
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage : www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON

INFORMATICS
VISUALIZATION

A Systematic Literature Review on Characteristics Influencing

Software Reliability

Lehka Subramanium a,*, Saadah Hassan a, Mohd. Hafeez Osman a, Hazura Zulzalil a
a Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia

Corresponding author: *GS59140@student.upm.edu.my

Abstract—Reliability, as a non-functional requirement, is a crucial aspect that refers to the system's ability to perform its intended

functions consistently and without failure over an extended period. It is essential in designing and implementing software systems, as it

affects software quality. Maintaining software reliability is a significant challenge, as it is directly impacted by factors such as the

complexity of the software design, the amount of code, and the measures taken to secure the system from unauthorized use. There are

significant growing appeals for predicting reliability to account for risks. Research on reliability risk assessment has a long tradition;

unfortunately, comprehensible reliability characteristics are still vague when determining potential risks. Clearly defining, prioritizing,

and addressing reliability characteristics is essential for delivering reliable, high-quality software that meets user needs and business

goals. The ignorance and lack of comprehensive reliability characteristics have evolved into inaccurate risk assessment, triggering

malfunctions in the operational environment. Comprehensive characteristics are key elements to predict and estimate software

reliability. The reliability characteristics could determine the precise objective of reliability efforts. This systematic literature review

aims to identify the key characteristics influencing software reliability, the potential risks associated with these characteristics, and the

metrics used to measure and assess them. Thirty-one research articles related to research questions have been reviewed. The findings

indicate that comprehensive reliability characteristics could identify, classify, and prioritize potential risks, improving current metrics.

It can be concluded that the accurate potential reliability risk can demonstrate the consequence of failure.

Keywords—Reliability; characteristics; risk; metrics; systematic literature review.

Manuscript received 11 Dec. 2023; revised 17 Apr. 2024; accepted 25 Oct. 2024. Date of publication 31 Dec. 2024.

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Recent research has highlighted the challenges of
predicting software reliability as a non-functional requirement

due to varying workloads, user behaviors, and operational

conditions [1]. Traditional models often fail to capture the

complexity of modern systems, leading to unreliable

predictions [2]. Poor reliability predictions can result in

unexpected downtimes, unplanned maintenance, and costly

post-deployment fixes. On the other hand, reliability models

require extensive failure data for accurate predictions, but

gathering this data, especially in the early stages of

development, is often difficult. Insufficient data leads to

unreliable models and less confidence in reliability estimates
[3]. Furthermore, many organizations lack robust

methodologies for assessing risks related to reliability during

early design and development stages. This results in unforeseen

issues during later stages, including production [4].

The lack of well-defined reliability characteristics is a root

cause that exacerbates reliability problems across multiple

stages of software development and operations.

Organizations cannot effectively identify and mitigate risks

without clearly understanding the specific reliability
characteristics critical to the system. This leads to

unforeseen issues during operations, particularly under

stressful conditions [2]. This is a complex challenge, and

simplifying it requires transparent reliability characteristics

to synthesize suitable applications, methodologies, and risk

assessment [2]. For instance, in safety-critical applications,

software reliability is paramount. Attributes like fault

tolerance and robustness are crucial to prevent catastrophic

failures that could lead to injury or loss of life. Without a

shared understanding of “reliable” software, developers,

testers, and stakeholders may have different interpretations,

leading to confusion and misaligned priorities [3].
Furthermore, if the characteristics are not well defined,

measuring them objectively and tracking progress toward

2344

JOIV : Int. J. Inform. Visualization, 8(4) - December 2024 2344-2353

achieving them becomes challenging. The challenges make it

difficult to assess the software's reliability risk and identify

areas for improvement [5]. Consequently, a lack of evident

reliability characteristics makes it difficult to establish

consistent metrics and monitoring practices [6], [7]. Different

teams might focus on different metrics, leading to fragmented

and potentially misleading views of reliability. Relatively,

with clear reliability characteristics and accurate risk

forecasts, these metrics can measure resource allocation,

testing strategies, and release readiness decisions [3].
Therefore, developers can monitor the effectiveness of their

efforts to improve software quality [8].

