IMMUNOCHEMISTRY AND MOLECULAR APPROACHES TOWARDS IDENTIFICATION OF MALAYSIAN CYPRINID HERPESVIRUS

By

SAMSON SOON MIN NGEN

Thesis Submitted in Fulfilment of the Requirement for the Degree of Doctor of Philosophy in the Faculty of Veterinary Medicine
Universiti Putra Malaysia

May 2001
Abstract of thesis submitted to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

IMMUNOCHEMISTRY AND MOLECULAR APPROACHES TOWARDS IDENTIFICATION OF MALAYSIAN CYPRINID HERPESVIRUS

By

SAMSON SOON MIN NGEN

May 2001

Chairman: Dr. Hassan Hj. Mohd. Daud, Ph.D

Faculty: Veterinary Medicine

Immunochemistry and molecular approaches were used to identify a Malaysian cyprinid herpesvirus responsible for papilloma among Koi carps (Cyprinus carpio L.) and goldfish (Carassius auratus L.) in Malaysia. Immunochemistry approaches employing hybridoma technology established a hybridoma clone (DG3-1) producing specific IgM κ light chain monoclonal antibody (MAb) against Malaysian cyprinid herpesvirus. The MAb was cross-reactive against Japanese cyprinid herpesvirus type 1 (CHV) antigens but not against Channel catfish herpesvirus (CCV) and Salmonid herpesvirus (SHV-2) in immunodot-blot assay. The cyprinid herpesvirus type-specific epitope recognised by the MAb was located on two viral polypeptides having the molecular weight of 58,000 and 67,000 daltons in Malaysian cyprinid herpesvirus and CHV through Western blot analysis. As the MAb showed no neutralization activity against virus infection in cell culture and glycosylation inhibitors did not affect the presence and migration of the antigens under polyacrylamide gel electrophoresis, evidences as such suggest the antigens are nonglycosylated components of the viral structure.
Immunohistochemical analysis on goldfish papilloma tissue sections with MAb using labeled avidin binding (LAB) method demonstrated specific staining of cyprinid herpesvirus antigens within the nucleus of infected cells. Specific localization of these viral antigens in the cell nuclei were consistent with reports of nonglycosylated herpesvirus antigens involving viral capsid components or DNA-binding proteins. Employing molecular techniques, cyprinid herpesvirus nucleic acid sequences were later confirmed to be present in the immunohistochemical positive papilloma sections through in situ hybridization assay using a 1,161 bp CHV nucleic acid probe.

Molecular identification by polymerase chain reaction (PCR) using CHV specific primers was extremely sensitive, specific, rapid and practical. The technique successfully amplified a 433 bp DNA fragment from frozen archival goldfish papilloma tissues and recent papillomas obtained from goldfish and carp hybrids. Nucleic acid sequencing of the DNA fragment revealed identical sequence homology with CHV, thus confirming conclusively that Malaysian cyprinid herpesvirus and CHV are members of the same group of virus. Detection sensitivity level as assessed with first step PCR, was capable of detecting viral nucleic acids from 1 fg or 200 copies of actual viral target sequences and from as low as 1-10 virus infected cells. Sensitivity level was increased 100-1000-fold when nested PCR strategy was employed. Specificity of detection evaluated by DNA fragment polymorphism demonstrated homologous DNA sequences among cyprinid herpesvirus representatives from Malaysia, Israel and Japan. A quantitative competitive PCR assay based on the current viral target sequence also provided quantitative description of infection and viral burden with preliminary results indicative of CHV possessing an alphaherpesvirus gene-like expression kinetics.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan bagi mendapatkan Ijazah Doktor Falsafah

