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ARTICLE INFO ABSTRACT

Keywords: Explicit exponentially-fitted two-derivative Runge-Kutta-Nystrom method with single f-function
Two-derivative Runge-Kutta-Nystrom method and multiple third derivatives is proposed for solving special type of second-order ordinary
Second-order ordinary differential equations differential equations with exponential solutions. B-series and rooted tree theory for the

Exponentially-fitted
Stability region
Numerical test

proposed method are developed for the derivation of order conditions. Then, we build
frequency-dependent coefficients for the proposed method by integrating the second-order
initial value problem exactly with solution in the linear composition of set functions e/ and
e~ with 2 € R. An exponentially-fitted two-derivative Runge-Kutta-Nystrém method with
three stages fifth order is derived. Linear stability and stability region of the proposed method
are analyzed. The numerical tests show that the proposed method is more effective than other
existing methods with similar algebraic order in the integration of special type of second-order
ordinary differential equations with exponential solutions. Also, the proposed method is used
to solve a famous application problem, Verhulst logistic growth model and the result shows the
proposed method still works effectively for solving this model.

1. Introduction

This article focuses on the numerical solution of special class of second-order ordinary differential equations (ODEs) with
exponential solution in the form of:

{y”(x) = f(x, y(x),

) . (1.1
Wxo) =yg, Y (x) =Yy x € [Xg, Xengls

where y : R - RN, f : RxRY — R¥ is a continuous vector function.

Second-order ODEs are vastly used in modeling and forecasting the trend of scientific phenomena and application problems
particularly in engineering and physics fields, such as electric circuits, damped oscillation and vibration, Pleiades constellation,
classical mechanics and quantum mechanics [8,13,15,20]. The traditional approach for integrating high-order ODEs is by reducing
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them into a system of first-order ODEs and solving them subsequently with numerical approaches, comprised of the Runge-Kutta
method, block method, power series method, predictor-corrector method and others. Meanwhile, this approach can result in higher
computational cost and truncational error, which leads to inaccuracy of numerical approximation. Thus, the direct method is more
significantly commonly to be used to solve high-order ODEs directly [2,4,10].

Many studies have been conducted to develop effective techniques for integrating first or high-order ODEs with specific
solutions or properties [3,19,21,24]. Some researchers focused on studying the behaviors and properties of ODEs and there are
some interesting properties such as the growth of dependent variables undergoing exponential and periodic patterns. It causes
a lot of researchers to start developing efficient Runge-Kutta methods or one-step methods with dependent coefficients through
exponential fitting approaches. Berghe et al. [5] introduced s-stage exponentially-fitted Runge-Kutta methods, with the lower bound
being related to explicit methods and the upper bound applicable to collocation methods. Error and step-size is controlled based
on Richardson extrapolation and their proposed method is very efficient in solving first-order ODEs with exponential solutions.
Later, Franco [12] extended their works by introducing an embedded pair of explicit Runge-Kutta methods with exponentially-
fitted variants to solve first-order ODEs. The embedded Runge-Kutta method can control the step size dynamically based on error
estimation. Similarly, Ixaru [18] focused on developing two and three-stage explicit Runge-Kutta methods and implemented an
exponential fitting approach into them to solve first-order ODEs effectively. Enhancement has been made by extending the A-stability
property and his methods are proven as efficient tools for solving stiff first-order ODEs.

Apart from explicit Runge-Kutta methods, diagonally implicit and fully implicit Runge-Kutta methods can be adapted with
exponentially-fitting techniques. Ehigie et al. [11] proposed two-derivative diagonally implicit Runge-Kutta methods through
the theorem involving bi-colored rooted trees and elementary weights. Exponential fitting conditions are adapted into proposed
methods with fourth, fifth and sixth-order. Phase-lag and stability analysis of the methods are investigated to obtain the optimized
scheme and numerical experiments exhibit the efficiency of proposed methods. Besides Runge-Kutta methods, block methods which
are considered popular multistep methods can be fitted with exponential properties through the implementation of exponential
integration in the polynomial time integration framework. A new class of parallel exponential polynomial block methods are
constructed based on Legendre points for solving unpartitioned and partitioned first-order initial value problems [7].

Other than the integration of first-order ODEs, there is a lot of academics were extending previous work on developing and
analyzing exponentially-fitted Runge-Kutta and Runge-Kutta-Nystrom methods for solving a general class of second-order ODEs
with exponential solutions with extremely high precision [1,23]. Mohamed et al. [22] developed exponentially-fitted two-derivative
Runge-Kutta—Nystrom method with two-stage fourth-order and three-stage fifth-order for solving general second-order ODEs. Then,
Zhai and Chen [28] added symmetric and symplectic properties into the classical Runge-Kutta-Nystrom method and implemented
the exponentially-fitting technique into it. The new integrator integrates exactly second-order differential equations with solutions
that are represented as linear combinations of the functions from the set {¢*,e~#|1 € C}. Local truncation errors of the proposed
method and numerical tests are examined to verify the efficiency of the method.

Based on past research, we have observed a gap in the development of efficient Runge-Kutta or Runge-Kutta—Nystrom methods
for solving a specific type of second-order ODEs, represented as y”’ = f(x,y). Not all second-order application problems are
formulated in the general form, and some are simplified, involving only the variable x and y in the function evaluation, omitting the
y' term. Additionally, we believe that there is room for improvement in the application of exponentially-fitting techniques to make
them more suitable and effective for solving y”" = f(x, y) with exponential solutions. To address this gap and build upon previous
research on deriving Runge-Kutta or Runge-Kutta-Nystrom methods and implementing exponentially-fitting techniques, we propose
an efficient two-derivative Runge-Kutta—Nystrom method with minimal function evaluations and implement exponentially-fitting
technique into it, which is the main objective of this research, with the motivation to improve the accuracy and precision of existing
methods for solving the specific class of ODEs with exponential solutions.

Here we highlight the major contributions and findings of this article as follows:

» Presented the derivation of two-derivative Runge-Kutta—Nystrém method with minimal function evaluation for solving y"(x) =
f(x, ).

» Demonstrated the implementation of exponentially-fitting technique into the two-derivative Runge-Kutta—Nystrom method.

+ Presented the stability analysis of two-derivative Runge-Kutta-Nystrom method.

+ Verified the numerical efficiency of two-derivative Runge-Kutta-Nystrom method with exponentially-fitting technique for
solving y"(x) = f(x,y) with exponential solutions.

In this study, the conventional two-derivative direct Runge-Kutta—Nystrom scheme is changed by replacing the multiple
increment function by single second derivative function, f-evaluation and multiple third derivative functions, g-evaluation remain in
the formulation. Three-stage fifth-order two-derivative Runge-Kutta—Nystrom (TDRKN) method with a minimal number of function
evaluations is derived based on the rooted tree theory in Section 2. Then, the exponentially-fitting technique is implemented into
the parameters of the proposed method for transforming them into frequency-dependent and customized to solve the exponential
problem in Section 3. The second-order initial value problem has been integrated exactly with a solution in linear composition of
set functions e# and e~* with 4 € R. Linear stability and stability region of the proposed method are investigated to study the
uniform bound for stability. Section 4 displays numerical tests of the proposed method compared to other existing methods with
similar properties and order. Discussion of the numerical results is presented in Section 5 and this article ends in Section 6 with a
conclusion.
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Table 1
TDRKN methods in Butcher tableau.
c A A
o b7

2. The formulation of TDRKN method

TDRKN method is derived with the inclusion of a third derivative, y"’’(x) in the formulation as shown below:

V") = g0, 3. ¥) = fr (60 Y + f(x 0. 2.2)
s-stage TDRKN method consists of multiple evaluations in the third derivative and a single evaluation in the second derivative that

is expressed as follows:

> S
Vsl = Yu+ hy + Tf(x,,,yn) +n Z big (x,+¢h Y, Y/),

i=1

V=, +hf(xn,y,,)+h22b’ X+ YY),
i=1
where
Y, = v, +c;hy, +(—f(xn,y,,)+h3ZA,jg(x +eh YY),
s ” l
Y,-, =Y:,+c,~hf(xnsyn)+h22f§,~’jg (x +c; h,YI,Y) 2.3)
=1

where ¢;, b;, b b” A;; A,»_yj eR,i,j=1,2,...,s € Z*. Also, Egs. (2.3) can be expressed in Butcher’s tableau (see Table 1):

TDRKN methods are implicit methods if 4;; and A . are not equal to O for i < j, and are explicit methods otherwise. TDRKN
method, in contrast to the conventional two-derlvatlve Runge-Kutta—Nystrom approach, consist of one function evaluation of f
and numerous function evaluations of g per step, and thus, having fewer total function evaluations than the existing two-derivative
Runge-Kutta—Nystrom method which consists of numerous f and g evaluations per step [8].