A Systematic Literature Review (SLR) is conducted in

response to these challenges to provide a comprehensive

overview of reliability characteristics, associated risks, and

relevant metrics. The contributions of this work include (i) a

classification of reliability-related quality characteristics, (ii)

the identification and characterization of potential reliability

risks as described in system engineering, and (iii) the

identification of existing metrics for concrete measurement of

these characteristics.
The structure of this paper is as follows: Section II presents

the motivation of this research; Section III discusses the

related works. Section IV discusses the methodology

protocols. Consequently, section V presents the findings and

discussions, and section VI illustrates the conclusion. Many

quality models recognize reliability as a key aspect of overall

software quality [9], [4], [5], [6]. Despite continuous research

and adherence to existing standards, challenges in ensuring

software reliability persist, often due to inadequately defined

reliability characteristics [7], [10]. When these characteristics

are not clearly articulated, controlling potential risks becomes
difficult, leading to negative effects.

Thus, this study aims to thoroughly investigate software

reliability characteristics, associated risks, and relevant

metrics. The contributions of this research have significant

implications for ongoing reliability efforts across the industry.

The following key reasons drive the motivation for this work:

a. Enhanced System Robustness: Understanding

reliability characteristics helps identify strengths,

weaknesses, and vulnerabilities, facilitating the

development of more robust and resilient systems.

b. Addressing Emerging Challenges: New reliability

challenges arise as software systems evolve and grow
more complex. Research in this area is crucial for

devising innovative solutions and techniques tailored to

specific characteristics, ensuring the reliability of next-

generation software.

c. Advancing Software Engineering: Investigating

software reliability characteristics advances the field of

software engineering by deepening our understanding

of metrics essential for creating dependable software

systems.

Investing in this research will enable developing more

reliable and trustworthy software systems better equipped to
meet modern applications' increasing demands and

complexities.

II. MATERIALS AND METHOD

There have been numerous studies to investigate the

significance of reliability engineering [11], [12], reliability

metrics [2], risk assessments [13], [14], reliability prediction

and evaluation [3], [4], [15], [16], [12] and reliability

assurance [17], [18]. In the context of this literature review, a

few papers that do not present novel approaches will be

discussed, yet the papers are relevant in this scope of

reliability. Existing fundamental works on reliability provide

the foundational concepts of reliability in quality models [9],

[19], [20]. Hovorushchenko [9] evaluates various software

quality models, including the McCall, Boehm, Dromey,

FURPS, ISO 9126, ISO 25010, Bertoa, and GEQUAMO
models. ISO 25010 is the most comprehensive quality model

compared to others [20]. In this research, we have used the

ISO 25010 quality model to classify the quality attributes.

Many studies have been recorded on the characteristics of

quality attributes [21], [9], [22], [23], [24]. Although different

studies yielded varying reliability characteristics, the common

aim is to determine the pattern of reliability characteristics.

From the literature review, we discovered that the significant

characteristics are recoverability, maturity, fault tolerance,

and availability. Each characteristic plays a distinct role in

addressing reliability challenges through targeted risk
assessment techniques. The significant reliability

characteristics could identify potential challenges, anticipate

failures, and implement appropriate migration strategies at

different stages. Richard et al. [13] induced the relationship

between reliability and probabilistic risk assessment. Next,

Zhang proposed a field product reliability risk assessment by

initiating a quantitative risk assessment for field products

[25]. On the other hand, Neha and Kirti emphasize the

complexity of estimating reliability in Service-Oriented

Architectures due to their interconnected nature. The authors

identify four key factors significantly influencing SOA
reliability [26]. Likewise, Yacoub et al. [9] made a seminal

contribution by proposing a methodology for assessing

reliability risk at the architectural level, which is the early

phases of the development lifecycle using complexity factors.