PENDEKATAN IMUNOKIMIA DAN MOLEKUL DALAM PENGENALPASTIAN HERPESVIRUS CYPRINID MALAYSIA

Oleh

SAMSON SOON MIN NGEN

Mei 2001

Pengerusi: Dr. Hassan Hj. Md. Daud, Ph.D

Fakulti: Perubatan Veterinar

Kaedah imunokimia dan molekul telah digunakan dalam pengenalpastian herpesvirus cyprinid Malaysia, yang bertanggungjawab ke atas kejadian papiloma di dalam ikan koi (Cyprinus carpio L.) dan ikan emas (Carassius auratus L.) di Malaysia. Kaedah imunologi menggunakan teknologi hibridoma telah menghasilkan klon hibridoma (DG3-1) yang mengeluarkan antibodi monoklon (MAb) IgM dengan rantai \(\kappa \) yang spesifik terhadap cyprinid herpesvirus Malaysia. Antibodi monoklon menunjukkan reaksi saling terhadap antigen cyprinid herpesvirus type 1 (CHV) Jepun tetapi tidak terhadap Channel catfish herpesvirus (CCV) and Salmonid herpesvirus (SHV-2) dalam asel "immunodot-blot". Analisis “Western blot” mendedahkan bahawa epitope spesifik cyprinid herpesvirus yang dikenalpasti oleh MAb terletak pada dua polipeptida virus dengan berat molekul 58,000 and 67,000 dalton pada cyprinid herpesvirus Malaysia dan CHV. Oleh kerana MAb tidak menunjukkan neutralisasi terhadap jangkitan virus di dalam kultur tisu dan rawatan penyekat glikosilasi tidak mempengaruhi kehadiran dan migrasi antigen-antigen dalam elektrophoresis gel polyacrylamide, menunjukkan bahawa
antigen-antigen ini adalah komponen struktur teras virus yang terdiri dari polipeptida tidak berglikosilasi.

Analisis imunohistokimia ke atas keratan tisu papiloma ikan emas menggunakan teknik “Labeled Avidin Binding” (LAB) menunjukkan pewarnaan spesifik antigen cyprinid herpesvirus di dalam nukleus sel yang dijangkiti. Pengesanan antigen-antigen ini di dalam nukleus sel adalah selari dengan laporan mengenai antigen tidak berglikosilasi herpesvirus yang terdapat pada komponen kapsid virus dan protin pengikat DNA. Pendekatan teknik molekul terhadap keratan immunohistokimia papiloma yang positif menggunakan prob asid nukleik CHV bersaiz 1,161 bp dengan kaedah hibridisasi "in situ" turut menunjukkan kehadiran asid nukleik CHV.

Pengenalpastian melalui reaksi polimeras berantai (PCR) dengan primer spesifik CHV juga didapat sangat sensitive, spesifik, cepat dan praktikal. Kaedah ini berjaya menghasilkan fragmen DNA bersaiz 433 bp dari tisu papiloma yang dibekukan dan yang baru dari ikan emas dan kap hibrid. Penjukan asid nukleik menunjukkan homologi yang sama dengan CHV justeru mengesahkan bahawa MCHV dan CHV adalah virus yang sama. Sensitiviti pengesanan dengan PCR dengan teknik PCR tahap satu mampu mengesan asid nukleik CHV dari 1 fg atau 200 salinan sasaran jujukan asal virus dan dari 1-10 sel terjangkit. Sensitiviti pengesanan ini dapat dipertingkatkan 100-1000 kali ganda dengan kaedah PCR bersarang. Spesifsiti pengesanan PCR dengan kajian pecahan polimofisa DNA menunjukkan jujukan asid nukleik serupa di antara cyprinid herpesvirus dari Malaysia, Israel dan Jepun. Kaedah kuantitatifPCR berdasarkan sasaran jujukan virus PCR yang digunakan membolehkan gambaran kuantitatif terhadap tahap
jangkitan dan beban virus diselidiki, di mana keputusan awal menunjukkan bahawa
CHV memiliki expresi kinetik gen yang seakan sama dengan kumpulan
alphaherpesvirus.
ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to my committee chairman, Dr. Hassan Haji Mohd Daud for his suggestions and support throughout the completion of this program. To Professor Dr. Mohamed Shariff Mohamed Din, thank you for the constant encouragement and guidance. I'm also indebted, as you have provided the vital link with the Tokyo University of Fisheries that allowed this project to be completed. I would also like to extend my heartfelt appreciation to Associate Professor Dr. Abdul Manaf Ali for his valuable suggestions, advice and hands-on commitment in the establishment of the hybridoma clones in this research project. My gratitude also goes to Professor Dr. Hideo Fukuda from the Tokyo University of Fisheries for the CHV samples and his important assistance on CHV molecular biology. My sincere appreciation as well to Professor Dr. Ilan Paperna of the Hebrew University for providing papilloma samples from Israel used in the current work. I am likewise grateful to Associate Professor Dr. Khatijah Yusoff for her valuable discussions on molecular methodologies in the present research.