Here are some key assumptions that are aligned with the objectives of the study as follows:

* B-series and rooted tree theorem can be derived for two-derivative Runge-Kutta-Nystrom with minimal function evaluation
with the motivation of generating order conditions for y and y'.

» Exponentially-fitting technique can be implemented to two-derivative Runge-Kutta-Nystrom with minimal function evalua-
tion.

3. Construction of TDRKN methods

i bis
for higher derivatives of the analytical solution of problem (2 3), we consider the expression of first to seventh derivatives of the
analytical solution y(x) at x = x,.

In this section, all coefficients of TDRKN methods, c;, b;, b/, A, A[ ; will be found in this part. For obtaining a general formula

Wy, W=r =g W=g+e,f,
2 2
W =gV 20V [ +85, 17+ 8, +8)s.

3 3 3 2

y(")—g“)y/3+3g“ ’2f+3g;y),y,yf2+g(y)y,y,f +3g0V F+380 )8 +38%), f5+ g
2

+ 8,8y +8,, /) + 38017,

3 3 4 2
W =120V rg+ 8l v +360) 12 4680 17 8, 1t 43858 + 88y + 8, /)

3.4

2 2 2
+g,<g§2y)y’2+2g“ '+, P+, f+g,g)+6g, Fre 48 (8l + 8, /)

@ 3 3) .2 (€] ) 3 2 3) 2 (2) /
+tdg, VS 08y f+6gyyyy,y fr+og ,yg+12g yf +4gy,

+4g9 (2) (g +g N+ 10g(2) f g

3
Y 'f +ag

3.1. Rooted trees and B-series theory
Fundamental of the set of rooted trees for TDRKN method are described and analyzed as follows:
Definition 3.1. The set Ry of rooted trees is recursively interpreted as
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(i) The graph . indicated as 7, belongs to rooted tree; the graph .;> indicated as 7, and the graph indicated as 73;

GD) If ty, ... t4stgi1s -5 15 € Rpytoyy, ..., 1, different from 7, then the root-connection graph with 7y, ...,#, linking downwards to
a new white rectangle vertex, combining the roots of #,,,, ..., into the white rectangle vertex, and subsequently linking
downwards to a new white circle vertex and to a new black circle vertex, belongs to Ry. It is expressed as

e LT O (T 5] (3.5)

in which the new black circle vertex is the roots of the R;.

Definition 3.2. Order of integer-value function p : R; — N is expressed recursively as:

@ pz) =1, p(ry) =2, p(z3) =3,
@) for 1= [t1,... .14 fqr1 -+ 15)], € Rps

@ s
P =3+ Y pt)+ Y (o) = D). (3.6)
i=1

i=a+1

For every t € Ry, the order p is the number of tree vertices. The set of all rooted trees of order k is represented by the
notation RT,.

Definition 3.3. For every tree ¢ € Ry, the fundamental differential is a vector function G(¢) : RY xR? — RY expressed as follows:

@ GEDB.Y) =Y, G, yY) = f), Gr)(.yY) =g, y),
(i) for 1= [t}, ... .14 (fgi1> - 15)], € Ry

of
G = 5 & (1. [GU) A, . Gl Y] - 3.7)

yaay/ﬂfa

Definition 3.4. An integer function, ¢ : Ry — N is recursively described as follows:

() o(r) = 0(r) = o(z3) = 1,
(ii) for 1 = [z‘;l,...,40,(:532...,:},‘”)] € Ry, with 1,...1, and 1y, ..., 1, distinct,

o) =[] ! (et*), (3.8)

i=1
in which y; is the multiplicity of ¢; for i=1,..., 4.

Theorem 3.1. Given the analytical solution y(x, + h) of Eq. (1.1) as a B-series, B(e, y,, y()) with real function e prescribed on Ry U {#}},
then

o) = e(m) = 1, e(ry) = 3,

and for t = [tl,...,ta,(ta+1,...,tﬁ)]2,
a

s
_ 1
et) = 57 L e T1 stte.

i=1 i=a+1
Proof. By assumption,
’ 2 0 '
y(xo + h) =e(@)yy + he(r))y'(0) + h”e(zy) f (yy) + Z —e(MG®)(¥y, ¥)s
o(1)
t€R7\ {7,712} (3.9)
=B(e, o, ¥p)-
The derivatives of y(x, + h) are shown below

y o

(yxo + 1) =e(r))y (0) + 2he(,) f (vo) + eGO (o, ¥p);

teRp\{r1.72} o(®)
=B (%e, yo,yé)) .
— 1)hrD=2 (3.10)
(o + )" =2eepfop+ Y LD DR Gy, v

o(t)

t€R7\{7.72}

plp—1) /
=B< 2 e, 0, Y | -
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Besides,

p
g (B (e v0.3) - B (Ze,yo,y{))) =
t€RT\ {71,712}
where 1 = [t1, ...t (toy 10 -2 15)], € Ry \ {71, 72} and e (1) = [T, et TTL,, | p(t)et,).
Combining (3.7) and (3.8) into the problem (1.1) and coefficients of the fundamental differential are compared on both sides,
yield

hP)-3

o " (OG)(vo, ) 3.11)

e(rz):%
and for 1 = [t1,..., 14 {fgr - »15)], € Rp \ {71, 72},
ety = ——— T et H pae(t). O

pO(p(1) = 1)

i=a+1

Through Taylor series expansion of y(x, + k) around h = O,we get that e() = e(r;) = 1.

L and &) = 225, Two

For every 1 € Rr, a density function and a positive integer-valued integer can be defined as y(1) = - 5 T

propositions can be derived based on Theorem 3.1.

Proposition 3.1. Density, y(t) for every tree t € Ry, is defined as positive integer function on set Ry

@y =1 1) =2 1z =6,
(i) for t = [ty. ...ty Atgsroenenty)]y € Rpur @) = oo = DT, 7 T2, 22

i=a+1 p(1;)"

Proposition 3.2. Positive integer £(t) for every tree t € Ry is defined as

D &(r) =¢(ry) = &(r3) =1,

(i) fort = [t‘l”,.,.,tg",(tsfl’,...,t;”)]z € Ry, whereby 1y, ...,1, distinct and t,, ... ,t5 distinct,
1 (&) 1 &) Hi
= ! 5
B = (p() - 2D)! ’| |I P (p(l),> ,Ja!l ] ((ﬂ(li)— 1)!> , (3.12)

where y; is the multiplicity of t;,i = 1,....,p.
For tree T = [t\ 7,,] or [t\ 7y,] with t € Ry and p(t) > 5,

@ = Z (H k(@) H Ptk (T ))

i=a+1

B-series of TDRKN method can be defined as

B(x,y,y') = x@)y + Z K(t)}’(t)é(t)G(t)(y " (3.13)

&Ry ()'
and g (B(K R AN:] ( K9, Y )) can be denoted as

hP(-3
p(D)!

¢ (BE3.B(2x0y)) = KOO OENGHM. V), (3.14)

t€RT\{71,72}

where © : Ry U {#} - R and x : Ry — R be two mappings satisfying k(#) = 1 and (7)) = 1.

