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ABSTRACT 

This study develops a classification model for detecting multiple flight 

conditions of VTOL (Vertical Take-Off and Landing) UAVs using 

accelerometer data, with a motion capture system included for comparison. 

The objective is to identify the most effective machine learning model for 

classifying various flight conditions, such as healthy and faulty propellers, 

different payloads, and windy environments. Initially, various machine 

learning models, including Quadratic Support Vector Machine (QSVM), 

Neural Networks, and Naive Bayes, were trained using acceleration and 

displacement data. QSVM was identified as the best-performing model, 

achieving 87.5% training accuracy with acceleration data and 79.3% with 

displacement data. Following this, data from two accelerometers (an iPhone 

SE 2020 and an ADXL345) were used exclusively with the QSVM model for 

further comparison. The iPhone SE sensor achieved 97.73% training accuracy, 

while the ADXL345 attained 93.06%. While the iPhone sensor demonstrates 

superior performance, it serves only as a benchmark, as it is not intended for 

onboard UAV applications. The results indicate that affordable sensors, like 

the ADXL345, can achieve sufficient accuracy, making them viable for 

practical UAV deployments. The study concludes by recommending higher-

quality sensors and advanced machine learning techniques for enhanced UAV 

fault detection. 

Keywords: VTOL, Acceleration sensor, positional camera, fault prediction, 

classification algorithm 

I. INTRODUCTION

A. BACKGROUND

Unmanned Aerial Vehicles (UAVs) are utilized in

various applications, including parcel delivery, search and 

rescue missions, structural inspections, geographic 

mapping, and even passenger transport [1]. Proper 
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maintenance is crucial to ensure UAVs' safety, reliability, 

and longevity. Regular inspections and maintenance help 

identify wear and tear, such as motor degradation or sensor 

malfunctions, before they lead to critical failures. An early 

warning system could minimize the risk of system failures, 

leading to costly damage, operational downtime, and, in 

the worst-case scenarios, accidents that jeopardize public 
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safety and assets. 

The primary importance of an early warning system 

lies in its real-time ability to identify emerging problems, 

such as propeller damage, battery degradation, or 

navigation errors, before they result in operational failures 

or accidents. By continuously monitoring the flight 

performance, early warning systems can provide 

immediate alerts to operators, enabling swift corrective 

actions to prevent crashes, service disruptions, or loss of 

valuable payloads. This research focuses on propeller 

damage, particularly at the tip of the blade [2]. Such 

damage can result from various factors, including fatigue 

wear, accidental impacts, and collisions with debris, which 

can alter the propeller's aerodynamic profile [3]. 

UAV flight monitoring systems should consider four 

key functions: communication with the operator, sensor 

capabilities to detect its surroundings, interfacing with the 

operational mission, and possessing reliable positioning 

and navigation capabilities [4]. These capabilities are 

desirable and essential for the effective and safe operation 

of the UAV. Fault diagnosis (FD) techniques are vital in 

ensuring the safety and reliability standards of 

autonomous and remotely controlled systems [5] through 

multiple sensors integrated into the UAV system. FD 

techniques involving fault detection estimators and fault 

isolation methods [6] contribute to UAV operations' long-

term reliability and sustainability. For industries that rely 

heavily on drones for time-sensitive tasks, an early 

warning system helps avoid costly delays and ensures 

consistent performance. 

Developing an intelligent early warning system for 

drone monitoring necessitates gathering data from various 

flying conditions. This approach is critical for ensuring the 

system can accurately detect faults and malfunctions 

across different operational scenarios where external 

factors such as wind speed, temperature, altitude, and 

payload variations can impact performance. Training 

machine learning models requires a large and varied 

dataset to effectively learn the drone's standard operating 

patterns and distinguish between typical fluctuations and 

true signs of failure. For instance, to effectively train 

neural networks for UAV fault detection, it is necessary to 

collect vibration data from the quadcopter during flights 

under various operating conditions [7]. Data from sensors 

under different conditions, such as high winds, carrying 

payloads, or navigating in challenging terrains, allow the 

system to make accurate predictions and deliver timely 

alerts, regardless of the specific flight environment. 

 

B.  LITERATURE REVIEW 

UAVs are rapidly becoming a key asset in 

applications such as search & rescue, surveillance, 

inspection, and precision farming. The necessity of 

integrating UAVs in urban scenarios requires an increase 

in reliability and capability of predicting faults, especially 

when these unmanned vehicles must be certified to fly in 

populated areas[1]. During the quadcopter's flight, 

anomalous and unforeseen events including actuator 

failure, sensor failure, and structural failure could happen. 