Special thanks are accorded to my colleagues, Dr. Tan Lee Tung and Dr. Lee Kok Leong for their excellent technical assistance during the course of my work. It has been a great honor and pleasure to work with the both of you. Let's continue this dynamic partnership and anticipate what the future will hold for us. My sincere thanks also to Mr. Wang Yin Geng for his excellent viewpoints on scientific matters pertaining to aquatic animal health. With all my heart, I thank you and Chen Xia for the moral and technical supports both of you have given me all these years. To Mr. T.N. Devaraj, Dr. Najiah Musa and Ms. Abeer Al-Sahtout, I will forever cherish your friendships.
To my family, thank you for your undivided love and support throughout these years. As I strived to excel in giving the best I could in my work and on other academic projects, your acceptance of me has always been for who I am and not for what I have accomplished. To my parents, Joseph and Lucy, I love you both dearly as I know I have been away from home far too long. Thank you for your patience. To my brother, Dr. Jeffrey Soon, your constant inspiration and strength will forever remain in my heart as it has seen me through some very difficult times. To my sister-in-law, Pauline, thank you for being there when the going was rough. To God I give all Praise and Glory. Thank You for the second chance. Loving you Joanne, with all my heart.
I certify that an Examination Committee met on 2nd May 2001 to conduct the final examination of Samson Soon Min Ngen on his Doctor of Philosophy thesis entitled “Immunochemistry and Molecular Approaches Towards Identification of Malaysian Cyprinid Herpesvirus” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Dr. Mohd. Azmi Mohd. Lila, Ph.D,
Associate Professor,
Faculty of Veterinary Medicine,
Universiti Putra Malaysia.
(Chairman)

Dr. Hassan Hj. Mohd. Daud, Ph.D,
Faculty of Veterinary Medicine,
Universiti Putra Malaysia.
(Member)

Dr. Mohamed Shariff Mohamed Din, Ph.D,
Professor,
Faculty of Veterinary Medicine,
Universiti Putra Malaysia.
(Member)

Dr. Abdul Manaf Ali, Ph.D,
Associate Professor,
Faculty of Food Technology and Biotechnology.
(Member)

Dr. Momuro Yoshimizu, Ph.D,
Professor,
Faculty of Fisheries,
Hokkaido University.
(Independent Examiner)

\[\begin{align*}
\text{MOHD. GHAZALI MOHYIDIN, Ph.D, } \\
\text{Professor/Deputy Dean of Graduate School, } \\
\text{Universiti Putra Malaysia.}
\end{align*}\]

Date: 22 JUN 2001

9
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy.

AINI IDERIS, Ph.D,
Professor,
Dean of Graduate School,
Universiti Putra Malaysia.

Date: 12 JUL 2001
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

Date: 21st June 2001

SAMSON SOON MIN NGEN
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>2</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>4</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>7</td>
</tr>
<tr>
<td>APPROVAL SHEETS</td>
<td>9</td>
</tr>
<tr>
<td>DECLARATION FORM</td>
<td>11</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>12</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>15</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>16</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>24</td>
</tr>
</tbody>
</table>

CHAPTER

I GENERAL INTRODUCTION

II LITERATURE REVIEW
- Common Properties of Herpesviruses | 28 |
- Herpesvirus Classification | 33 |
- Fish Herpesviruses | 34 |
- Carp Pox | 35 |
- General Properties of *Herpesivirus cyprini* | 36 |
 - Biophysical and Biochemical Properties | 37 |
 - Pathogenicity and Oncogenicity | 38 |
 - Cyprinid Herpesvirus Latency | 39 |
- General properties of a Cyprinid Herpesvirus Isolated in Malaysia | 40 |
- Immunochemical Approaches in the Identification of Fish Viruses | 41 |
 - Application of Monoclonal Antibodies in Fish Herpesvirus | 42 |
 - Identification and Antigenic Characterization | 43 |
- Molecular Approaches in the Identification of Fish Viruses | 44 |
 - Detection of Viral Genetic Sequences with Nucleic Acid Probes | 45 |
 - Amplification and Characterization of Virus Nucleic Acids using PCR | 46 |
- Research Constraints | 47 |