3.2. Analytical solution and exact derivative on B-series

Theorem 3.2.  Exact solution y(x, + h) and the derivative y'(x, + h) of the problem (1.1) have the forms as follows

y(xo +h) = yo + hyy + %hzfo + Z ,é(t)G(t)(yo Yo = <§—T,yo,y{)> =B <1,yo,y{)> ,
&R, P! p! 4

(3.15)
PO éo p
Y (xo+h) =y +hfo+ IGZR“ Wé(t)c(t)(yo,yo) <h(p o ,yo,y()> =B <h—y,yo,yg> .

Proof. The conclusion is based on Theorem 3.1 and Egs. (3.13).
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3.3. Numerical solution and numerical derivative on B-series

B-series for a TDRKN method is established regarding the numerical solution of y, and its numerical derivatives, y of the problem
(1.1). Y; and Y[.’ are expanded as B-series as Y; = B(¥,, y,, y:)) and Y[.’ = B(ﬁ&f’,, Yo- y()) respectively. Hence, we can transform equations
in (2.3) into

_ (c;h)? - . P s
B, 30.3) = Yo + ety + —o— fo + 1> 3 Ay g (B 50,30 B (295.50.%) ) )
j=1

P s ) (3.16)
B (z’l’i,yo,y()) =yy+chfo+ h? Z A& (B(ijyOsyé)a B (E'Pj,yo,yg)) .
Jj=1

Referring to (3.13) and (3.14), the previous two equations can be expressed as
_ hP®
@By + Y ——

o1 D OrOEOGO 0. ¥p)
teRT :

, (c‘-h)2 il hPr® 3) ,
=vorehyy+=5=fo+ Y, X T A N OrOHOGO00 3.
J=1 Ry\{zy.,72,73} P

2 i (O (EOGE) (3o, ¥))
Yt t t f ,
ORI v Yo ¥

(3.17)

i pe=1
=Yy+eahfo+ Yy, D (0! A7 OrOEOGO(3g, V))-
J=1 Ry\{ty.,72,73} :

It follows

_ _ _ (c;)?
¥i@) =1, ¥i(m) = ¢, ¥i(m) = ——, (3.18)

P =1, Pz = ¢,

and

s
P =Y AP0, 1€ R\ {7,713,

j=1

N 1 = -«
b =-—= AW, 1€ R\ (1), 1013)
j=1

(3.19)

where ¥ () = X; (T, B0 1L, 0% @) . = [1\ 7], or [\ 7ia],.
Hereby, we denote the vectors &(r) = (tbl @, ... ,dbs(t))T. The rooted trees with order up to six and the values of related functions
are listed in Table 2. Elementary weight for y;, ¢(¢) can be listed as follows:

B(6) =Y bd, (1) = b (), (3.20)
i=1

1

and elementary weight for | is expressed as ¢’ ()

N
P'(1)= Y bd,(t) =T (). (3.21)
i=1
Hence, TDRKN method (2.3) yielded the following B-series for the numerical solution, y, and numerical derivative, y’1 for problem
(1.1,

hP®

h2
h) = hy + —
yi(xg +h) =yy + hy, + 2f0+ E (0]

t€Rr\{71.72}

hPO-1 , o ,
oL ¢ (DyOEDGH) (g ¥y)-

GOy DENG ) (Yo, ¥p),
(3.22)
¥ (xo + ) =yy + hfy+ 2
1€RT\ (71,7,
Rooted trees of TDRKN method up to order six for y and y are developed based on the B-series in Egs. (3.22) and shown
in Table 2. The elementary differentials are represented geometrically by a set of rooted trees, the version presented by Hairer
et al. [14] and Butcher [6].
Following are the order conditions for explicit TDRKN methods:
The order conditions for y:
Third order:

ble= (3.23)

1
5
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Table 2
Root trees for TDRKN method up to order six.
Order Tree Graph HO) Density o(t) Elementary
p(t) t y(t) differential
1 . T 1 1 y'
2 ‘o T, 1 2 f
3 I?) T3 1 6 e g
4 I§ Ty 1 24 c 9yy'
§ Ty 1 24 c Gy f
5 .E.’;) Ts, 2 120 c? Iyyy'?
o‘§ Tso 1 120 Ae Iyy¥'f
Di’ Ts3 1 120 c? Iy f?
%} Tsa 1 120 c? 9yf
% Tss 1 120 Ae g
6
\Eg Te1 3 360 c3 GyyyY"
% Te2 3 360 c3 GyyyV'2f
.% Te,3 3 360 c? yyiyY'f?
O%C; Tea 2 360 c3? Gyryryrf2
\% Tes 2 720 c? GyyV'9
% Te6 1 720 c3 Gyyif?
§ Te,7 1 720 Ae gy9g
Q% Tes 1 720 cA Gy f9
.% Te0 1 720 c3 IyyY'f
é T6,10 1 720 Ac gy,gyy'
§ Te11 1 720 c? Gy Gyif
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Table 3
The TDRKN5 method.
¢ 0 0 0 0
=) I3 52 Ay 0 Az,] 0
C3 33 33 Az, Az, 0 All A3,2 0
b, by by 4 v, v,
Fourth order:
1
be=—. 3.24
Y (3.24)
Fifth order:
1
ble? = —. 3.25
= (3.25)
Sixth order:
b= pThe= L (3.26)
120 ° 720°
The order conditions for y':
Second order:
BTe=1. (3.27)
2
Third order:
pTe=1. (3.28)
6
Fourth order:
1
b = —. 3.29
“T1n2 (3.29)
Fifth order:
BT =L WThe= (3.30)
20° 120°
Sixth order:
o4 1 T R 1 /T 1 T p 1
biet = —, V' Ac = —, b Ae = —, bl cAe = —. (3.31)
30 ! 720 720 180
The simplifying assumption is used to generate the coefficients of TDRKN method as follows:
LI 2 i a3
ZA"J == ZA"J =< (3.32)
1 1

3.4. Three-stage fifth-order TDRKN method

The fifth-order TDRKN method is derived using algebraic order conditions up to order five, which are composed of Egs. (3.23)—
(3.25), (3.27)-(3.30), (3.32) and T ¢* = %. Altogether it involves 13 equations and 14 variables and contains 1 free parameter, A;
after solving those equations. The coefficients of the proposed method are presented in Butcher tableau and denoted by TDRKNS
as seen in Table 3:

where
JREP S U 'Z SRS B Z SRS SRS N VC SR RO 'E
= 272 00 BT 2 100 P24 TPT 16 480 3T 16 487
pod oS V55 V5oL 3 V5oL 3 V5
17120 2724 240 3T 247240 21T o0 " 00 BT 32750 20
15 R4 . .
Ay =35+ =5 Az =—Az,+ 075 =1, 8=1, &=1, &=1. (3.33)
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For simplification purpose, we set A; | = 0, hence A3, = 31—0 - % Error norms for y and y’ with order six of the proposed method
are defined as follows:

N

2
6) — (6)
el = | X (=)

i=1

M
2
! /6
179, = | X (7).

i=1

N+M 2 L o\2
6, 6,
1E91 =~ X (59) + ()"
i=1

where N and M are the total number of local truncation errors for y and ', ©® and 7'©® are the local truncation error norms
with order six for y and y’ of proposed method respectively and ||z || ¢ is the global error norm with order six. For our method,
7@, ~ 1.626 x 1073, ||/ ©||, ~ 9.932 x 10~% and 1z©]|, ~ 1.006 x 1072,

Next, we analyze the zero stability and stability region of the proposed method. Generalizing the theorem proposed by [16]
applied to Runge-Kutta type method for solving special second-order ODEs and the idea proposed by [17], we introduce the
zero-stability for high-order method in the definition below.

Definition 3.5. The numerical method that is used for solving high-order ODEs with order p is zero stable with the numerical
solutions remaining bounded as step size, » — 0 if and only if the modulus of roots for the first characteristic polynomial, p(&)
satisfy the following conditions:

s gl <lforj=12,..,r,
* If §; is a repeated root, then the multiplicity of the root of modulus 1 must be at most p.