For UAVs to fly safely, real-time online fault detection and 

identification (FDI) of the abnormal state of the 

quadcopter is essential [2]. 

 In [3], the origins of failures in drones can be 

numerous, ranging from manufacturing errors to in-flight 

failures. These experiments were conducted as a 

preliminary, unfunded study to establish the baseline 

performance of the UAV under failure conditions. The 

main objective is to build upon this set of flight tests to 

generate an increasingly rich set of failures under various 

flight conditions as well as to design, develop, and validate 

flight control algorithms that can detect, identify, and 

accommodate for such failures. In [4], the experiment 

approach is simplistic, but it’s a useful fault emulation 

technique for the study of fault detection and diagnosis 

methods in a controlled environment. The modelling of a 

quadcopter with propeller faults has been investigated. 

The assumption for the control strategy was that complete 

propeller failure had occurred and the vehicle was allowed 

to rotate about an axis. This approach has been used to 

capture the deformation of a flexible rotor blade and 

estimate the rotation angles of moving objects. 

In an aircraft, faults can be classified as actuator 

faults, sensor faults and plant (or component or parameter) 

faults. Actuator faults include partial or total loss of an 

actuator’s control, which can result in a constant output 

(e.g., a stuck rudder or an engine failure), change in the 

actuator gains (e.g., partial loss of engine power), or drift 

in output values (e.g., change in the trim of the elevator). 

Sensor faults represent wrong measurement readings by 

the sensors, which can result in total faults (e.g., a random 

output from a faulty sensor), bias faults (e.g., bias in 

gyroscope reading), gain faults (e.g., in an uncalibrated 

range sensor) and outlier faults (e.g., jumps in GPS 

reading). Plant faults include problems that change the 

dynamic properties of the system (e.g., a damaged wing) 

and the complete loss of communication between the 

controller and a component[5]. Common anomalies in 

UAVs encompass a range of issues that can affect their 

performance and reliability. One prevalent anomaly is 

GPS signal loss, resulting from interference or 

environmental conditions, which can compromise 

navigation accuracy. Motor failures, including issues like 

overheating, misalignment, or electronic speed controller 

malfunctions, can lead to unstable flight or crashes. 

Many recent works deal with actuator fault 

estimation and tolerance in multirotor UAVs. Among the 

traditional model-based methods, we can find both linear 

and nonlinear failure detection validated with 

experimental results. Although the most common 

approaches are model based, artificial intelligence is 

applied as well to estimate the fault magnitude, in the 

recent work a fault estimation scheme based on recurrent 

neural networks was proposed. The work injected the fault 

at a software level, and the experiment validated the fault 

estimation with indoor experiments[6]. In [7], the 

experiment allows for determining several parameters 

necessary to certify these devices, such as hovering 

accuracy, positioning accuracy, device position drift, 

positioning repeatability, variability of the positioning 

accuracy, deviation, and repeatability of the distance. 

Additionally, the collected data can be used for post-flight 

analysis, enabling researchers to refine algorithms, 
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improve flight performance, and enhance the capabilities 

of UAVs in various applications. The information is 

fundamental for precise navigation, obstacle avoidance, 

mapping, and even understanding the environment the 

UAV operates. 

Displacement and acceleration data are vital for 

developing a reliable UAV flight classification model. 

Displacement data tracks the movement through space, 

capturing its position, velocity, and orientation in multiple 

flying conditions[8]. Deviations from expected 

displacement patterns can indicate potential faults. This 

information is vital for training the classification model to 

recognize specific faults based on how they affect the 

movement. Acceleration data complements displacement 

data by providing detailed information about the forces 

acting on the drone during flight[9]. Accelerometers 

capture changes in speed and direction across three axes 

(X, Y, and Z), offering insights into the flight's stability and 

responsiveness. When faults occur, the drone's 

acceleration profile will show abnormal fluctuations, 

which can then be used to classify specific types of faults. 

Both types of data can provide a detailed and multi-

dimensional view of the drone's behavior, enabling early 

fault detection and enhancing the reliability and safety of 

UAV operations. 

Accelerometer is an automatic tool for measuring 

acceleration, detecting, and measuring vibration and 

measuring acceleration due to the body (inclination). 