While numerous studies have proposed risk assessment

techniques for specific domains like power grids, component-

based systems, and even for different phases of the software

development life cycle (SDLC), there is a noticeable gap in

research that explicitly aligns risk assessment with key

reliability characteristics. Despite the broad range of existing

approaches, few studies delve into how specific reliability

characteristics contribute to comprehensive risk assessment
across all SDLC phases. For instance, while fault tolerance is

critical in high-availability systems, there is limited guidance

on assessing risks associated with insufficient fault tolerance

[16]. Recoverability, maturity, and availability are similarly

underrepresented in risk assessment models. Current methods

often treat these characteristics as secondary considerations

rather than focal points, leading to assessments that may not

fully capture the risks impacting overall reliability.

The relationship between metrics and reliability risk

assessment is symbiotic. Metrics provide the quantitative

foundation for precise, data-driven risk assessments, while
effective risk assessment models rely on relevant and accurate

metrics to identify, prioritize, and mitigate potential threats to

system reliability [25]. Together, they enable a structured

approach to achieve and maintain high levels of reliability in

software systems [4]. Baybulatov and Promyslov [5]

discussed an Availability Risk Assessment metric. They used

2345

industrial automation and control systems (IACS) security as

the basement to evaluate the risk. Apart from this, research in

2010 by Quyoum et al. [27] listed fundamental metrics based

on product, process, project management, and fault and

failure metrics tailored to reliability as the baseline reference.

When risk assessment models do not prioritize these

reliability characteristics, the metrics derived from such

assessments may fail to measure a system's true risks

accurately. For instance, a metric designed to measure fault

tolerance might not consider the full range of failure
scenarios, leading to an overly optimistic view of system

reliability. In conclusion, there is a clear need for research that

combines reliability characteristics, risks, and metrics in a

structured and integrated manner. Such research will result in

optimum reliability research efforts applied across diverse

software systems, providing actionable metrics that drive

better reliability outcomes [6].

A comprehensive Systematic Literature Review (SLR)

methodology is conducted to thoughtfully and concretely

address the formulated questions [10]. The sequential phases

of the SLR protocol are establishing research questions,

database selection, defining search strategy, determining

inclusion and exclusion criteria, evaluating quality criteria,
snowballing, and doing metadata analysis. The processes that

make up our SLR design are depicted in Fig 1.

Fig. 1 SLR Design Procedure

A. Research Questions

Research questions (RQ) help organize the collection of

references, define study parameters, and direct the

development of the research procedure. The RQs are shown

in Table I to construct the search query string.

TABLE I

RESEARCH QUESTIONS AND REASONS

ID Research Questions Reasons

RQ-1 What are the essential

characteristics that

determine system

reliability?

This question aims to identify

and analyze the key

characteristics that influence

and determine the reliability

of a system.

Q-2 What are the potential

risks linked to each

reliability characteristic in

a system?

Identify and analyze the risks

associated with each

reliability characteristic in a

system to better understand

and mitigate potential

reliability issues.

RQ-3 What reliability metrics

are currently used in

systems?

To identify and review the

reliability metrics currently

utilized in systems to assess

their effectiveness and

applicability.

B. Selection of databases

Data collection uses the following databases and libraries,
encompassing a broad spectrum of topics relevant to the

research area. These libraries are selected for their strong

relevance and robust, user-friendly search engines, making

them well-suited for comprehensive and automated searches.
Table II provides a list of these libraries.

TABLE II

ONLINE DATA SOURCES

Database sources Website

IEEE https://ieeexplore.ieee.org/Xplore/home.j
sp

Scopus https://www.scopus.com/search/form.uri
?display=basic#basic

Science Direct https://www.sciencedirect.com/

Springer https://link.springer.com/
Wiley Online
Library

https://onlinelibrary.wiley.com/

C. Search Strategy

Our objective is to carefully structure our search strategy,
which is fundamental to any research project. The initial step

in this phase of the SLR protocol involves combining

keywords to develop an effective search string. Simply using

individual keywords is inadequate; instead, they must be

combined in various ways to create a search string suitable for

different journals and digital libraries. The search strategy

consists of four steps: defining keywords, constructing the

search string, selecting relevant databases, and executing the

search process. This approach is inspired by the methodology

proposed by Kitchenham [28].