Matrix finite difference equation of TDRKN5 methods can be written as
IY,,, = AY, + h*(B- F,) + h*(C - G,), (3.39)

in which I is the 2 x 2 identity matrix, Y, = [y,41. 8V, |17, ¥, = [, iy, 17, Fy = [fuo fal"5 G, = [, 8,17, A, B and C are matrices
2 x 2. In Eq. (3.34), matrix A can be defined as

)

Then,

fe-1 1
a3 L)

Hence, the first characteristic polynomial can be defined as
p©) = detl1¢ - A] = (€ - D™ (3.35)

Thus, according to Definition 3.5, TDRKN5 method is zero stable with the roots of polynomial, & = 1,i = 1,2 since the root of
the first characteristic polynomial is 1 (repeated root) and the multiplicity of the root of the modulus 1 is two.
Then, the linear stability of TDRKN5 method is investigated. We use the test problem as follows:

Y=y (3.36)
Hence, we can obtain

gV, Y = A%Y’. (3.37)
By applying TDRKN5 method to the test problem, we get

Y =y, +ch(Ay,) + h*A (A2Y'). (3.38)
Let us denote v = Ah and multiply both sides with &, we yield

RY' = hy, + cv?y, + v A (RY'). (3.39)
After rearrangement,

hY' = N.cv’y, + N.e(hy'), (3.40)

where N = (I - szf)_].
Similarly, we substitute (3.36) and (3.37) into the first two equations in (2.3),

hZ
Vel = Vu+ BV, + 7(/12y,,) + BT (A2Y"),

36



K.C. Lee et al. Mathematics and Computers in Simulation 219 (2024) 28-49

Im(v) 0
=g
-4
-4 -2 0 o 4
Re(v)
Fig. 1. The stability region of TDRKN5 method.
Yoo =V, +h(2y,) + 20T (A2Y). (3.41)
Then, we substitute v = Ak and (3.40) into (3.41) and carry out some simplification, we get the following matrix,
Vet ) _ (14 5+ Ne 14+0%"Ne (v,
’ = ;] (3.42)
hy, ., v +v*pTN.c 14+ 0*0TN.e ) \hy,
where e = [1,1, 1]7. After simplification,
Yn+1 Yn
= P(v)( ) (3.43)
<hy ;+1 ) hy :.

v oo4T 24T
where P(v) = 1+22 -i;vﬂ{) N.c 1+Uzb,TN.e )
v-+v"b" N.c 14+ 0v°b" N.e

The stability region in the complex plane of TDRKN5 method can be defined as
Sp={v: 4P <1i=12} (3.44)

where 4; are eigenvalues of P(v). The stability region of TDRKNS5 method is shown in Fig. 1.
3.5. Exponentially-fitted two-derivative Runge—Kutta-Nystrom method

The motivation of the exponentially-fitting technique is to modify the existing method into a method with frequency-dependent
parameters that works perfectly on solving differential equations with exponential solutions. We focus on the class of equations in
the following form:

V'=fy), v =a Y0 =4 (3.45)

where «, # € R and the exact solution is exponential form.
To develop TDRKNS5 method with exponentially-fitting technique, we integrate the exponential function, ¢** and e~** at every
stage and v = Ah, 1 € R, we obtain
2 s

c
et =1 + o+ 7’02 +0° Z A; et (3.46)
=
N
el =1 & ¢;v + v? Z ff,v,jeic/". (3.47)
=
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We insert the fitting terms, 6, and §; into the equations above as follows:

?
e*il =5, + c;v + —U +0° Z A,/et”! (3.48)

s
exait =1 igc,v+uzz&-,jeﬂ/”. (3.49)
j=1

The equations corresponding to y and )’ are:

N
=l s0+ %ﬁ <0 Y petar, (3.50)
i=1
s
=lxo+0? Y et (3.51)
i=1
The relation cosh(v) = £+ and sinh(v) = ' are substituted in the preceeding equations. In this case, we get hyperbolic functions

of v as below:
s
cosh(v) =1 + %Uz +0° Z b; [sinh(uc,)] s
i=1
s
sinh(v) =v + v° z b; [cosh(ucl-)] s
i=1
N
cosh(v) =1 + v* Z b} [cosh(ve))] ,
i=1
s
sinh(v) =v + v? Y B! [sinh(ve;)] . (3.52)
i=1
The coefficients 4;;_; and A,-,,-_ | with fitting property can be determined through the formula below

cosh(c;0) — 1 — v? Z' A, ; cosh(c;v)

AIJ—I = , (3.53)

v2 cosh(c;_ lu)
sinh(c;v) — ¢;v — v Z A, cosh(c;v)

- | 3.54
ii—1 = v3 COSh(C;_l U) ( )

Then, we determine §; and §; based on the coefficients A;,_, and 4,,_, through

sinh(¢;v) — Z' ! A ; sinh(c; )

5 = , (3.55)
civ

i—1
6; =cosh(c;v) — —(c 0)? = ¥ <Z A; j sinh(c; u)) (3.56)

Jj=1
Modify Egs. (3.27)-(3.30), coefficients for a; INTNZ and j; can be determined as follows:

A cosh(c,v) — 1
Ay =——F—

>

2
R cosh(c,v) — 1 — UZAll
32 =

v2 cosh(c,v)
_sinh(c,0) — v

21= 3 ’
A sinh(c30) — c30 — V3 A3

327 v3 cosh(c,yv)

sinh(c,v)
Nn=———:

U

sinh(c;v) + v? (4342 sinh(czv))

V3= - >

30U
7, =cosh(c,v) — l(czv)z,
¥3 = cosh(cyv) — —(c3 v)? = v* (A3, sinh(c,v)) . (3.57)

By substituting parameters in (3.33) into Egs. (3.57) and applying Taylor series expansion, we yield all frequency-dependent

coefficients for 4, ;, A, j»0; and 5, of proposed methods,
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Subsequently, the coefficients above are used to generate parameters b,, b,, b’1 and b/2 through Taylor series expansion.

b =i—i§+ —;+i ot + ! + Vs P 17 + V5 o+ 00
2716 48 201600 504000 181440000 181440000 39916800000 66528000000 ’

b3=l+£+<—;+i>v4+< L, Vs >U6+<— 17 + V5 )v3+(9(um),

4 1 NG 6 47 V5 8 10
[©] R
>U +<10000 * 32500 ) ¥ T\ 50400000 * 2400000 ) TOW)
5 231/5
)U4+<_ 1,5 >U6+< 239 35 >Us+0(um). (3.58)

b

IS
o

0! 7500 © 18000 50400000 16800000

201600 ~ 504000 181440000 181440000 39916800000 66528000000

, 5 V5 V5 4 1 Vs 6 1 V5 8 10
by== - 2=+ et —=— |+ + % + 0@,
24 24 252000 6048000 ~ 90720000 362880000 33264000000
y == [ - Vs vt + 1 i o+ ! - V5 % + 0" (3.59)
37 24 24 252000 6048000 90720000 362880000 33264000000 ’ ’

4. Problem testing and numerical result

Fifth-order exponentially-fitted two-derivative Runge-Kutta—Nystrom (EFTDRKN5) method is applied to solve second-order ODEs
in the form )" (x) = f(x,y(x)) and application problem with exponential solution in this section. The numerical efficiency of the
proposed method in the literature is shown by comparing multiple existing Runge-Kutta—Nystrom methods with classical type and
fitted techniques. The following methods have been chosen to be numerically compared.

» EFTDRKNS - Three-stage fifth-order explicit two-derivative Runge-Kutta-Nystrom method with exponentially-fitting tech-
nique, proposed in this paper.