Acceleration creates a state of speed over time. Direction 

movements are changes of objects that will also cause 

acceleration. There are two main principles of the 

accelerometer measurement system where one is to 

measure the displacement of the mass and the other one 

measures the frequency of a vibrating element changing 

(mass) it’s caused because of tension changes. The 

accelerometer measures linear acceleration and by 

integrating the signal twice we can obtain the position[10]. 

By analysing vibration patterns, they can optimize the 

UAV's design and configuration, mitigate excessive 

vibrations that might compromise performance or data 

quality, and ultimately enhance flight safety and efficiency. 

With regards to accelerometers sensor, their usage as a 

gravity sense is hampered by the fact that accelerometer 

measurements contain not only information of the gravity 

field, but also vehicular accelerations. The usage of the 

sensor to detect gravity in attitude estimation is therefore 

always accompanied by the associated problem of 

compensating for vehicular accelerations [11] engineers 

and researchers to assess the structural integrity of the 

UAV, detect potential issues or malfunctions in its 

components, and ensure the accuracy of gathered sensor 

data. 

The primary importance of a motion capture system 

lies in its ability to measure even the smallest deviations 

in UAV displacement accurately. By capturing real-time 

displacement data, motion capture systems enable the 

creation of highly detailed flight profiles, which serve as 

benchmarks for multiple flight conditions. The tracking 

quality of a motion capture system using passive markers 

is strictly related to placement and a calibration process. 

High-precision systems are mostly based on markers and 

infrared lighters. The object, which often is a rigid body, 

has multiple markers attached. That allows us to track the 

object effectively. It is important to note that properly 

chosen and placed markers increase the visibility of the 

object[12]. Overall, a motion capture system (MCS) 

functions by recording the positions of markers from 

multiple camera perspectives and processing this 

information to reconstruct precise three-dimensional 

movement data. This data is then used for a wide array of 

applications across different industries. To evaluate the 

performance and stability of VTOL UAVs, an indoor flight 

test in a multiple-flying environment is necessary. The 

fundamental measurements of UAV flight are the position 

displacement and rotation angle an understanding of these 

parameters is essential for the development of indoor flight 

test rigs. The quadcopter movement is controlled by 

variations of the relative thrusts over four degrees of 

freedom yaw, roll, pitch, and altitude where two opposite 

rotors rotate in a clockwise direction and the remaining 

pair rotates in a counter clockwise direction for flight 

balance; each degree of freedom can be controlled by 

adjusting the thrusts of each rotor individually[13]. The 

data collected from the positional cameras provide real-

time feedback, allowing for adjustments in flight paths, 

aiding in accurate positioning for tasks like surveying or 

inspection, and contributing to the overall safety and 

efficiency of the UAV operation.  

In [14], a fault detection and classification algorithm 

based on deep learning (DL) and time-frequency analysis 

(TFA) is designed to detect and classify sensor faults of the 

Drone UAV. In[15], the experiment proposed a machine 

learning-based real-time failure prediction and 

classification framework for its eventual deployment with 

actual autonomous flights. The results showed that after 

initial pre-processing to prepare data for applying 

recurrent neural networks, stacked long short-term 

memory (LSTM) generated intelligent insights for failure 

identification. 

 

II. OBJECTIVES AND CONTRIBUTIONS 

 
In recent years, with the development of UAV 

technology, more and more UAVs have been developed 

and employed for various practical applications, such as 

payload transportation, aerial surveillance, and border 

monitoring. An adaptive fault-tolerant flight controller is 

presented for a VTOL tail-sitter UAV and validated 

through experiment tests. A fault tolerance control (FTC) 

scheme is proposed for a tilt-rotor UAV developed by the 

Korea Aerospace Research Institute to compensate for the 

adverse effect of actuator faults[16]. UAVs, commonly 

known as drones, can experience faults that compromise 

their functionality and performance. These faults may 

range from mechanical issues to electronic malfunctions. 

Motor problems, a prevalent fault, can stem from factors 

such as seized or stalled motors, uneven motor speeds, or 

overheating due to continuous operation. The most 

common UAV faults include insufficient battery capacity, 

loss of communication, motors, and propeller problems. 

Among them, the probability of faults occurring in motors 

and propellers is higher than in other parts when a UAV is 
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flying. However, there is little research on UAV motors 

and propeller fault detection[17]. Furthermore, what is 

even more interesting is to see if a classical machine 

learning algorithm would achieve the required 

performance within the complications of the real world. 