III DEVELOPMENT OF MONOCLONAL ANTIBODIES AGAINST MALAYSIAN CYPRINID HERPESVIRUS
- Material and Methods | 50 |
 - Virus Production and Quantification in Cell Culture | 51 |
 - Recovery and Purification of Virus from Infected Cell Cultures | 52 |
 - Immunization of Donor Animals | 53 |
 - Generation of Murine Hybridoma cells | 54 |
 - Cell Fusion | 55 |
 - Hybridoma Selection and Cloning | 56 |
 - Antibody Screening for Malaysian Cyprinid Herpesvirus | 57 |

IV CHARACTERIZATION OF A MONOCLONAL ANTIBODY AGAINST CYPRINID HERPESVIRUS ANTIGENS

Material and Methods
- Determination of Antibody Isotype and Neutralization of Infection
- Hybridoma Growth and Antibody Production Properties
- Cross- Reactive Immunodot Assay on Fish Herpesviruses using MAb DG3-1
- Virus Protein Analysis using Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE)
- Identification of Viral Immunogenic Proteins with Western Blot Assay

Results
- Isotype Determination and Neutralization Results of MAb DG3-1
- Hybridoma Growth and MAb Production
- Monoclonal Antibody DG3-1 is Specific Against Cyprinid Herpesvirus Antigens
- Viral Protein analyses
- Cyprinid Herpesvirus Antigens Recognized by MAb

Discussion

V DETECTION OF CYPRINID HERPESVIRUS IN GOLDFISH (Carassius auratus L.) PAPILLOMA VIA IMMUNOHISTOCHEMISTRY AND IN SITU HYBRIDIZATION

Material and Methods
- Preparation of Goldfish Carp Pox-like lesions for Immunohistochemical Analyses
- Immunohistochemical Detection of Cyprinid Herpesviral Antigens with MAb DG3-1 via Labeled Avidin Binding (LAB) Method
- CHV Nucleic Acid Probe Preparation
- Synthesis of Biotin-labeled Nucleic Acid Probe by Random Priming Technique
- In situ Hybridization Procedure and Detection
Results 144
Immunohistochemical Detection of Cyprinid Herpesviral Antigens in Goldfish Papilloma Lesions 144
CHV Nucleic Acid Probe Generation 146
In situ Hybridization and Detection of CHV Nucleic Acid Sequences in Goldfish Papilloma 149
Discussion 153

VI MOLECULAR DETECTION AND QUANTITATION OF CYPRINID HERPESVIRUS NUCLEIC ACIDS WITH THE POLYMERASE CHAIN REACTION 165
Material and Method 170
Preparation of Nucleic Acid Templates for PCR Amplification 170
Amplification of Viral DNA by the PCR process 172
Analysis of PCR Products by Agarose Gel Electrophoresis 175
Molecular Cloning and Nucleotide Sequencing of PCR Amplified 433 bp DNA Fragment from Goldfish Papilloma 175
Sensitivity of PCR Amplification 178
Specificity of PCR Amplification 179
Quantitative Analysis of Amplified CHV Target Sequence by Competitive PCR 180
Development and Construction of Competitive Template 181
Competitive Quantitative PCR of CHV Infection in FHM Cell Culture 184
Results 186
Detection of Cyprinid Herpesviral DNA by PCR Amplification 186
Molecular Cloning and Nucleotide Sequencing of Amplified PCR product 188
Sensitivity of PCR Amplification 195
Specificity of PCR Amplification 207
Establishment of Quantitative PCR 216
Quantitative PCR Analysis of CHV Infection in FHM Cells 222
Discussion 225