» EFRKN5D - Four-stage fifth-order explicit Runge-Kutta-Nystrom method with exponentially-fitting technique, proposed by
Demba et al. [9]
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» EFRKNST - Three-stage fifth-order modified explicit two-derivative Runge-Kutta—Nystrom method with exponentially-fitting
technique, proposed by Mohamed et al. [22]

PFRKNS5 - Four-stage fifth-order explicit Runge-Kutta-Nystrom method with phase fitting technique, proposed by Salih
et al. [25]

» TDRKNS5C - Three stage fifth-order explicit two-derivative Runge-Kutta-Nystrom method, proposed by Chen et al. [8]

» RKMS5 - Explicit two-derivative Runge-Kutta-Nystrom method with three stage fifth-order, proposed by Mohamed et al. [26]

Problem 1 (Homogeneous Problem).
y' =4y,

y0) =0,y =1, xel0,b],

with analytical solution, y(x) = iezx - ie—zx_

Problem 2 (Inhomogeneous Problem).

y" =5y + cosh(x),

WO = -1/ ©)=0, x€[0.],

with analytical solution y(x) = —éex - ée"‘.

Problem 3 (Inhomogeneous Problem).

YVi=y+x-1,

¥0)=2,y'0)=-2, x€l0,5],
with analytical solution y(x) =1—-x+e™.
Problem 4 (Homogeneous System).

¥ =8y, ¥y =8y, ¥ =,

»0)=2, y’l 0)=4,y,(0)=4, y/z(O) =38,y3(0) = l,y;<0) =2, x€[0,b],
with analytical solution, y; (x) = 2¢>, y, (x) = 4e** and y; (x) = **.
Problem 5 (Inhomogeneous System).

y/l’ =-y, +e, y'z/ =-y +e,

»0) = 0,}/1(0) =2,10) = 1,)/2(0) =-1, x€]l0,5],
with analytical solution, y, (x) = e* —e™, y, (x) = ™.

Problem 6 (Prothero—Robinson Problem).
ax\3

y// - Azy_ (y_e ix) ,

¥0)=1,Y0)=-4, x€[0,5],

with analytical solution y(x) = e~**. We take A =2 in this test problem.

Problem 7 (Application Problem - Verhulst Logistic Growth Model). Verhulst logistic growth model is a mathematical model used to
describe population growth that starts with exponential growth and then slows down as it approaches a maximum value or carrying
capacity. This model incorporates the concept of limiting factors, which are factors that restrict population growth as it approaches
the carrying capacity. These factors can include limited resources, competition, predation, disease, and other factors that influence
population dynamics. It originated by the first-order ODEs as follows:

V) = ry(x) (1 - %) , (4.60)

where K represents carrying capacity and r represents growth rate [27].
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» ETDRKN3 with h=0.001 RK4 with h=0.00001 |

Fig. 2. Numerical simulation for logistic growth model with y(0) =1 and )'(0) = 1,r = 1/0.02 and K = 1.

Eq. (4.60) can be modified to second-order ODEs as below:

/" _ 2 _ l 2 l 3
yx)y=r (y(X) g W+ 7Y (x)),
y0) =y, YO =y, x€l0,b], (4.61)

where y,, y6 and b are real numbers, K represents carrying capacity and r represents growth rate.

In (4.61), not all equations consist of analytical solutions as they are highly dependent on the initial conditions. In this study,
we take y(0) =1 and y/(0) = 1,r = \/(ﬁ and K = 1. Since there is no analytical solution for these initial conditions, we use classical
Runge-Kutta method with order 4 as measurement tool to obtain numerical approximation with step size » = 10~ and compare it
with all comparative methods.

The figure below shows the numerical simulation logistic growth model of the classical Runge-Kutta method with order 4 with
step-size, h = 10~ and ETDRKN5 method with 7 = 10~ by taking the initial conditions we use in this study.

The numerical data are presented in Tables 4-9 with different step-size, 4 in particular endpoints, 5. The tables contain the
maximum global error, MAXERR; the number of function evaluations involved, FE and the time of computation in seconds. The
maximum global error is written as a(—b), instead of a - 10~%, where a,b € R (see Fig. 2).

Figs. 3-8 demonstrate the numerical performance of proposed method and other selected methods in terms of maximum global
truncation error against computational time. Meanwhile, Fig. 9 shows the numerical comparison for all selected methods in terms of
maximum global truncation error against number of function evaluations. The model of computer used in computing the numerical
results is Lenovo ideapad 330 Intel Core i5-8050U (1.8 GHz).

5. Discussion

In a comparison of the number of function evaluations required by all selected methods, EFTDRKN5 method is one of the best
among all methods by requiring the least amount of function evaluation for all endpoints due to the least number of stages per step
based on the results obtained in Tables 4-10 and Figs. 3-9. In computational time, the time consumption for the proposed method
is considered moderate. This is because of the complexity of single function evaluation, which consists of the second derivative of
function, g-evaluation which is more complex compared to classical f-evaluation. This causes the EFTDRKNS5 method requiring
more time to finalize the computational steps compared to some RKN methods without second derivative such as EFRKN5D,
PFRKN5 and RKMS5 methods. In the comparison of accuracy, EFTDRKN5 method outperforms other methods by generating the
least maximum global error for solving all kinds of second-order ODEs with exponential solutions, comprising linear homogeneous
and nonhomogeneous equations and systems. Also, our proposed method is effective in solving the nonlinear Prothero-Robinson
problem, which is considered a stiff equation. This is largely because of the exponential-fitting techniques implemented in a huge
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Table 4
Comparison between EFTDRKNS5 method with existing methods for Problem 1.
h Methods b=5 b=10
MAXERR FE Time (s) MAXERR FE Time (s)

EFTDRKN5 4.613895(-14) 150 0.004 4.347613(-9) 300 0.011
EFRKN5D 2.732603(-5) 200 0.003 6.018529(-1) 400 0.006

0.1 EFRKNST 7.137355(-5) 300 0.006 2.971495(+0) 600 0.012
PFRKN5 1.193372(+0) 200 0.003 5.261285(+3) 400 0.005
TDRKN5C 2.412671(-4) 300 0.006 1.145283(+1) 600 0.012
RKM5 3.754358(-3) 150 0.004 1.660037(+2) 300 0.009
EFTDRKN5 1.453867(-18) 300 0.009 6.766962(—14) 600 0.020
EFRKN5D 4.507752(-7) 400 0.006 9.928964(-3) 800 0.012

0.05 EFRKNST 1.229300(-6) 600 0.013 5.144427(-2) 1200 0.025
PFRKN5 2.639118(-2) 400 0.006 1.162675(+3) 800 0.010
TDRKN5C 4.097050(—6) 600 0.013 1.934314(-1) 1200 0.025
RKM5 1.238840(-4) 300 0.008 5.467085(+0) 600 0.018
EFTDRKN5 2.240954(-23) 600 0.019 1.042569(-18) 1200 0.041
EFRKN5D 7.223044(-9) 800 0.013 1.590981(—4) 1600 0.024

0.025 EFRKNST 2.016753(-8) 1200 0.027 8.460508(—-4) 2400 0.051
PFRKN5 4.033400(-3) 800 0.013 1.776841(+2) 1600 0.020
TDRKN5C 6.672585(—8) 1200 0.027 3.141977(-3) 2400 0.050
RKM5 3.977018(-6) 600 0.017 1.753500(-1) 1200 0.036
EFTDRKN5 3.436549(—29) 1200 0.040 1.598412(-23) 2400 0.080
EFRKN5D 1.142350(-10) 1600 0.026 2.516194(-6) 3200 0.049

0.0125 EFRKNST 3.228988(-10) 2400 0.055 1.356215(-5) 4800 0.104
PFRKN5 5.506476(—4) 1600 0.026 2.425766(+1) 3200 0.041
TDRKN5C 1.064378(-9) 2400 0.054 5.005416(-5) 4800 0.102
RKM5 1.259572(-7) 1200 0.034 5.551138(-3) 2400 0.070
EFTDRKN5 5.256804(—33) 2400 0.080 2.444744(-28) 4800 0.160
EFRKN5D 1.795543(-12) 3200 0.054 3.954946(-8) 6400 0.102