1) Defining Keyword: The search terms are defined to
retrieve the most relevant results of papers. Table III displays

the list of all the keywords created for searching purposes.

Formulating research

questions Step 1

 Selection of databases Step 2

Defining search

strategy Step 3

Deciding inclusion and

exclusion criteria Step 4

Evaluating quality

criteria Step 5

 Snowballing Step 6

 Data analysis Step 7

2346

TABLE III

RESEARCH QUESTIONS WITH KEYWORDS

Research Questions Keywords

What are the essential
characteristics that determine
system reliability?

(character* OR attribute OR
feature OR factor) AND
(reliab*) OR (quality model)

What are the potential risks
linked to each reliability
characteristic in a system?

(risk OR threat OR assess*
OR challenges) AND
(reliable*)

What reliability metrics are
currently used in systems?

(metric OR technique OR
standard OR bench*) AND
(reliable*)

2) Search String: The keywords for each question are

combined to create a search string. The search query is

examined across many sources and adjusted until the most

pertinent results are found.

a. Major words derived from the topic and research

questions

b. Finding synonyms or alternative spellings for important

phrases

c. Identification of keywords

d. The Boolean operator OR is used for synonyms or other

spellings
e. Linking Boolean AND operator with essential terms.

Pilot searches are conducted to refine our search strategy

and optimize results. Our search string is structured into two

parts, focusing on characteristics, risks, and metrics and

specifically on reliability.

3) The search query was conducted in April 2024,

utilizing automated and manual methods to identify relevant

studies. According to Kitchenham [28], computerized

searches are more effective than manual searches. A manual

search was also performed to validate the search string. The

search string detailed above was applied to each database, as
outlined in Table IV. The results included 139 studies from

IEEE Xplore, 51 from ScienceDirect, 48 from Scopus, 23

from Wiley, and 20 from Springer.

A careful examination of the chosen papers is conducted

regarding the inclusion and exclusion criteria listed in Table IV.

TABLE IV

INCLUSION AND EXCLUSION CRITERIA

Inclusion criteria

Research papers published in English
Research papers published from 2002 to 2024
Scholarly papers published in computer science and software
engineering journals or conferences

Exclusion criteria

Papers written in other than English are not included
Duplicate papers are eliminated
Research papers with fewer than three pages are excluded
Studies missing abstracts are excluded
Excluded books, thesis, editorials, prefaces, article summaries,
interviews, news, reviews, correspondence, discussions,
comments, reader’s letters, and summaries of tutorials,

workshops, panels, and poster sessions. Research papers
excluding reliability as a quality attribute dropped.

Initially, duplicate articles are eliminated, and each one is

then compared to the established keywords and developed

research inquiries. Papers that did not offer thorough
responses to the questions are disqualified. Next, each paper

is evaluated using inclusion-exclusion criteria based on the

title, abstract, and complete reading. Peer-reviewed journal

articles, conference proceedings, book chapters, editorials,

and magazine articles are selected for inclusion in the study.

When several versions of the same article exist, the most

recent, comprehensive, and updated copy is selected for

inclusion in the research, and the other copies are eliminated.

Through conflict analysis, bias is prevented at every level of

the selection process.

D. Quality Criteria

After journal papers pass the screening phase, a quality

assessment is conducted to evaluate their relevance and

viability. The quality assessment process for this research

involves answering specific evaluation criteria with either

“Yes” or “No.” A "Yes" indicates that the paper is suitable for

inclusion, while a "No" signifies that it does not meet the

required criteria, as shown in Figure 2.

Fig. 2 Quality assessment

E. Snowballing

Snowballing is an essential research technique that builds

on relevant studies to discover additional research [44]. We

performed both forward and backward snowballing for key

outcomes in our study. The process involved several steps:

initially, 68 papers were identified. In the next step, after
reviewing the titles, 45 papers were selected. Further

refinement by reading the keywords and abstracts narrowed

the selection to 22 papers. Finally, after a thorough review,

the list was reduced to 5 papers as shown in Figure 3.