VII GENERAL CONCLUSIONS 250
BIBLIOGRAPHY 261
BIODATA OF THE AUTHOR 282
LIST OF TABLES

<table>
<thead>
<tr>
<th>Tables</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hybridoma seeded wells containing antibodies against Malaysian cyprinid herpesvirus, 12 days after cell fusion</td>
</tr>
<tr>
<td>2</td>
<td>The ELISA reactivity results of two hybridoma clones after first limiting dilution</td>
</tr>
<tr>
<td>3</td>
<td>Isotype determination of MAb DG3-1</td>
</tr>
<tr>
<td>4</td>
<td>Summary of viral polypeptide molecular weights as determined by SDS-PAGE involving three polyacrylamide gel concentrations</td>
</tr>
<tr>
<td>5</td>
<td>The PCR primers used in the present study</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figures</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Purine biosynthesis salvage pathway</td>
</tr>
<tr>
<td>2</td>
<td>The general scheme in monoclonal antibodies production</td>
</tr>
<tr>
<td>3</td>
<td>A cluster of Malaysian cyprinid herpesvirus naked viral particles. Bar = 100 nm</td>
</tr>
<tr>
<td>4</td>
<td>Icosahedral Malaysian cyprinid herpesvirus particles. Bar = 100 nm</td>
</tr>
<tr>
<td>5</td>
<td>Antibody titer levels in mice eight weeks after initial challenge</td>
</tr>
<tr>
<td>6</td>
<td>One day old single hybridoma cell after cloning by limiting dilution</td>
</tr>
<tr>
<td>7</td>
<td>Division of a hybridoma cell after two days in culture</td>
</tr>
<tr>
<td>8</td>
<td>Hybridoma cells after five days of culture</td>
</tr>
<tr>
<td>9</td>
<td>High density growth of hybridoma cells after 14 days of culture</td>
</tr>
<tr>
<td>10</td>
<td>Percentage of wells screened having optical density readings above control baseline level following second limiting dilution</td>
</tr>
<tr>
<td>11</td>
<td>Cell viability of hybridoma clone DG3-1 under stir batch culture condition. SEM of three replicates</td>
</tr>
<tr>
<td>12</td>
<td>Cell viability of hybridoma clone DG3-1 under static culture condition. SEM of three replicates</td>
</tr>
<tr>
<td>13</td>
<td>Cell viability percentages of both static and stir batch culture over a period of seven days</td>
</tr>
<tr>
<td>14</td>
<td>Growth curve and antibody production level of hybridoma clone DG3-1 under stir batch culture condition</td>
</tr>
<tr>
<td>15</td>
<td>IgM production level of hybridoma clone DG3-1 under stir batch culture condition over a period of seven days. SEM of three replicates</td>
</tr>
</tbody>
</table>
16 Immunodot assay results of infected and non-infected cell culture medium.
Lane 1-2: CHV infected cell culture supernatant; A1: 20 μL; A2: 40 μL; B1: 60 μL; B2: 80 μL.
Lane 3: CCV infected cell culture supernatant; A3: 20 μL; B3: 60 μL.
Lane 4: SHV-2 infected cell culture supernatant; A4: 20 μL; B4: 60 μL.
Lane 5: FHM non-infected cell culture medium; A5: 20 μL; B5: 60 μL.
Lane 6: BB non-infected cell culture medium; A6: 20 μL; B6: 60 μL.
Lane 7: Immunodot blot positive control; MAb DG3-1; A7, B7: 60 μL.
Lane 8: Immunodot blot negative control; TBS buffer; A8, B8: 60 μL.

17 SDS-PAGE analysis of purified Malaysian cyprinid herpesvirus using a 12% polyacrylamide gel stained with silver. Lane 1: molecular weight markers electrophoresis; Lane 2: electrophoresis of viral polypeptides with Vp nomenclature on the right.

18 Western blot analysis of MAb DG3-1 on purified Malaysian cyprinid herpesvirus. Lane 1: Molecular weight markers; Lane 2: Detection of Malaysian cyprinid herpesvirus antigens by MAb DG3-1.

19 SDS-PAGE of CHV infected cell extracts. Lane 1: Protein ladder; Lane 2: Non-infected cell extracts; Lane 3: CHV infected cell lysates; Lane 4: Infected medium (clarified).

20 Western blot analysis of MAb DG3-1 on infected FHM cell extracts. Lane 1: Molecular weight markers; Lane 2: Detection of CHV antigens by MAb DG3-1.

21 The unaffected relative mobility of the antigens after tunicamycin and monensin treatments.

22a A goldfish (Carassius auratus L.) showing several papillomatous lesions on the body.

22b A goldfish showing a papilloma near the dorsal fin.

23 Immunohistochemical detection of cyprinid herpesviral antigens in fixed, paraffin embedded goldfish papilloma section. Section was probed with MAb DG3-1 without counterstaining. Note the localization of the red dots within infected nuclei. x 350.