0.00625 EFRKNST 5.107222(-12) 4800 0.110 2.146360(-7) 9600 0.210
PFRKN5 7.175353(-5) 3200 0.055 3.160953(+0) 6400 0.081
TDRKN5C 1.680359(-11) 4800 0.110 7.897070(-7) 9600 0.208
RKM5 3.962532(-9) 2400 0.069 1.745980(—4) 4800 0.140

S J
o —%¥— EFTDRKN5
8 15f —%*— EFRKN5D 1
° —O&— EFRKN5T
< —<— PFRKN5
< 201 TDRKNSC 1
e —— RKM5
=3
o o5} i
-30 b
35 . . . . .
0 0.02 0.04 0.06 0.08 0.1 0.12
Computational time(s)
Fig. 3. Numerical curves of selected methods for Problem 1 with b=5 and h = 0711 =0,1,...,4.

number of parameters in RKN method with two-derivative terms. In handling the selected second-order application problem, the
logistic growth model, EFTDRKN5 method generates relatively low global truncation errors with different step-size, considered the
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Table 5
Comparison between EFTDRKNS5 method with existing methods for Problem 2.
h Methods b=5 b=10
MAXERR FE Time (s) MAXERR FE Time (s)

EFTDRKN5 6.447814(-19) 150 0.017 4.633263(-14) 300 0.033
EFRKN5D 1.119847(-4) 200 0.010 8.041715(+0) 400 0.021

0.1 EFRKNST 3.984426(-7) 300 0.020 2.862442(-2) 600 0.041
PFRKN5 3.820059(-3) 200 0.010 2.748504(+2) 400 0.022
TDRKN5C 7.499811(-6) 300 0.019 5.389274(-1) 600 0.041
RKM5 6.602033(-5) 150 0.014 4.741567(+0) 300 0.028
EFTDRKN5 1.003519(-23) 300 0.034 7.210913(-19) 600 0.062
EFRKN5D 3.637948(-6) 400 0.021 2.612511(-1) 800 0.044

0.05 EFRKNST 6.982695(-9) 600 0.038 5.016977(-4) 1200 0.081
PFRKN5 6.684797(—4) 400 0.021 4.807806(+1) 800 0.045
TDRKN5C 1.231044(-7) 600 0.040 8.845898(-3) 1200 0.082
RKM5 2.112082(-6) 300 0.030 1.516907(-1) 600 0.054
EFTDRKN5 1.545171(-28) 600 0.066 1.110294(-23) 1200 0.115
EFRKN5D 1.158397(-7) 800 0.043 8.318877(-3) 1600 0.088

0.025 EFRKNST 1.154695(-10) 1200 0.073 8.296729(-6) 2400 0.163
PFRKN5 9.587669(-5) 800 0.044 6.894752(+0) 1600 0.089
TDRKN5C 1.970884(-9) 1200 0.080 1.416198(-4) 2400 0.165
RKM5 6.675812(-8) 600 0.060 4.794622(-3) 1200 0.106
EFTDRKN5 2.367925(-33) 1200 0.104 1.701483(-28) 2400 0.226
EFRKN5D 3.653543(-9) 1600 0.086 2.623760(—4) 3200 0.171

0.0125 EFRKNST 1.855779(-12) 2400 0.123 1.333446(-7) 4800 0.318
PFRKN5 1.276584(-5) 1600 0.088 9.179804(-1) 3200 0.172
TDRKN5C 3.116965(-11) 2400 0.130 2.239713(-6) 4800 0.316
RKM5 2.097924(-9) 1200 0.100 1.506750(—4) 2400 0.201
EFTDRKN5 3.616680(—38) 2400 0.204 2.598781(-33) 4800 0.420
EFRKN5D 1.146965(-10) 3200 0.166 8.236858(-6) 6400 0.312

0.00625 EFRKNST 2.940679(-14) 4800 0.250 2.113008(-9) 9600 0.589
PFRKN5 1.644909(-6) 3200 0.168 1.182813(-1) 6400 0.314
TDRKN5C 4.899699(-13) 4800 0.250 3.520696(-8) 9600 0.586
RKM5 6.574289(-11) 2400 0.197 4.721726(-6) 4800 0.389

5} —%— EFTDRKN5 1
—+%— EFRKN5D
—oO— EFRKNST

Iogm(Max global error)
S

—<— PFRKN5
TDRKN5C
25 —— RKMS5 E
30 4
35 4
40 . . . .
0 0.05 0.1 0.15 0.2 0.25

Computational time(s)

Fig. 4. Numerical curves of selected methods for Problem 2 with =5 and h =0.01 —0.002i,i =0,1,...,4.

second-best method after RKM5 method. The number of function evaluations involved is the lowest as well in approximating the
outcomes of this model. This is because the numerical simulation of this logistic growth model has the property of exponential
growth based on the approximation obtained by RK4 method with extremely low step-size, thus the proposed method produces

good numerical approximation.
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Table 6
Comparison between EFTDRKNS5 method with existing methods for Problem 3.
h Methods b=10 b=20
MAXERR FE Time (s) MAXERR FE Time (s)
EFTDRKN5S 3.256790(-19) 300 0.007 7.173558(-15) 600 0.018
EFRKN5D 1.803104(-6) 400 0.005 3.971602(-2) 800 0.011
0.1 EFRKNST 2.442516(-7) 600 0.010 5.379999(-3) 1200 0.025
PFRKN5 9.937543(-5) 400 0.005 2.188909(+0) 800 0.011
TDRKNS5C 1.175343(-6) 600 0.009 2.588865(-2) 1200 0.024
RKMS5 7.912984(-7) 300 0.006 1.742953(-2) 600 0.015
EFTDRKNS 5.002155(—24) 600 0.015 1.101798(-19) 1200 0.036
EFRKN5D 2.889218(-8) 800 0.011 6.363926(—4) 1600 0.021
0.05 EFRKNST 3.834624(-9) 1200 0.020 8.446320(-5) 2400 0.049
PFRKN5 3.195732(-6) 800 0.010 7.039175(-2) 1600 0.022
TDRKNS5C 1.838769(-8) 1200 0.020 4.050159(—4) 2400 0.048
RKMS5 3.844161(-8) 600 0.013 8.467336(—4) 1200 0.029
EFTDRKNS 7.654660(—29) 1200 0.033 1.686051(—24) 2400 0.070
EFRKN5D 4.569401(-10) 1600 0.023 1.006478(-5) 3200 0.042
0.025 EFRKNST 6.004274(-11) 2400 0.043 1.322529(-6) 4800 0.096
PFRKN5 1.012763(-7) 1600 0.022 2.230875(-3) 3200 0.043
TDRKNS5C 2.873975(-10) 2400 0.044 6.330352(-6) 4800 0.094
RKMS5 1.415534(-9) 1200 0.029 3.117923(-5) 2400 0.057
EFTDRKN5S 1.169568(—33) 2400 0.071 2.576144(-29) 4800 0.139
EFRKN5D 7.182170(-12) 3200 0.049 1.581978(-7) 6400 0.083
0.0125 EFRKNST 9.390973(-13) 4800 0.090 2.068499(-8) 9600 0.190
PFRKN5 3.186511(-9) 3200 0.048 7.020168(-5) 6400 0.085
TDRKNS5C 4.490937(-12) 4800 0.092 9.891947(-8) 9600 0.186
RKMS5 4.758066(—11) 2400 0.062 1.048035(-6) 4800 0.112
EFTDRKN5 1.669285(—38) 4800 0.145 3.676855(—34) 9600 0.275
EFRKN5D 1.125513(-13) 6400 0.102 2.479108(-9) 12800 0.165
0.00625 EFRKNST 1.468042(-14) 9600 0.195 3.233577(-10) 19200 0.378
PFRKN5 9.986543(-11) 6400 0.101 2.201411(-6) 12800 0.168
TDRKNS5C 7.017226(-14) 9600 0.198 1.545647(-9) 19600 0.372
RKMS5 1.539141(-12) 4800 0.130 3.390187(-8) 9600 0.222
0 T T T T T T T T T
-5 -
-10 b
S
iJ -15 —%— EFTDRKN5
8 —*— EFRKN5D
g 20 —6— EFRKN5T |
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Fig. 5. Numerical curves of selected methods for Problem 3 with b= 10 and A =0.01 —0.002i,i =0,1,...,4.