Fig. 3 Snowballing

F. Data Analysis

This stage involves detailing the findings of the selected

research papers, which will be analyzed by addressing the

predetermined research questions.

Stage 5: Filter by Abstract Reading

31
 Stage 4: Filter by Exclusion Criteria

98

 Stage 3: Filter by Inclusion Criteria

122

 Stage 2: Removed Redundant Papers

250

 Stage 1: Search Results

281

2347

TABLE V

RELIABILITY CHARACTERISTICS

Software Quality Model Characteristics Paper Quality Attributes

McCall Accuracy [9], [24]

Reliability

Error Tolerance [9], [24]
Boehm Self-Contentedness [9]

Integrity [9]
Accuracy [9]

FURPS Frequency And Severity of Failures [9]
Recovery To Failures [9]
Time Among Failures [9]

ISO 9126 Maturity [9], [22], [21]
Fault Tolerance [9], [22], [21]
Recoverability [9], [22], [21]
Reliability Compliance [9], [22], [21]

ISO 25010 Maturity [9], [18], [29]
Availability [9], [18],[19]

Fault Tolerance [9], [18]
Recoverability [9], [18]

Bertoa Maturity [9],
Suitability [9]

Alvaro Recoverability [9]
Fault Tolerance [9]
Maturity. [9]

Rawashdeh Recoverability [9]

Maturity [9],
SQO-OSS model Maturity [9]

Effectiveness. [9]

III. RESULTS AND DISCUSSION

The systematic mapping study yielded several insights

related to the research issues. The findings are summarized as

follows:

A. RQ1: What are the essential characteristics that

determine system reliability?

Based on Table V [7], reliability is consistently recognized

as a fundamental quality attribute across all major quality

models. This underscores its critical role in ensuring
consistent system performance and user satisfaction across

various frameworks and standards. Reliability is not a

monolithic concept but is composed of several individual

characteristics.

Among the various reliability characteristics, the following

are most frequently mentioned in quality models:

1) Availability: This measure measures the proportion of

time a system is operational and accessible when required. It

is crucial for ensuring consistent system performance and

minimizing downtime.

2) Error Tolerance: This measure reflects the system’s

ability to handle and manage errors without complete failure.

It is vital for maintaining functionality despite errors or faults.

3) Recoverability: Assesses the system’s capacity to

recover from failures and restore regular operation. It is

essential to minimize the impact of failures and ensure rapid

recovery.

4) Maturity: Maturity indicates the system’s stability and

robustness, often reflecting its history of usage and evolution.

It impacts long-term reliability and performance.

Integrating these key characteristics into a cohesive

strategy is essential to effectively managing reliability [22].

Understanding how availability, error tolerance,

recoverability, maturity, and other factors interact helps
develop comprehensive risk assessments and reliability

metrics.

B. RQ2: What are the potential risks linked to each reliability

characteristic in a system?

Table VI shows the grouping of potential risks specific to

the reliability characteristics. Identifying potential risks tied

to reliability characteristics is crucial for the following

factors:

1) Anticipating Challenges: By foreseeing reliability

risk, you can design mitigation strategies early in

development.

2) Prioritize Critical Areas: Some risks may have a more

significant impact. Understanding these allows focused

resource allocation for testing and improvements

3) Improve Component Selection: By clearly identifying

potential risks, you can make informed decisions about

component integration into domains like Software Product

Line (SPL) and Component-Based Software Engineering

(CBSE).

Research Question 2 (RQ2) revealed that each

characteristic has individual potential risks regardless of the

phases of the software. Each reliability risk can be analyzed

to decide its likelihood and potential impact. With this,

strategies can be developed to minimize high-impact risks.

Regularly identifying and analyzing potential reliability risks

allows for continuous improvement of the software

development process. This iterative approach helps refine

practices and deliver increasingly reliable software over time.

2348

TABLE VI

POTENTIAL RISK

Characteristics Potential risk Description Paper

Accuracy Incorrect data precision

tolerance

Impacts the precision of computations, leading to inaccurate results. [30],[23],[31],[32],

[11]

Data collection failure Incomplete or erroneous data can lead to inaccurate system outputs.