24 Immunohistochemical assay control involving sequential layer omission of primary or secondary antibody, counterstained with contrast BLUE. Note the enlarged nuclei of infected cells in the papilloma. x 350.
25 Immunohistochemical detection of CHV antigens with MAb DG3-1, counterstained in contrast BLUE. Note the specific reaction of the antibody within infected cell nuclei. x 350

26 Nucleic acid region of CHV fragment 3 employed for nucleic acid probe development. Primer probes for DNA probe generation are underlined

27 Development of PCR amplified CHV DNA probe. Lane 1: 1000 bp PCR amplicon size standard; Lane 2: PCR amplified CHV DNA fragment; Lane M: 100 bp DNA size marker with orientation band at 600 bp. Size of DNA given in base pairs (bp)

28 Presence of weak in situ hybridization signal under short proteolytic digestion duration in papilloma section probed with biotin-labeled CHV DNA probe (100 ng/mL). x 350

29 Detection by in situ hybridization of CHV DNA in infected nuclei of papilloma cells using 50 ng/mL biotin-labeled DNA probe. x 700

30 In situ hybridization of CHV DNA in infected nuclei of papilloma cells using 100 ng/mL biotin-labeled DNA probe. x 350

31 Detection by in situ hybridization of CHV DNA in infected nuclei with 250 ng/mL biotin-labeled CHV probe. Note the higher hybridization signal intensity. x 350

32 Absence of in situ hybridization signal following the omission of CHV nucleic acid probe from hybridization solution. x 175

33 The PAP complex is comprised of horseradish peroxidase bound to an anti-peroxidase antibody generated in the same species as the primary antibody, which recognized the antigen of interest. The primary antibody and the PAP complex are linked via a secondary antibody generated in a second animal species against immunoglobulin of the primary animal species (Bratthauer, 1994)

34 In the ABC procedure, the primary antibody against the antigen of interest is linked to the avidin-biotinylated peroxidase complex via a biotinylated secondary antibody raised against immunoglobulin of the animal species used to generate the primary antibody (Bratthauer, 1994)
35 The LAB procedure. Horseradish peroxidase or alkaline phosphatase is covalently linked to avidin. The primary antibody against the antigen is linked to the enzyme-labeled avidin complex (LAB) via a biotinylated secondary antibody raised against immunoglobulin of the animal species used to generate the primary antibody. CCC, long carbon extension arm (Brathauer, 1994)

36 Schematic diagram on the construction of the mutant competitor standard for quantitative PCR

37 Agarose gel electrophoresis of PCR fragments amplified from archival goldfish papilloma tissue using primer set CHV1/CHV2. M: 50 bp DNA size markers with orientation band at 350 bp; Lane 1: Distilled water; Lane 2: CHV infected cell lysate; Lane 3: Goldfish papilloma tissue. Arrow indicates the target fragment with the expected size. Note also the presence of nonspecific amplification products

38 Result of PCR re-amplification of excised target fragment. M: 50 bp DNA size marker with orientation band at 350 bp; Lane 1-2: re-amplified gel purified target fragment

39 The promoter and multiple cloning sequence of pGEM-T Easy vector

40 Rapid colony PCR screening of 10 transformed white colonies. M: 50 bp DNA size marker; Lane 1-10: plasmid clones carrying cloned PCR products; Lane 11: plasmid clone from a blue colony

41 Estimation of plasmid amount and quality after miniprep isolation. M: DNA size markers; Lane 1-5: isolated plasmid. Size of DNA markers are indicated in kilobase pairs (bp)

42 Digestion of plasmid with NotI restriction enzyme to verify presence of insert. M: DNA size markers; Lane 1-5: restriction enzyme digested plasmid clones. Note the release of cloned target

43 Nucleic acid sequencing results of MCHV 433 bp fragment cloned in pGEM-T Easy plasmid using SP6 sequencing primers (clone 1)

44 Nucleic acid sequencing results of MCHV 433 bp fragment cloned in pGEM-T Easy plasmid using T7 sequencing primers (clone 2)

45 Nucleic acid sequencing results of MCHV 433 bp fragment cloned in pGEM-T Easy plasmid using SP6 sequencing primers (clone 2)
Location of first step and nested primers within target region of CHV fragment No.1 (Yamamoto et al., pers. comm.)