Therefore, Support Vector Machine (SVM), a supervised 

classification algorithm, has been implemented for the 

problem of fault diagnosis to predict faults online [18].  

This research advances the development of a multiple 

flying condition detection system for UAVs by proposing 

a method that leverages multiple sensors to identify the 

best classification model and the best sensor for UAV 

malfunctions identification. The study focuses on 

analyzing sensor outputs, with two primary objectives: 

a) To compare machine learning classification models 

across different flight conditions using displacement 

and acceleration data.  

b) To evaluate classification accuracy using different types 

of accelerometer sensors. 

In a previous study [19], fault detection relied on 

audio sensors under a single flight condition involving 

faulty propellers. In this experiment, both acceleration 

sensors and a positional camera are used. We utilize a 

motion capture system due to the high accuracy, precision, 

and consistency in capturing movement data over time, 

ensuring reliable representation of the ground 

truth UAV movement [20,21]. Statistical features are 

extracted from the sensor data and supplied to a 

classification model, which assesses the accuracy of 

predictions based on features derived from acceleration 

and displacement data. The most effective machine 

learning classifier model is then used to compare the 

classification accuracy between two accelerometer sensors. 

The analysis evaluates each sensor's ability to provide 

informative features across varying flight conditions, 

including propeller faults, flights with additional load, and 

windy environments. A total of eight flight condition 

groups are created, and the recorded data from all 

conditions are gathered from multiple sensors. This 

enables a comparative assessment of the classification 

performance between different acceleration sensors. 

 

III. SETUP AND METHODOLOGY 
 

3.1 FLOWCHART  

The flowchart in Figure 1 represents a process for the 

classification of VTOL flight conditions, involving 

multiple steps from data collection to model evaluation.  

 

 
 

Figure 1 Flowchart for the classification of VTOL flight conditions 
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The initial process is to identify the requirements of 

the experimental procedures including the placement of 

vibration sensors and positional cameras. Then, the 

manipulative environment is configured to be in windy 

and non-windy, with load and without load, in healthy and 

faulty propeller conditions. The positional cameras 

capture real-time motion tracking, allowing 3D linear 

movement analysis to detect irregularities in the UAV 

flight movements. The acceleration sensors capture real-

time acceleration data that allows the sensor to capture any 

change in the drone's movement. 

Data gathering consists of two types of input: 

acceleration sensor data and positional camera data. These 

raw data are then processed in a feature extraction step, 

where statistical features are derived from both sensors 

data.  

Next, the extracted features are fed into classification 

model, where machine learning is applied to detect or 

predict potential flying conditions. Following the 

classification step, the performance of various models is 

compared to identify the most accurate classification 

model. Determining whether the recorded data is sufficient 

for developing a classifier model involves two 

considerations: the number of samples in each class and 

the complexity of the classifier model. First, it is crucial to 

have enough data from each class for proper 

feature extraction. Then, the dataset should have larger 

number of samples compared to the number of features. 

Finally, the experiment will continue with further 

investigation for comparison between different 

acceleration sensor setups to determine the most effective 

configuration by integrating the best classifier model with 

the best acceleration sensor for classification of VTOL 

flight multiple flying conditions.  

 

3.2 EXPERIMENTAL SETUP 

Using complex monitoring and postprocessing 

algorithms helps reduce the inaccuracy introduced by 

measurements. A diverse collection of sensing methods 

can identify proper motion, resulting in various 

applications in autonomous systems. The experimental 

setup for this study is shown in Figure 2. A group of 

infrared cameras is positioned all around the measurement 

area, focusing on either passive or retro-reflective markers. 

This allows them to triangulate the exact three-

dimensional position of the marker. Images of high 

contrast reflecting markers can be recorded at up to 2 kHz 

using infrared lighting. 

The acceleration sensors used to measure the 

acceleration value due to vibration are then attached to the 

drone, and a solid base is set to ensure the sensor is 

attached correctly. The acceleration sensor will collect 

data when the drone starts flying in multiple conditions 

and environments. The multiple environments are then set 

up to be wind and non-windy environments.  

 

Figure 2 Experimental setup 
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3.3 EXPERIMENT CONDITION 

The multiple conditions of the experiment are 

manipulated from the propeller, flying with load, and 

windy conditions as shown in Figure 3-5. The propeller 

conditions come from healthy and faulty conditions. Then, 

flying conditions are manipulated from load and no-load 

flying conditions. The windy and non-windy conditions 

will be the other flying conditions.  