6. Conclusion

In this study, an explicit fifth-order two-derivative Runge-Kutta—Nystrom method with minimal function evaluation and
exponentially-fitting technique has been developed to solve y”(x) = f(x, y(x)) with exponential solutions. B-series and rooted tree
theory specifically for TDRKN method are derived with the motivation to generate the order conditions for the proposed method.
A three-stage fifth-order classical TDRKN method, denoted as TDRKNS5 is constructed based on the algebraic order conditions up
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Table 7
Comparison between EFTDRKN5 method with existing methods for Problem 4.
h Methods b=5 b=10
MAXERR FE Time (s) MAXERR FE Time (s)
EFTDRKN5 6.141145(-18) 900 0.022 2.778520(-13) 1800 0.039
EFRKN5D 1.438933(-11) 1200 0.017 6.523979(-7) 2400 0.031
0.05 EFRKNST 4.672950(-6) 1800 0.029 2.003971(-1) 3600 0.046
PFRKN5 1.054653(-1) 1200 0.018 4.648513(+3) 2400 0.032
TDRKN5C 7.025417(-5) 1800 0.029 3.198457(+0) 3600 0.046
RKM5 1.978979(-3) 900 0.020 8.740364(+1) 1800 0.036
EFTDRKN5 9.464031(-23) 1800 0.045 4.280457(-18) 3600 0.076
EFRKN5D 7.042297(-15) 2400 0.034 3.188359(-10) 4800 0.062
0.025 EFRKNST 7.683551(-8) 3600 0.059 3.299740(-3) 7200 0.092
PFRKN5 1.613040(-2) 2400 0.036 7.106662(+2) 4800 0.065
TDRKN5C 1.141164(-6) 3600 0.058 5.189170(-2) 7200 0.091
RKM5 6.347853(-5) 1800 0.039 2.802213(+0) 3600 0.070
EFTDRKN5 1.451166(-27) 3600 0.088 6.562253(—23) 7200 0.142
EFRKN5D 3.442872(-18) 4800 0.069 1.557659(-13) 9600 0.124
0.0125 EFRKNST 1.231552(-9) 7200 0.115 5.292606(-5) 14400 0.183
PFRKN5 2.202489(-3) 4800 0.072 9.702839(+1) 9600 0.129
TDRKN5C 1.817964(-8) 7200 0.114 8.261880(—4) 14400 0.181
RKM5 2.009653(-6) 3600 0.078 8.869349(-2) 7200 0.133
EFTDRKN5 2.219678(-32) 7200 0.170 1.003659(-27) 14400 0.280
EFRKN5D 1.682162(-21) 9600 0.140 7.608008(-17) 19200 0.245
0.00625 EFRKNST 1.948979(-11) 14400 0.230 8.378591(-7) 28800 0.364
PFRKN5 2.870109(—4) 9600 0.144 1.264374(+1) 19200 0.256
TDRKN5C 2.868211(-10) 14400 0.226 1.303099(-5) 28800 0.360
RKM5 6.321020(-8) 7200 0.161 2.789375(-3) 14400 0.264
EFTDRKN5 3.391068(-37) 14400 0.338 1.533248(-32) 28800 0.551
EFRKN5D 8.216344(-25) 19200 0.285 3.715420(-20) 38400 0.487
0.003125 EFRKNST 3.064743(-13) 28800 0.457 1.317743(-8) 57 600 0.716
PFRKN5 3.660959(-5) 19200 0.293 1.612761(+0) 38400 0.507
TDRKN5C 4.503326(-12) 28800 0.448 2.045673(-7) 57 600 0.710
RKM5 1.981727(-9) 14400 0.314 8.744567(-5) 28800 0.515
0 G\e'\e'\%l T T T
5t i
-10 b
S
2 -15 —%— EFTDRKN5 -
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Fig. 6. Numerical curves of selected methods for Problem 4 with =5 and A =0.025-0.005i,i =0,1,...,4.

to order five. Then, the zero stability and stability region of the proposed method are analyzed to assess the stability performance
of TDRKN5 method. The proposed method is proven to have zero stability and the region of absolute stability, based on the test
problem, is plotted.

The exponentially-fitting technique is implemented into TDRKN5 method. Exponential functions, e~** and e?* are integrated.
Coefficients such as b;, A; j,fi-, ;»6; and 5, are adopted with the product of fitting frequency, 4 and step size, h. When the fitting
frequency approaches zero, EFTDRKN5 method will tend to reduce to classical TDRKNS method of a similar algebraic order. The

1
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Table 8
Comparison between EFTDRKNS5 method with existing methods for Problem 5.
h Methods b=10 b=20
MAXERR FE Time (s) MAXERR FE Time (s)

EFTDRKN5 3.069208(-18) 600 0.034 1.388955(-13) 1200 0.052
EFRKN5D 4.692655(-5) 800 0.030 1.033619(+0) 1600 0.045

0.1 EFRKNST 2.827944(-6) 1200 0.042 1.110238(-1) 2400 0.068
PFRKN5 5.262416(-2) 800 0.024 2.321863(+3) 1600 0.045
TDRKN5C 8.073879(—6) 1200 0.042 3.842141(-1) 2400 0.067
RKM5 2.228469(—4) 600 0.032 1.038527(+1) 1200 0.057
EFTDRKN5 4.730533(-23) 1200 0.067 2.139895(-18) 2400 0.104
EFRKN5D 1.466702(—6) 1600 0.052 3.230609(-2) 3200 0.090

0.05 EFRKNST 4.611276(-8) 2400 0.080 1.819363(-3) 4800 0.135
PFRKN5 8.049962(-3) 1600 0.049 3.549970(+2) 3200 0.090
TDRKN5C 1.318666(-7) 2400 0.080 6.249030(-3) 4800 0.133
RKM5 7.164989(-6) 1200 0.063 3.333208(-1) 2400 0.114
EFTDRKN5 7.254547(—28) 2400 0.130 3.280833(-23) 4800 0.207
EFRKN5D 4.582614(-8) 3200 0.111 1.009383(-3) 6400 0.176

0.025 EFRKNST 7.360738(-10) 4800 0.142 2.911275(-5) 9600 0.269
PFRKN5 1.100025(-3) 3200 0.101 4.848727(+1) 6400 0.177
TDRKN5C 2.106394(-9) 4800 0.140 9.961559(-5) 9600 0.262
RKM5 2.270928(-7) 2400 0.120 1.055557(-2) 4800 0.223
EFTDRKN5 1.109738(-32) 4800 0.229 5.018056(—28) 9600 0.412
EFRKN5D 1.431834(-9) 6400 0.203 3.153812(-5) 12800 0.352

0.0125 EFRKNST 1.162480(-11) 9600 0.245 4.603369(-7) 19200 0.511
PFRKN5 1.434210(-4) 6400 0.196 6.320003(+0) 12800 0.353
TDRKN5C 3.327699(-11) 9600 0.243 1.572139(-6) 19200 0.508
RKM5 7.146806(—9) 4800 0.215 3.320543(-4) 9600 0.438
EFTDRKN5 1.699394(-37) 9600 0.404 7.682824(-33) 19200 0.802
EFRKN5D 4.474036(-11) 12800 0.394 9.854680(-7) 25600 0.702

0.00625 EFRKNST 1.826116(-13) 19200 0.484 7.235728(-9) 38400 1.019
PFRKN5 1.829927(-5) 12800 0.385 8.062582(-1) 25600 0.697
TDRKN5C 5.228225(-13) 19200 0.478 2.468776(-8) 38400 1.003
RKM5 2.241242(-10) 9600 0.423 1.041109(-5) 19200 0.884

o
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Fig. 7. Numerical curves of selected methods for Problem 5 with =10 and h = %z,i =0,1,...,4.

proposed method with exponentially-fitting technique simulates exactly some standard exponential function and contributes to
excellent accuracy and efficiency in solving second-order ODEs with exponential solutions.