PCR construction of the 800 bp templates for densitometric quantification with identical size known standards. M: 50 bp DNA size marker; Lane 1: PCR constructed 800 bp template containing wild-type sequence; Lane 2: PCR constructed 800 bp template containing mutant competitor sequence

Densitometric quantification of PCR constructed templates with standards series of known amounts. Note that both standards and target templates are identical in size. Lane 1: 32 ng; 2: 30 ng; 3: 25 ng; 4: 20 ng; 5: 15 ng; 6: wild-type sequence template; 7: mutant competitor sequence template

Sensitivity of PCR amplification of CHV 433 bp target sequence at 55°C annealing temperature under various Mg²⁺ concentration; (a) 1.5 mM, (b) 2.0 mM, (c) 2.5 mM. M: 50 bp DNA size marker; Lane 1-5: quantified actual CHV target sequence; 1: 1 pg; 2: 100 fg; 3: 10 fg; 4: 1 fg; 5: 100 ag. Note the presence of nonspecific amplification at low target sequence amount

Sensitivity of PCR amplification of CHV 433 bp target sequence at 60°C annealing temperature under various Mg²⁺ concentration; (a) 1.5 mM, (b) 2.0 mM, (c) 2.5 mM. M: 50 bp DNA size marker; (b) Lane 1-5: quantified actual CHV target target sequence; 1: 1 pg; 2: 100 fg; 3: 10 fg; 4: 1 fg; 5: 100 ag. Note the strong PCR amplification signal at Mg²⁺ 2.0 mM

First step PCR amplification of CHV 433 bp target sequence. M: 50 bp DNA size marker; Lane 1-9: quantified CHV target sequence; 1: 100 pg; 2: 10 pg; 3: 1 pg; 4: 100 fg; 5: 10 fg; 6: 1 fg; 7: 100 ag; 8: 10 ag; 9: 1 ag; 10: distilled water

Nested step PCR amplification of a CHV 310 bp target sequence. M: 50 bp DNA size marker; Lane 1-9: quantified CHV target sequence; 1: 100 pg; 2: 10 pg; 3: 1 pg; 4: 100 fg; 5: 10 fg; 6: 1 fg; 7: 100 ag; 8: 10 ag; 9: 1 ag; 10: distilled water. Note the appearance of first step PCR amplicons due to excessive product carry-over

PCR amplification of CHV 433 bp target sequence using 0.1 μM first step primers. Lane 1-4: quantified CHV target sequence; 1: 1 fg; 2: 100 ag; 3: 10 ag; 4: 1 ag; Lane 5: distilled water
Nested PCR amplification of a CHV 310 bp nested sequence with first step PCR products. Lane 1-4: quantified CHV target sequence; 1: 1 fg; 2: 100 ag; 3: 10 ag; 4: 1 ag; Lane 5: distilled water

First step PCR assay using crude lysate of virus-infected cells as targets. Lane 1-7: virus-infected cell lysates; 1: 10⁶ cells; 2: 10³ cells; 3: 10² cells; 4: 10 cells; 5: 1 cell; 6: 0.1 cell; 7: 0.01 cell

Re-amplification of first step products by nested step PCR assay of crude virus-infected cell lysates. Lane 1-7: virus-infected cell lysates; 1: 10⁴ cells; 2: 10³ cells; 3: 10² cells; 4: 10 cell; 5: 1 cell; 6: 0.1 cell; 7: 0.01 cell

Detection of CHV DNA from goldfish paraffin embedded papilloma section using first step and nested PCR assay. M: 50 bp size marker; Lane 1: distilled water; Lane 2-3: first step PCR results; Lane 4: distilled water; Lane 5-6: detection of CHV 310 bp nest fragment

Detection of CHV by PCR amplification in papilloma samples from three countries. Lane M: 50 bp DNA size marker; Lane 1: Malaysia; Lane 2: Israel; Lane 3: Japan; Lane 4: distilled water

Restriction fragment profiles of CHV 433 bp PCR product amplified from three geographical regions cleared with (a) SmaI, (b) EcoNI, (c) HaeIII, (d) Fnu4HI. Lane M: 50 bp DNA size marker; Lane 1: Malaysia; Lane 2: Israel; Lane 3: Japan

A goldfish (Carassius auratus L.) showing a papilloma at the base of dorsal fin

A goldfish (Carassius auratus L.) showing an epidermal papilloma at antero-dorsal region

A goldfish-carp hybrid "comet" showing several papilloma nodules of various sizes on the skin (a) Side view of the specimen showing five papilloma growth on the body; (b) A close up view of the same specimen. Note the large papilloma near the dorsal region and along the lateral line of the fish

Detection of CHV DNA by nested PCR assay in papilloma tissues from four field samples (two goldfish and two hybrids) by nested PCR assay. M: 50 bp DNA size marker; Lane 1-4: field samples; Lane 5: distilled water
Digestion of the nested PCR products with SmaI restriction enzyme. M: 50 bp DNA size marker; Lane 1-4: field samples; Lane 5: distilled water.