 
 

Figure 4 The 500g load attached to the drone 
 

 

 
 

Figure 5 Healthy and faulty propeller. The faulty 
propeller’s tip is cut by 15mm to simulate faults 

 

 

The flying with load conditions is set for 500g for the 

weight, which remains constant in every flight. Then, the 

faulty propeller conditions are set to 2 of 4 propellers being 

cut at the propeller's tip.  

 

3.4 OPTITRACK FLEX 13 

To conduct the UAV tracking study, a minimum of 4 

low-cost OptiTrack cameras as shown in Figure 6 should 

be securely mounted on a stable stand. It is crucial to 

ensure that the cameras do not vibrate during the flight test 

to maintain accurate data. However, it is worth noting that 

the low-cost OptiTrack system is vulnerable to infrared 

sunlight reflection, which can affect the precision of the 

rigid body streaming data and lead to ghosting marker 

recording. 

 

 
Figure 6 OptiTrack Flex 13 

 
 

3.5 ACCELEROMETER ADXL 345 

Accelerometers measure acceleration forces, 

including those caused by vibrations. They detect changes 

in motion and can be used to measure the frequency, 

amplitude, and direction of vibrations in various objects or 

structures. An accelerometer typically provides data in 

three-dimensional along the X, Y, and Z axes. The 

accelerometer ADXL 345 used in this study is shown in 

Figure 7, which is a light-weight and low-cost and can be 

purchased off-the-shelf. 

 

 
 

Figure 7 ADXL 345 Acceleration sensor 
 

 

3.6 ACCELEROMETER WITH PHYPHOX 

APPLICATION 

Phyphox mobile applications is used for acceleration 

measurement to measure the total acceleration acting on 

mobile device without the influence of the gravity. 

Accelerometer data was collected using the Phyphox app 

(Figure 8) on an iPhone SE 2020. The smartphone is 

tightly mounted on top of the VTOL UAV to avoid 

additional vibrations from the mobile phone. This 

application enables monitoring the real-time acceleration 

data from the other devices through Wi-Fi internet 

connection. 

 

 

Figure 8 Phyphox applications logo 
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3.7 FEATURE EXTRACTION  

Many statistical techniques are utilized to extract 

features from drone flight test data. They help to identify 

important patterns, relationships, or characteristics within 

the collected data. The four feature extraction keys of 

mean, standard deviation (STD), kurtosis (K), and 

interquartile range (IQR) are frequently applied in 

problem identification. 

 

𝑀𝑒𝑎𝑛 =  
∑ 𝑥

𝑛
      (1) 

  

𝑆𝑡𝑑 = √
∑(𝑥−�̅�)

𝑛−1
    (2) 

  

𝐾 = 𝐸 [
𝑥−𝐸(𝑥)

√𝑉𝑎𝑟(𝑥)
]   (3) 

  

𝐼𝑄𝑅 = 𝑄3 − 𝑄1  (4) 

where 𝑥 represents each individual data point and 𝑛 is 

total number of data points. 

The data from various UAV flying conditions and 

multiple sensors are used for statistical feature extraction 

as shown in Equation (1) until Equation (4). Equation (1) 

is the average of a group of data points is called the mean. 

Calculating the mean of sensor readings or other relevant 

parameters over a specific period provides a central 

tendency measure, offering insight into the typical 

behaviour of the drone during flight Equation (2) is the 

standard deviation (Std) quantifies how widely distributed 

the data are around the mean. A higher standard deviation 

indicates greater dataset variability. It can signify 

fluctuations or irregularities in sensor readings or 

performance metrics during flight. Equation (3) is the 

Kurtosis that measures the shape of the distribution curve. 

High kurtosis indicates a more peaked distribution with 

heavy tails, suggesting outliers or extreme values in the 

dataset. Equation (4) is the interquartile range (IQR) that 

stands for the range of values in the data between the first 

quartile (25th percentile) and the third quartile (75th 

percentile). Compared to the range or standard deviation, 

it measures the dispersion of the middle 50% of the sample 

and is less susceptible to outliers. 

 

3.8 DATA TRAINING USING CLASSIFICATION 

MODEL 

Creating a classification model for data training 

involves using supervised learning algorithms to classify 

input data into different categories or classes based on 

labelled training data. This process starts by gathering data 

where each sample is labelled with its corresponding class. 

