𝑔𝑒𝑒𝑐𝑐2 + 2𝑐𝑐4𝑓𝑓 − ℎ𝑔𝑔𝑐𝑐2)2(mod 𝑁𝑁)
−𝑐𝑐4𝑔𝑔2((ℎ − 𝑒𝑒)2 + 4𝑓𝑓𝑔𝑔) + 2𝑐𝑐2𝑔𝑔4(ℎ + 𝑒𝑒) − 𝑔𝑔6 ≡ 0(mod 𝑁𝑁).

 

Let 𝑦𝑦 = 𝑐𝑐2,𝛼𝛼 = −𝑔𝑔2((ℎ − 𝑒𝑒)2 + 4𝑓𝑓𝑔𝑔),𝛽𝛽 = 2𝑔𝑔4(ℎ + 𝑒𝑒) and 𝛾𝛾 = −𝑔𝑔6 then the above equation 
can be written as 

𝛼𝛼𝑦𝑦2 + 𝛽𝛽𝑦𝑦 + 𝛾𝛾 ≡ 0(mod 𝑁𝑁), 

with the following roots: 

𝑦𝑦 =
−𝛽𝛽 ± �𝛽𝛽2 − 4𝛼𝛼𝛾𝛾

2𝛼𝛼
=
−𝑔𝑔2(ℎ + 𝑒𝑒) ± 2𝑔𝑔2�𝑒𝑒ℎ − 𝑓𝑓𝑔𝑔

−((ℎ − 𝑒𝑒)2 + 4𝑓𝑓𝑔𝑔) . 

Since 𝑐𝑐 = �𝑦𝑦 , then (8), (9) and (10) become 𝑎𝑎 = �𝑒𝑒 − 𝑓𝑓𝑔𝑔−1𝑦𝑦, 𝑏𝑏 = 𝑓𝑓𝑔𝑔−1�𝑦𝑦  and                           
𝑑𝑑 = �ℎ − 𝑓𝑓𝑔𝑔−1𝑦𝑦. Hence, we get 

                                                      𝐿𝐿2×2 ≡ �
�𝑒𝑒 − 𝑓𝑓𝑔𝑔−1𝑦𝑦 𝑓𝑓𝑔𝑔−1�𝑦𝑦

�𝑦𝑦 �ℎ − 𝑓𝑓𝑔𝑔−1𝑦𝑦
� (mod 𝑁𝑁).                           ■ 

 
Example 3.2. The solution of 𝐿𝐿2×2

2 ≡ �21 14
20 15�

(mod 23) are �3 6
2 7� , �20 17

21 16�, �
10 4
9 5� and 

�13 19
14 18�. 

We name the submatrix 𝐿𝐿2×2  of a 3 × 3  matrix discussed in this section as 𝑖𝑖𝑑𝑑2. For the 
purpose of implementing the Cipher Trigraphic Polyfunction system, 𝑖𝑖𝑑𝑑2 is kept confidential from 
public because it serves as a basis for generating the encryption and decryption keys in the system. 

GENERATION OF SELF-INVERTIBLE MATRIX 

We implement the method for generating a self-invertible matrix that was presented by (Acharya 
et al., 2007) as follows: 

Let 𝐴𝐴 = �

𝑎𝑎11 𝑎𝑎12 ⋯ 𝑎𝑎1𝑛𝑛
𝑎𝑎21 𝑎𝑎22 ⋯ 𝑎𝑎2𝑛𝑛
⋮ ⋮ ⋮ ⋮
𝑎𝑎𝑛𝑛1 𝑎𝑎𝑛𝑛2 ⋯ 𝑎𝑎𝑛𝑛𝑛𝑛

� be an 𝑛𝑛 × 𝑛𝑛 self-invertible matrix partitioned to                      

𝐴𝐴 = �𝐴𝐴11 𝐴𝐴12
𝐴𝐴21 𝐴𝐴22

�,  where 𝐴𝐴11 = [𝑎𝑎11],𝐴𝐴12 = [𝑎𝑎12 𝑎𝑎13 … 𝑎𝑎1𝑛𝑛],𝐴𝐴21 = �

𝑎𝑎21
𝑎𝑎31
…
𝑎𝑎𝑛𝑛1

�, and  

𝐴𝐴22 = �

𝑎𝑎22 𝑎𝑎23 ⋯ 𝑎𝑎2𝑛𝑛
𝑎𝑎32 𝑎𝑎33 ⋯ 𝑎𝑎3𝑛𝑛
⋯ ⋯ ⋯ ⋯
𝑎𝑎𝑛𝑛2 𝑎𝑎𝑛𝑛3 ⋯ 𝑎𝑎𝑛𝑛𝑛𝑛

�. 
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Since 𝐴𝐴 is self-invertible, it satisfies 𝐴𝐴2 = 𝐼𝐼. 
Now, if 𝐴𝐴112 + 𝐴𝐴12𝐴𝐴21 = 1, then 