Hardware processing capability
Limitations in hardware performance can result in incorrect calculations,

affecting accuracy.

Incorrect value in the

specification

Errors in the specification can lead to incorrect implementation and inaccurate

outcomes.

Completeness of specification
Missing or incomplete specifications can cause the system to behave

inaccurately.

Incorrect flow of task execution Deviations in task execution can lead to incorrect results.

Deficiencies in data structures Improperly structured data can lead to inaccuracies in processing and output.

Flaws in reliability policies Inadequate policies can lead to conditions where accuracy is compromised.

Specific points and critical

values in procedure;

Errors at key steps or critical points can result in inaccurate outputs.

Errors from software

transplantation modifications

Changes during software migration can introduce inaccuracies.

Approximation of the algorithm

leads to the imprecise

variable region;

Inaccurate algorithm approximations can result in errors and imprecise

outcomes.

Error Tolerance

/

Fault tolerance

Inaccurate response time for

tolerance

If the system cannot tolerate delays accurately, it may fail to handle errors

gracefully.

[18],[13],[16],

[33],[34],[35], [36]

Inaccurate mean time to failure
Affects the ability to predict and handle failures effectively, leading to reduced

fault tolerance.

Incorrect boundary value

tolerance

Defining acceptable value ranges can lead to improper handling of deviations

and reduce error tolerance.

Redundancy of components
adequate or excessive redundancy can fail to provide fault tolerance or lead to

unnecessary complexity.

Mean fault notification time
Delays in fault detection can hinder prompt responses, reducing the

effectiveness of fault tolerance mechanisms.

Failure avoidance
Insufficient strategies to avoid failures impact both fault tolerance and error

tolerance.

Fault tolerance mechanism
Inefficient or poorly implemented mechanisms can reduce the system’s

capacity to recover from faults.

Integrity Consistency of data in the

specification

Inconsistencies in data specifications can lead to incorrect data handling and

compromise data integrity.

[10], [26]

Adherence to the needs
Failure to meet specified requirements can result in data integrity issues, as the

system may not handle data according to the expected standards.

Weak authentication of data

storage

Insufficient authentication measures can lead to unauthorized access and

potential tampering with stored data, affecting data integrity.

Leakage of data loss/corruption
Loss or corruption of data compromises its integrity by making it unreliable or

invalid.

Leakage of data loss/corruption

The accuracy of data is non-

verifiable

If the accuracy of data cannot be verified, it undermines the confidence in data

integrity.

Maturity Consistency of data in the

specification

Inconsistent specifications can hinder the maturation of the software

development process, leading to incomplete or erroneous implementations.

[18],[37],[38], [15]

Software coding mistake
Errors in coding can affect the software’s ability to evolve and mature properly,

leading to persistent defects and unreliable performance

Adherence to the needs
Failure to align with requirements can delay the maturity process by causing

continuous adjustments and rework

Weak authentication of data

storage

Inadequate security measures can impact the stability and reliability of the

software as it matures, potentially exposing it to vulnerabilities.

Leakage of data loss/corruption
Persistent issues with data loss or corruption can indicate underlying problems

that prevent the software from reaching a mature, stable state.

Component wear-out
The degradation of components over time can affect the overall maturity of the

system, indicating the need for maintenance or upgrades.

Manufacturing imperfection
Imperfections in the manufacturing process can lead to defects that affect the

reliability and maturity of the software.

Incorrect MTBF
Misestimation of MTBF can mislead reliability assessments, affecting the

perceived maturity of the software.

Incorrect fault correction
Ineffective or incorrect fault correction practices can impede the software’s

progression toward a mature and reliable state

Inaccurate failure rate
Misrepresentation of failure rates can lead to incorrect assessments of software

maturity and reliability.

Less test coverage
Insufficient testing coverage can prevent the identification of defects and

issues, delaying the maturity and stability of the software.

Recoverability Response intervals captured by

software/hardware upon failure

Inadequate or inaccurate capture of response intervals can hinder the ability to

assess and improve the recovery process.