The model uses this labelled data along with the provided 

statistical parameters to learn the relationship between the 

input features and the output classes they are associated 

with. The model undergoes training iterations, adjusting its 

internal parameters to minimize errors in predicting the 

correct classes. The labelled data is shown in Table 1. 

3.9 CLASSIFICATION MODEL ACCURACY 

COMPARISON  

Once trained, the model's performance is evaluated 

on new, unseen data to ensure it can generalize well to 

make accurate predictions. This iterative process of 

learning from labelled data, creating patterns, and making 

predictions defines the essence of training a classification 

model. The choice of the best training algorithm depends 

on various factors, including the dataset's characteristics 

and the specific requirements of the problem at hand. This 

article discusses the comparison of supervised learning 

algorithms available in MATLAB's Classification Learner 

app. It compares the classification models within the app 

and evaluates the three best-performing algorithms. This 

study compares classification model accuracy and 

confusion matrix parameters between Naïve Bayes, 

Neural Networks, and Support Vector Machines.  

 

3.10 CLASSIFICATION ACCURACY 

COMPARISON BETWEEN 

ACCELEROMETER SENSORS 

The best classification model will be used to compare 

the classification accuracy using different accelerometer 

sensors. Finally, classification accuracy is compared 

between features extracted from low cost ADXL 345 

sensor and decent sensor embedded in an iPhone SE 2020. 

Comparison between sensors is crucial to determine the 

best sensor for UAV flight condition monitoring. Accuracy 

is the key factor to consider for sensor quality in 

classifying the drone’s flying condition. Accuracy 

measures the overall effectiveness of the classification 

model by indicating the proportion of correct classes out 

of all classifications. 

 

IV. RESULTS AND DISCUSSION 
 

4.1 RECORDED DATA  

Recorded data is organized according to its flying 

conditions as shown in Table 1. Group 1 until group 8 are 

determined based on three conditions: windy or non-

windy conditions, faulty or healthy propeller, and load or 

no-load flying conditions. Wind conditions can 

significantly impact the performance and stability of aerial 

platforms, and the classification model's efficiency needs 

to be evaluated under both scenarios. 

When the UAV flies with a load, it can have several 

effects on its flying capabilities. Due to the additional 

weight, a UAV consumes more energy to maintain flight. 

This can result in reduced flight time and range compared 

to when the UAV is flying without a load.  

 

4.2 CLASSIFICATION MODEL ACCURACY  

The statistical features extracted for various propeller 

types and flight conditions based on Table 1 were used for 

training and comparison across three different classifiers. 

The training process involved two sensors: an 

accelerometer and a camera. As shown in Figure 1, after 

the feature extraction process, the extracted statistical data 

is trained for evaluation classifier’s performance between 

two sensors. This comparison classifier performance is to 

determine the best sensor for UAV flight condition 
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monitoring. Based on Table 2, the QSVM scored the 

highest classification percentage for both sensors. A 

QSVM is a type of SVM classifier that uses a quadratic 

kernel to map input features into a higher-dimensional 

space where a quadratic decision boundary can be 

constructed to separate classes. 

 
Table 1 Group label for UAV flight conditions 

 
 

 

Table 2 Classification Learner Accuracy 

 

 
 

 

Based on the training and test classification accuracy, 

the results have shown that acceleration data leads to 

higher scores in classification accuracy, as shown in 

Figures 9 and 10.  

 

 

Figure 9 Classification Learner Accuracy for training 

 
 
Figure 10 Classification Learner Accuracy for test 

 

 

The validation accuracy for acceleration data is 

higher than positional displacement data by 8.71%. Based 

on our observation, acceleration sensor data provides 

better statistical features than position data for propeller 

fault classification. Furthermore, we found that QSVM is 

the best model for differentiating flight conditions using 

both sensors. 

 

4.3 CONFUSION MATRIX FOR QSVM MODEL 

Figure 11 and Figure 12 show the confusion matrix 

for QSVM for both positional camera and acceleration 

data, representing that the model correctly predicts most 

instances. Confusion Matrix provides a detailed 

information the efficiency of the classifier’s performance. 