𝐴𝐴12𝐴𝐴21 = 1 − 𝐴𝐴112 = 1 − 𝑎𝑎112 . (12) 

If 𝐴𝐴11𝐴𝐴12 + 𝐴𝐴12𝐴𝐴22 = 0, then 
𝐴𝐴12(𝐴𝐴11 + 𝐴𝐴22) = 0. (13) 

If 𝐴𝐴21𝐴𝐴11 + 𝐴𝐴22𝐴𝐴21 = 0, then 
𝐴𝐴21(𝐴𝐴11 + 𝐴𝐴22) = 0. (14) 

If 𝐴𝐴21𝐴𝐴12 + 𝐴𝐴222 = 1, then 
𝐴𝐴21𝐴𝐴12 = 1 − 𝐴𝐴222 . (15) 

From (14), we know that (𝐴𝐴11 + 𝐴𝐴22) = 0. Then, 

𝐴𝐴22 = −𝐴𝐴11 = −𝑎𝑎11. (16) 

If 
𝐴𝐴12𝐴𝐴21 = 𝐼𝐼 − 𝐴𝐴112 = 1 − 𝑎𝑎112 , (17) 

Then
𝐴𝐴12(𝑎𝑎11𝐼𝐼 + 𝐴𝐴22) = 0. (18) 

Also, 𝑎𝑎11 = −(one of the Eigenvalues of 𝐴𝐴22 other than 1). 
Since 𝐴𝐴21𝐴𝐴12 is a singular matrix having the rank 1, then 

𝐴𝐴21𝐴𝐴12 = 𝐼𝐼 − 𝐴𝐴222 . (19)
So, 𝐴𝐴22 must have Eigenvalues ±1. 

The consistent solution obtained for matrix 𝐴𝐴21 and 𝐴𝐴12 by solving (19) term by term will 
also satisfy (17). 

The algorithm below has been created to generate a self-invertible matrix. 
To align with our study, we take 𝐴𝐴11 = 𝐿𝐿1×1,𝐴𝐴22 = 𝐿𝐿2×2,𝐴𝐴12 = 𝐿𝐿1×2 , and 𝐴𝐴21 = 𝐿𝐿2×1  to 
formulate 𝐴𝐴 which is 𝐿𝐿3×3. 

Algorithm 4.1 Generation of Self-Invertible Matrices 
 
Input   : Matrix 𝐴𝐴22 
Output: The self-invertible matrix 𝐴𝐴 
    1: Select 𝐴𝐴22, a non-singular (𝑛𝑛 − 1) × (𝑛𝑛 − 1) matrix which has (𝑛𝑛 − 2) number of  
     Eigenvalue of 𝐴𝐴22 either +1 or −1 or both. 
    2: Determine the other Eigenvalue 𝜆𝜆 of 𝐴𝐴22. 
    3:  Set 𝑎𝑎11 = −𝜆𝜆. 
    4: Obtain the consistent solution of all elements of 𝐴𝐴21 and 𝐴𝐴12 by using (19). 
    5: Formulate the matrix by substituting the value of 𝑎𝑎11,𝑎𝑎12,𝑎𝑎13,𝑎𝑎21,𝑎𝑎22,𝑎𝑎23,𝑎𝑎31,𝑎𝑎32, and 
     𝑎𝑎33 respectively in the matrix 𝐴𝐴. 
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GENERATION OF SELF-INVERTIBLE 3 × 3 MATRICES BASED ON id2 

In this section, we developing new property of matrix 3 × 3,                                                                        

𝐿𝐿3×3 ≡ �
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

� ≡ �𝐿𝐿1×1 𝐿𝐿1×2
𝐿𝐿2×1 𝐿𝐿2×2

� (mod 𝑁𝑁)  that was self-invertible where 𝐿𝐿2×2  or 𝑖𝑖𝑑𝑑2 

based on equation (1). For that reason, we do the similar steps in Algorithm 4.1 as follows: 

(1) 𝐿𝐿2×2 must be a non-singular matrix where |𝐿𝐿2×2| ≠ 0. We can find the eigenvalue of 𝐿𝐿2×2 
(i.e. either +1  or −1  or both) by solving a quadratic equation produced by                     
det (𝜆𝜆𝐼𝐼 − 𝐿𝐿2×2) ≡ 𝜆𝜆2 − ��𝑒𝑒 − 𝑓𝑓𝑔𝑔−1𝑦𝑦 + �ℎ − 𝑓𝑓𝑔𝑔−1𝑦𝑦�𝜆𝜆 +
                                 �𝑒𝑒ℎ − 𝑓𝑓𝑔𝑔−1𝑦𝑦(𝑒𝑒 + ℎ) + 𝑓𝑓2𝑔𝑔−2𝑦𝑦2 − 𝑓𝑓−1𝑦𝑦 ≡ 0(mod 𝑁𝑁).  