[18],[7], [39], [40]

Lack of resources in the new

environment

Insufficient resources or support in a new environment can impede the system's

ability to recover effectively from failures.

Inability to recover in a new

environment

Challenges in adapting recovery procedures to a new environment can lead to

prolonged or failed recovery efforts.

2349

Characteristics Potential risk Description Paper

Longer recoverability time of

an operation

Extended recovery times can negatively impact the overall reliability and

performance of the system

Mean recovery time
An inaccurate estimation of mean recovery time can lead to unrealistic

expectations and inadequate planning for recovery processes.

Backup data completeness
Incomplete or outdated backup data can hinder the ability to restore the system

fully, affecting overall recoverability

Availability System availability Factors that affect the system's overall availability, such as downtime or system

outages, impact its ability to provide continuous service.

[41],[18], [42]

software replication
Inadequate or incorrect replication processes can lead to reduced availability,

as failures in one instance may not be appropriately mitigated.

automated detection
Ineffective automated detection of issues can delay response times and impact

system availability.

failover
Inadequate failover mechanisms can lead to more extended downtime or

service interruptions during failures.

hot swap
Problems with hot-swapping components can affect the system's ability to

maintain availability during component replacements or upgrades.

Inaccurate business time in the

specification

Incorrect specification of business-critical times can impact system availability

during peak periods.

Installation capabilities

Insufficient installation capabilities can delay deployment or upgrades,

affecting overall system availability.

Network

Network issues, such as outages or performance degradation, can impact the

system's availability.

Natural casualties

Natural disasters like earthquakes or floods can disrupt system operations and

reduce availability.

human error

Mistakes by operators or administrators can lead to outages or reduced system

availability.

lack of transparent

unavailability

Poor communication about system unavailability can lead to confusion and

reduced confidence in system availability.

Sufficient bandwidth

Insufficient bandwidth can affect the system’s performance and availability,

especially under high-load conditions.

Installation effort/experiment
High installation effort or experimental setups can delay deployment and

impact availability.

Radiation
Radiation exposure can cause hardware malfunctions, affecting system

availability.

Electromagnetic interference
Interference from electromagnetic sources can disrupt system operations and

impact availability.

Battle damage
Damage from conflicts or warfare can affect the system’s physical

infrastructure and availability.

Wireless channel noises
Interference or noise in wireless channels can disrupt communication and

impact system availability.

Mean down time
Inaccurate estimation of mean downtime can affect planning and management

strategies for maintaining availability.

Suitability Poor design Inadequate or ineffective design can lead to a system not meeting user needs or

requirements, impacting its suitability for its intended purpose.

[15],[43], [16]

Module complexity

- Structural complexity

- Code complexity

- Interface complexity

- Complex module structures can make it difficult to understand, maintain,

and ensure the module meets its requirements.

- Complex code can introduce errors and make it harder to ensure the module

functions correctly and meets its intended use.

- Complicated interfaces between modules can lead to integration issues and

affect the overall suitability of the system

Poor component selection Choosing inappropriate or incompatible components can affect the system's

ability to fulfill its intended functions, reducing its suitability for specific

requirements or environments.

Effectiveness
Application user friendliness

Poor user interface design can reduce user interaction efficiency and hinder the

software's effective use.

[15],[44], [45]

Poor requirement changes
Ineffective management of requirement changes can lead to system design and

implementation inefficiencies, affecting overall performance.

Limitation in power
Insufficient power resources can affect the performance and efficiency of the

system, particularly in energy-intensive applications.

Processing and communication

capacity

Limitations in processing power or communication capacity can lead to

bottlenecks and reduced system efficiency.

Memory resources
Inadequate memory resources can lead to performance degradation, impacting

the efficiency of data handling and processing

Module change rate
Frequent changes to modules can introduce inefficiencies due to the need for

constant updates and rework, affecting system performance and stability.

C. RQ3: What reliability metrics are currently used in

systems?