Its purpose is to determine which of the two sensors has 

the better classifier performance based on the UAV flying 

condition in Table 1. Positive predictive value (PPV) and 

false discovery rate (FDR) are the common metrics to 

evaluate the classifier’s performance. A high PPV 

indicates the model correctly identifies the flying 

Classifier Train (%)  Test (%)

Quadratic SVM 87.5 78.13

Wide Neural Network 73.61 72.92

Kernel Naïve Bayes 72.92 72.92

Classifier Train (%)  Test (%)

Quadratic SVM 79.31 78.95

Wide Neural Network 63.79 52.63

Kernel Naïve Bayes 70.69 65.79

Acceleration Data

Position Data



Comparison of Classification Models and Accelerometer Sensors for VTOL UAV Flight Condition Detection 

 

745 

condition leading to efficient fault detection while a low 

FDR indicates fewer false positives, ensuring accurate 

diagnosis of flying conditions.  

The confusion matrix of the QSVM classifier for the 

acceleration sensor shows that the highest false discovery 

rate (FDR) was 25% for Group 1, and the highest score 

positive predictive value (PPV) was 100% for Group 5. 

 

 

Meanwhile, the confusion matrix of the QSVM 

classifier for the positional camera shows that the highest 

false discovery rate (FDR) was 66.7% for Group 1, and the 

highest score positive predictive value (PPV) was 100% 

for Groups 3, 5, and 7. Hence, the data for positional 

cameras and acceleration sensor shows that Group 5 had a 

100% PPV score. The prediction for acceleration data 

shows more accurate data prediction due to PPV and FDR 

percentage compared to the positional camera. 

 

 
 

Figure 11 QSVM Confusion Matrix for acceleration data 
 

 
 

Figure 12 QSVM Confusion Matrix for positional data 
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Data quality is a critical factor that significantly 

impacts a confusion matrix's effectiveness in evaluating a 

classification model's performance. High-quality data 

enhances the reliability of the confusion matrix, while 

poor-quality data can lead to misleading results and 

incorrect conclusions. Outliers are extreme values that 

differ significantly from most of the data. Outliers can 

distort the model's learning process, leading to poor 

performance and misclassifications. A machine vibration 

sensor might record an unusually high value due to a 

transient shock, affecting the model's accuracy. If some 

sensor readings are missing due to transmission errors, the 

model might fail to learn the correct patterns. 

 

4.4 QSVM SCATTER PLOT FOR ACCELERATION 

DATA 

Based on Figure 13 and Figure 14, the scatter plot 

results for the acceleration sensor data were shown.  

 

 

 
 

Figure 13 Scatter Plot in faulty propeller condition 

for acceleration data 

 

 

 

 

Figure 14 Scatter Plot in healthy propeller condition 

for acceleration data  

The scatter plot extracted from MATLAB was based 

on the three different conditions that contribute to the 

various patterns of the scatter plot. A scatter plot visualizes 

individual data points based on two variables. It assists in 

analyzing class separation and misclassification. The clear 

separation indicates that the classification effectively 

differentiates the UAV flying condition.   

Clusters in the context of scatter plots and data 

analysis refer to groups of data points that are closely 

packed together, suggesting that they have similar 

characteristics or share certain properties. A cluster is a 

collection of data points closer to each other in the feature 

space than points in other clusters. Based on the two 

selected features from the acceleration sensors data, the 

features contribute to a good class prediction due to 

obvious clusters produced in the scatter plot. 

However, the two selected features from the 

acceleration sensor data also contribute to outliers in the 

scatter plot. Outliers are points far away from the main 

cluster of data points that are outliers and may require 

special attention. Outliers are data points that differ 

significantly from most observations in a dataset. For 

instance, outliers can be from the variability in the data and 

measurement error. They can arise due to variability in the 

data, measurement errors, or other factors. Outliers can 

significantly impact statistical analyses and provide 

important insights into the data, but they can also distort 

results if not handled properly. Outliers are values 

significantly higher or lower than the rest of the data. 

Based on the figures above, the outliers are seen when 

there were plots outside its cluster. The outliers will 

contribute to a mismatch for the classifier to predict data 

into the correct class based on the two selected features in 

the scatter plot. 

 

4.5 CLASSIFICATION ACCURACY 

COMPARISON BETWEEN 

ACCELEROMETER SENSORS 

The performance evaluation of the classifier using the 

Confusion Matrix is based on PPV and FDR. According to 

Confusion Matrix for QSVM model in Figure 11, the 

group with load (Group 1 to Group 4) presents higher FDR 

percentage compared to the group without load (Group 5 

to Group 8). The group without load delivers better overall 

performance, making it more reliable for analysis due to 

its higher PPV and lower FDR. Therefore, the group 

without load was selected for the comparison between 

acceleration sensors. 