Electron micrograph of papilloma section showing herpesvirus nucleocapsids in cell nuclei. x 50,000

Intranuclear accumulation of electron dense nucleocapsids within the nucleus of infected cells. x 50,000

Clusters of intranuclear electron dense nucleocapsids in infected cell nucleus. x 50,000

Electron micrograph of papilloma section showing herpesvirus nucleocapsids in cell nuclei. x 50,000

Electron micrograph of papilloma section showing herpesvirus nucleocapsids in cell nuclei. x 50,000

Clusters of intranuclear electron dense nucleocapsids in infected cell nucleus. x 50,000

Enveloped virions within cytoplasmic vacuoles of infected cells. x

Location of NcoNI restriction sites in the wild-type CHV 433 bp sequence

Construction of competitor template for quantitative PCR. M: 50 bp DNA size marker; Lane 1: CHV infected cell lysate; Lane 2: wild-type sequence plasmid; Lane 3: mutant competitor plasmid with an internal 66 bp wild-type sequence deletion

Visualization of heteroduplex molecules migrating slower than the 433 bp fragment after co-amplification of a constant number of wild-type template with decreasing amount of mutant competitor copy number

Co-amplification of 2.1 x 10³ copies of CHV wild-type sequence template with decreasing copy number of CHV mutant competitor template. M: 50 bp DNA size marker; Lane 1-6: 3.5 x 10⁵, 1.75 x 10⁵, 3.5 x 10⁴, 1.75 x 10⁴, 3.5 x 10³, and 1.75 x 10³ respectively; Lane 7: distilled water

Co-amplification of 2.1 x 10⁴ copies of CHV wild-type sequence template with decreasing copy number of CHV mutant competitor template. M: 50 bp DNA size marker; Lane 1-6: 3.5 x 10⁵, 1.75 x 10⁵, 3.5 x 10⁴, 1.75 x 10⁴, 3.5 x 10³, and 1.75 x 10³ respectively; Lane 7: distilled water

Generation of standard curve formula using log ratio WT/cCT against log number of mutant competitor molecules challenged with a) 2.1 x 10³ wild-type sequence molecules and b) 2.1 x 10⁴ wild-type sequence molecules
Quantitative PCR results of CHV infection in FHM cells over a period of eight days. SEM of three replicates
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC</td>
<td>Avidin-biotin complex</td>
</tr>
<tr>
<td>ABTS</td>
<td>2,2'-Azino-di-(3-ethyl-benzthiazoline-6)</td>
</tr>
<tr>
<td>ag</td>
<td>Attogram</td>
</tr>
<tr>
<td>BB</td>
<td>Brown Bullhead</td>
</tr>
<tr>
<td>BCIP</td>
<td>Bromochloroindolyl phosphate</td>
</tr>
<tr>
<td>bp</td>
<td>Base pairs</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>CCV</td>
<td>Channel Catfish Virus</td>
</tr>
<tr>
<td>CHV</td>
<td>Cyprinid Herpesvirus</td>
</tr>
<tr>
<td>cm²</td>
<td>Centimeters square</td>
</tr>
<tr>
<td>CPE</td>
<td>Cytopathic Effect</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>CPCR</td>
<td>Competitive Polymerase Chain Reaction</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>EPC</td>
<td>Epithelioma Papulosum Cyprini</td>
</tr>
<tr>
<td>EHV-1</td>
<td>Equine Herpesvirus Type One</td>
</tr>
<tr>
<td>EHV-2</td>
<td>Equine Herpesvirus Type Two</td>
</tr>
<tr>
<td>EHV-4</td>
<td>Equine Herpesvirus Type Four</td>
</tr>
</tbody>
</table>