Numerical experiments are carried out in terms of maximum global error versus time of computation for a proposed method
with fitting technique and other existing methods. Six different second-order initial value problems with exponential solutions are
employed in the numerical test to evaluate the numerical performance of all approaches. EFTDRKN5 method is compared to the
existing fifth-order exponential-fitted and phase-fitted Runge-Kutta—Nystrom methods, including EFRKN5D, EFRKN5T, PFRKN5,
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Table 9
Comparison between EFTDRKN5 method with existing methods for Problem 6.
h Methods b=5 b=10
MAXERR FE Time (s) MAXERR FE Time (s)

EFTDRKN5 1.409648(-25) 750 0.074 3.104955(-21) 1500 0.129
EFRKN5D 7.610983(-9) 1000 0.063 1.676431(-4) 2000 0.099

0.02 EFRKNST 1.006095(-9) 1500 0.080 2.216072(-5) 3000 0.151
PFRKN5 1.053097(-6) 1000 0.061 2.319612(-2) 2000 0.100
TDRKN5C 4.820947(-9) 1000 0.080 1.061884(-4) 3000 0.147
RKMS 1.349528(-8) 750 0.066 2.972535(-4) 1500 0.113
EFTDRKN5 2.155764(—30) 1500 0.131 4.748386(-26) 3000 0.254
EFRKN5D 1.200699(-10) 2000 0.106 2.644715(-6) 4000 0.194

0.01 EFRKNST 1.574616(-11) 3000 0.153 3.468323(-7) 6000 0.294
PFRKN5 3.327795(-8) 2000 0.101 7.330548(—4) 4000 0.196
TDRKN5C 7.534236(-11) 2000 0.152 1.659526(-6) 6000 0.289
RKM5 4.778754(-10) 1500 0.126 1.052591(-5) 3000 0.225
EFTDRKN5 3.292891(-35) 3000 0.236 7.253072(-31) 6000 0.520
EFRKN5D 1.884979(-12) 4000 0.201 4.151943(-8) 8000 0.396

0.005 EFRKNST 2.462262(-13) 6000 0.304 5.423492(-9) 12000 0.595
PFRKN5 1.045489(-9) 4000 0.194 2.303560(-5) 8000 0.399
TDRKN5C 1.177283(-12) 4000 0.302 2.593139(-9) 12000 0.586
RKM5 1.581039(-11) 3000 0.256 3.482472(-7) 6000 0.456
EFTDRKN5 4.415846(—40) 6000 0.465 1.107288(-35) 12000 1.023
EFRKN5D 2.952191(-14) 8000 0.380 6.502632(-10) 16 000 0.788

0.0025 EFRKNST 3.848747(-15) 12000 0.590 8.477429(-11) 24000 1.196
PFRKN5 3.273223(-11) 8000 0.370 7.218572(-7) 16 000 0.790
TDRKN5C 1.839528(-14) 8000 0.586 4.051830(-10) 24000 1.168
RKM5 5.077691(-13) 4800 0.538 1.118437(-8) 12000 0.902
EFTDRKN5 7.672505(—45) 9600 0.920 1.689981(—40) 24000 1.982
EFRKN5D 4.618183(-16) 12800 0.752 1.017222(-11) 32000 1.562

0.00125 EFRKNST 6.014794(-17) 19200 1.258 1.324846(-12) 48 000 2.405
PFRKN5 4.023086(-12) 12800 0.730 2.258921(-8) 32000 1.568
TDRKN5C 2.874271(-16) 19200 1.248 6.331004(-12) 48000 2.389
RKM5 1.608171(-14) 9600 1.076 3.542236(-10) 24000 1.793

20F —%— EFTDRKN5 |
—#— EFRKN5D
—6— EFRKNST

Iogm(Max global error)
]

—<— PFRKNS5
TDRKN5C
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Fig. 8. Numerical curves of selected methods for Problem 6 with b=35 and h = OZJI =0,1,...,4.

TDRKNS5C and RKM5 methods. Numerical performance is assessed using the maximum global error, computational time and number
of function evaluations. The numerical results are displaced in Tables 4-10 and Figs. 3-9.

In a nutshell, our proposed method is very effective in solving all kinds of special class of second-order ODEs with exponential
solutions and surpasses all selected methods in numerical efficiency by generating the least maximum global error in a similar
computational time for solving Problems 1-6. In coping with the logistic growth model, the proposed method is still working and
able to produce relatively low global truncation error compared to others. However, there is a limitation of our proposed method,
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Table 10
Comparison between EFTDRKN5 method with existing methods for logistic model problem.
h Methods b=2
MAXERR FE Time (s)

EFTDRKN5 3.600902(-13) 300 0.016
EFRKN5D 6.652165(—13) 400 0.011

0.02 EFRKNST 8.786405(-13) 600 0.025
PFRKN5 7.561200(-10) 300 0.010
TDRKN5C 8.839655(-13) 600 0.025
RKM5 3.308139(-13) 300 0.014
EFTDRKN5 1.091609(-14) 600 0.032
EFRKN5D 2.061077(-14) 800 0.022

0.01 EFRKNST 2.780900(-14) 1200 0.050
PFRKN5 9.958537(-11) 600 0.021
TDRKN5C 2.797904(-14) 1200 0.050
RKMS5 1.045092(-14) 600 0.027
EFTDRKN5 3.357652(-16) 1200 0.065
EFRKN5D 6.409315(-16) 1600 0.045

0.005 EFRKNST 8.745954(-16) 2400 0.100
PFRKN5 1.276645(-11) 1200 0.043
TDRKN5C 8.799665(—16) 2400 0.099
RKM5 3.283438(-16) 1200 0.054
EFTDRKN5 1.040811(-17) 2400 0.129
EFRKN5D 1.963341(-17) 3200 0.091

0.0025 EFRKNST 2.741863(-17) 4800 0.195
PFRKN5 1.615742(-12) 2400 0.087
TDRKN5C 2.758739(-17) 4800 0.194
RKMS5 1.028799(-17) 2400 0.108
EFTDRKN5 3.239608(-19) 4800 0.255
EFRKN5D 6.241578(-19) 6400 0.180

0.00125 EFRKNST 8.582391(-19) 9600 0.385
PFRKN5 2.032151(-13) 4800 0.178
TDRKN5C 8.635270(-19) 9600 0.384
RKMS5 3.218899(-19) 4800 0.215
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Fig. 9. Numerical curves of selected methods for Problem 7 with =2 and h = U%,i =0,1,...,4.

which is not able to generate good approximation in dealing with second-order ODEs with non-exponential solutions. However, the
purpose of developing an exponentially-fitting technique for solving differential equations is not solely limited to its effectiveness on
problems with exponential solutions. While it may have limitations in terms of applicability to a broader range of problems, there
can still be value in developing and utilizing such a technique. Insights gained from an exponentially-fitting technique can inspire
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or contribute to the development of more versatile or generalized methods that can handle a wider range of problem types, apart
from problems with exponential solutions. It can serve as a building block for future advancements which are effective in all types
of problems, regardless of consisting exponential solutions or not. Also, since parameters are frequency-dependent, if we use the
proposed method with exponentially-fitting technique to solve differential equations with most probably non-exponential solutions,
we can set v = 0, then the proposed method will turn into a classical method without exponential-fitting property, which is more
suitable and useful to solve the non-exponential differential problem by generating low global truncation error.

For future research, another type of fitting technique can be implemented to classical Runge-Kutta—Nystrom method with
minimal function evaluation, such as phase-fitting and trigonometrically-fitting techniques for solving different types of second-
order ODEs. Also, the proposed method can be further analyzed in terms of stability and error bound to determine the stability
region and numerical limitation. Based on the analysis, a suitable technique or formula modification can be implemented to solve
a wider range of differential equations effectively.
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