Therefore, 

𝜆𝜆 ≡
−𝑏𝑏∗ ± √𝑏𝑏∗2 − 4𝑎𝑎∗𝑐𝑐∗

2𝑎𝑎∗
(mod 𝑁𝑁) (20) 

where 𝑎𝑎∗ = 1, 𝑏𝑏∗ = −��𝑒𝑒 − 𝑓𝑓𝑔𝑔−1𝑦𝑦 + �ℎ − 𝑓𝑓𝑔𝑔−1𝑦𝑦� and 

𝑐𝑐∗ = �𝑒𝑒ℎ − 𝑓𝑓𝑔𝑔−1𝑦𝑦(𝑒𝑒 + ℎ) + 𝑓𝑓2𝑔𝑔−2𝑦𝑦2 − 𝑓𝑓𝑔𝑔−1𝑦𝑦. 
(2) Determine the other Eigenvalue 𝜆𝜆 of 𝐿𝐿2×2. 
(3) Set 𝑎𝑎11 = −𝜆𝜆. 
(4)     Supposed 𝐿𝐿2×1 = �

𝑎𝑎21
𝑎𝑎31� and 𝐿𝐿1×2 = [𝑎𝑎12 𝑎𝑎13]. Implementing (19), we have 

𝐿𝐿2×1𝐿𝐿1×2 ≡ 𝐼𝐼 − 𝐿𝐿2×2
2 ≡ �1 0

0 1� − �𝑒𝑒 𝑓𝑓
𝑔𝑔 ℎ� = �1 − 𝑒𝑒 −𝑓𝑓

−𝑔𝑔 1 − ℎ� (mod 𝑁𝑁), 

where it must be a singular matrix with 𝑓𝑓 = (1 − 𝑒𝑒)(1 − ℎ)𝑔𝑔−1 . Followed by solving the 
following simultaneous equations: 

     𝑎𝑎21𝑎𝑎12  ≡ 1 − 𝑒𝑒(mod 𝑁𝑁), (21)
 𝑎𝑎21𝑎𝑎13  ≡ −𝑓𝑓(mod 𝑁𝑁), (22)
  𝑎𝑎31𝑎𝑎12  ≡ −𝑔𝑔(mod 𝑁𝑁), (23)

      𝑎𝑎31𝑎𝑎13  ≡ 1 − ℎ(mod 𝑁𝑁). (24)

 

Let 𝑘𝑘 = 𝑎𝑎12 for (𝑘𝑘,𝑁𝑁) = 1. From (21) and (23), we get 

𝑎𝑎21 ≡ (1 − 𝑒𝑒)𝑘𝑘−1(mod 𝑁𝑁), 

and 

𝑎𝑎31 ≡ −𝑔𝑔𝑘𝑘−1(mod 𝑁𝑁). 

respectively. Therefore, from (22) and (23) give 

𝑎𝑎13 ≡ −𝑔𝑔−1(1− ℎ)𝑘𝑘(mod 𝑁𝑁). 

(5)   From the steps above, we obtain 𝐿𝐿1×2 = [𝑘𝑘 −𝑔𝑔−1(1 − ℎ)𝑘𝑘] and 𝐿𝐿2×1 = �
(1 − 𝑒𝑒)𝑘𝑘−1

−𝑔𝑔𝑘𝑘−1
�. 

Hence, we will get 
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𝐿𝐿3×3 ≡ �

−𝜆𝜆 𝑘𝑘 −𝑔𝑔−1(1 − ℎ)𝑘𝑘
(1 − 𝑒𝑒)𝑘𝑘−1 �𝑒𝑒 − 𝑓𝑓𝑔𝑔−1𝑦𝑦 𝑓𝑓𝑔𝑔−1�𝑦𝑦

−𝑔𝑔𝑘𝑘−1 �𝑦𝑦 �ℎ − 𝑓𝑓𝑔𝑔−1𝑦𝑦
� (mod 𝑁𝑁). (25) 

 

Example 4.1. We consider 𝐿𝐿2×2 = �3 6
2 7�  from Example 3.2 that is one solution of                 

𝐿𝐿2×2
2 ≡ �21 14

20 15�
(mod 23)  and let 𝑒𝑒 = 21,𝑓𝑓 = 14,𝑔𝑔 = 20, ℎ = 15 and 𝑘𝑘 = 3. Now, we can 

generate self-invertible key 𝐿𝐿3×3 ≡ �
14 3 9
1 3 6
1 2 7

� (mod 23) by implementing formula (25). 