In this analysis, 4 groups will be classified using 

QSVM model as shown in Table 3. The classification 

accuracy analysis for both acceleration sensors is 

compared based on wind and propeller conditions. The 

total 3-minutes data consists of 4,800 samples from the 

ADXL345 and 88,000 samples from the iPhone SE 2020 

with a total duration of 12 minutes. 

Figure 15 shows that both training and testing 

accuracy of iPhone SE 2020 is higher than ADXL345 with 

difference of 4.67% for training and 5.06% for testing 

using QSVM model. Integration of the best classification 

model with higher specification acceleration sensor 
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significantly increases the training accuracy. 

 
Table 4 Group label for Classification Learner model 

accuracy comparison using different 
acceleration sensor 

 
 

Based on Table 4, the iPhone SE 2020 sensor has 

higher training and testing accuracy compared to the 

ADXL345, with train accuracies of 97.73% and 93.06%, 

and test accuracies of 94.64% and 89.58%, respectively. 

The ADXL 345 acceleration sensor can have its sampling 

time shortened to 30 seconds while maintaining good 

classification performance. In contrast, the iPhone SE 

2020 accelerometer can achieve high accuracy 

classification in a shorter 5 seconds sampling time. 

 

 
Figure 15 Comparison train and test accuracy using 

QSVM between acceleration sensors 

 

Table 4 Classification Learner Accuracy of Accelerations Sensors 

 

 

Figure 16 shows classification of four different group 

conditions recorded by iPhone SE 2020 acceleration 

sensor. The figure provides a clear separation in the plot, 

illustrating that the QSVM model is performing well in 

classifying the data points based on the extracted features. 

The blue points represent Group 1, the red points represent 

Group 2, the yellow points represent Group 3, and the 

purple points represent Group 4, as illustrated in the scatter 

plot. 

 

 
 

Figure 16 Scatter plot of acceleration sensor  

 

 

Based on the results, acceleration data recorded using 

iPhone SE 2020 acceleration sensor shows better 

performance to predict VTOL UAV flying conditions, with 

QSVM being the most effective classification model. By 

using the same model, it can be concluded that prediction 

accuracy improves with better accelerometers within 

shorter prediction time. 

 

V. CONCLUSIONS 

 
In this study, we developed and evaluated a 

classification model to detect multiple flight conditions of 

VTOL UAVs using data from accelerometer sensors, with 

a motion capture system included for comparison. After 

testing various machine learning models, including 

Quadratic Support Vector Machine (QSVM), Neural 

Networks, and Naive Bayes, the QSVM model was 

identified as the best-performing model. The results 

showed that acceleration data provided significantly 

higher accuracy compared to positional data, with an 

8.71% improvement in validation accuracy when using 

QSVM. The motion capture system was used to compare 

displacement data but showed lower classification 

accuracy than the accelerometer-based data. 

Subsequently, data from two accelerometers (iPhone 

SE 2020 and ADXL345) were used to further evaluate the 

QSVM model. The iPhone SE sensor demonstrated 

superior classification accuracy with 97.73% training 
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accuracy, compared to 93.06% for the ADXL345. 

However, the iPhone SE sensor was used primarily as a 

benchmark, as it is not intended for practical UAV onboard 

applications. The ADXL345 sensor, despite being a low-

cost alternative, delivered satisfactory performance, 

demonstrating that affordable sensors can still provide 

sufficient accuracy for UAV fault detection in real-world 

scenarios. 

The study emphasizes the potential for enhancing 

fault detection accuracy by using higher-resolution and 

more sensitive accelerometers, which could improve the 

detection of minor faults that might be missed by 

conventional sensors. Moreover, future work could 

explore advanced machine learning techniques, such as 

deep learning algorithms, to further refine classification 

accuracy. Additionally, the implementation of 

unsupervised learning algorithms for anomaly detection, 

such as autoencoders, isolation forests, and clustering 

methods, could help identify outliers and abnormal 

patterns in the acceleration data. Feature importance 

analysis will also guide optimal sensor placement and data 

collection strategies for UAV fault detection systems. 

By combining these approaches, UAV fault detection 

systems can be further optimized, leading to more accurate 

and effective early warning systems for improved UAV 

performance and reliability. 
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