 

IMPLEMENTING DIFFERENT SELF-INVERTIBLE KEYS IN CIPHER TRIGRAPHIC 
POLYFUNCTION 

 

We present a preliminary result when implementing different self-invertible keys for Cipher 
Trigraphic Polyfunction as follows: 

Encryption Process 

The encryption process from 𝐾𝐾3×𝑗𝑗 to 𝐶𝐶3×𝑗𝑗
(𝑡𝑡)  is as follows: 

𝐶𝐶3×𝑗𝑗
(𝑡𝑡) ≡� 

𝑡𝑡−1

𝑢𝑢=0

𝐿𝐿3×3
(𝑡𝑡−𝑢𝑢)𝐾𝐾3×𝑗𝑗(mod 𝑁𝑁). 

Decryption process 

If |𝐿𝐿3×3
−1 | ≠ 0 and (|𝐿𝐿3×3

−1 |,𝑁𝑁) = 1, then the decryption process from 𝐶𝐶3×𝑗𝑗
(𝑡𝑡)  to 𝐾𝐾3×𝑗𝑗 is as follows: 

𝐾𝐾3×𝑗𝑗 ≡ ∏  𝑡𝑡−1
𝑢𝑢=0 𝐿𝐿3×3

(𝑡𝑡−𝑢𝑢)𝐶𝐶3×𝑗𝑗
(𝑡𝑡) (mod 𝑁𝑁). 

Example 4.2. Suppose Alice wants to submit the following plaintext to Bob as follows: 

𝐾𝐾3×3 ≡ �
3 0 13
6 4 17

14 20 18
� (mod 23). 

Let the self-invertible secret keys, 𝐿𝐿3×3
(𝑡𝑡)  for transformation, 𝑡𝑡 = 1,2,3 for both encryption and 

decryption processes are 𝐿𝐿3×3
(1) = �

10 22 22
1 6 5
6 7 8

� , 𝐿𝐿3×3
(2) = �

14 3 9
1 3 6
1 2 7

�  and                                  
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𝐿𝐿3×3
(3) = �

14 21 21
1 5 6

16 4 3
� where �𝐿𝐿3×3

(𝑡𝑡) � ≠ 0(mod 23) and ��𝐿𝐿3×3
(𝑡𝑡) �, 23� = 1. The encryption from 

𝐾𝐾3×3 to ciphertext 𝐶𝐶3×3
(3)  is used the following process: 

𝐶𝐶3×3
(3) ≡ 𝐿𝐿3×3

(3) 𝐿𝐿3×3
(2) 𝐿𝐿3×3

(1) 𝐾𝐾3×3 ≡ �
3 19 0
1 8 20

12 21 15
� (mod 23) 

Since 𝐿𝐿3×3
(𝑡𝑡)  is self-invertible, Bob easily gets the original text via the decryption process as follows: 

𝐾𝐾3×3 ≡ 𝐿𝐿3×3
(1) 𝐿𝐿3×3

(2) 𝐿𝐿3×3
(3) 𝐶𝐶3×3

(3) ≡ �
3 0 13
6 4 17

14 20 18
� (mod 23) 

In the context of Cipher Trigraphic Polyfunction, there appears to be a lack of concrete 
evidence demonstrating that employing self-invertible encryption with distinct secret keys for each 
transformation guarantees enhanced security compared to utilizing a single key. To further 
evaluate the system's safety, it is crucial to examine letter frequency patterns in the future. One 
confirmed advantage of this method, however, is no complexity computation needed to determine 
the inverse of the encryption keys. 

 

CONCLUSION 

 

In conclusion, this study managed to find a solution (i.e. 𝑖𝑖𝑑𝑑2  ) for matrix equation                      
𝐿𝐿2×2
2 ≡ 𝐴𝐴2×2(mod 𝑁𝑁) through simultaneous congruent solutions. The 𝑖𝑖𝑑𝑑2 matrix in the form of 

an equation (1) then generates a self-invertible key (see equation (25) that acts as encryption and 
decryption keys of a Cipher Trigraphic Polyfunction Cryptographic system. Obviously, this study 
shows that the recipient of the message does not have any problem finding the inverse of the 
encryption key. However, it is still too early to claim that this system is secure for the needs of the 
industry. Therefore, future studies can be carried out to attack this system by analyzing of the 
letters frequency of its ciphertext. It is also necessary to consider the increased symmetrical key 
storage space compared to the conventional Hill Cipher. 
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