Table VII shows the maturity and stability of existing

software in assessing software systems' reliability

characteristics. These metrics provide quantitative insights
into how well a system performs concerning reliability

characteristics. They are applied throughout the software

lifecycle—from development processes to post-deployment

management. By aligning metrics with specific reliability

characteristics, you can target critical areas such as accuracy,

fault tolerance, and recoverability, ensuring that your

software consistently meets reliability expectations

2350

TABLE VII

EXISTING RELIABILITY METRICS

IV. CONCLUSION

In a nutshell, this systematic literature review offers a

comprehensive understanding of the factors impacting

software reliability. Key reliability characteristics, such as

accuracy, fault tolerance, recoverability, maturity, integrity,

and availability, are critical for ensuring software systems'

robustness and reliability. The review highlights potential

risks of each characteristic, such as frequent failures,
inadequate recovery mechanisms, and inconsistent

performance. Furthermore, a detailed analysis of reliability

metrics provides insights into how these risks can be

measured, monitored, and mitigated, enabling more reliable

software design and development.

The review establishes a structured approach for
identifying essential reliability characteristics, offering a solid

foundation for reliability assessment. Also, by highlighting

specific potential risks associated with reliability

characteristics, the SLR provides a deeper understanding of

common problems that affect software reliability. This insight

helps researchers and practitioners recognize critical areas

that need attention and improvement. Also, documenting

potential risks helps identify gaps in current research and

areas where further investigation is needed. This guides future

research by pinpointing where existing studies may fall short

or where new approaches could be developed.
Future research could focus on developing integrated

models that combine the identified characteristics, risks, and

metrics into a comprehensive reliability evaluation

Metrics Reliability Characteristics Purpose Paper

Mean time to failure
(MTTF)

Fault tolerance Measures the system’s ability to continue operating despite the
presence of faults or failures.

[7],[2],
[27]
[42]
[4],[46]
[47], [48]
[31]
[30]

[43], [17],
[6]

Defect Removal
Efficiency (DRE)

Fault tolerance, Maturity

Mean time between
failure (MTBF)

Fault tolerance, availability MTBF measures the average time between failures, reflecting
the system’s stability and maturity

Rate of occurrence of

failure (ROCOF)

Fault tolerance ROCOF measures how often failures occur over a period,

providing insights into how frequently the system encounters
faults.

Test Coverage Metric Maturity, Fault Tolerance Evaluates the extent to which the software has been tested,
including the number of code paths, branches, or functionalities
tested

Mean time to repair
(MTTR)

Recoverability, Integrity Average time taken to restore service after a failure.

Recovery time

Probability of failure
on demand (POFOD)

Suitability, Effectiveness,
Error Tolerance

Measures the likelihood that the system will fail when a request
is made

Service Availability
(AVAIL)

Availability

The percentage of time the system is operational and available
for use.

Function Point Metric Accuracy, Suitability Measures the functionality delivered by the system relative to
user requirements

Fault tree / Failure tree
analysis (FTA)

Fault Tolerance, Integrity,
Error Tolerance

A technique used to model the failure paths in a system to
identify potential risks and failure causes.

Failure mode and

Effect Analysis
(FMEA)

Recoverability, Maturity, Error

Tolerance

Identification of potential failure modes and their effects on the

system.

Neural Framework Dynamic Behavior, Self-
Contentedness, Fault Tolerance

Using neural network models to assess and predict various
aspects of software reliability, such as failure rates, fault
tolerance, and performance under different conditions.

The dynamic
complexity of state
charts

Suitability, accuracy, fault
tolerance

intricacy and variability in the behavior of state charts as the
system operates and reacts to different inputs and conditions.

Dynamic coupling
between components

Self-contentedness, integrity,
fault tolerance

Degree of interdependence and interaction between different
components of the system during runtime.

Defect Density Maturity, Accuracy

The proportion of defects removed before release compared to
those found after release. Test Coverage

Percentage of code, paths, branches, or functionalities tested.
Failure rate Accuracy

Identifies how precise and correct the software outputs are under
typical conditions.

Fault Intensity Number of failures observed per time interval or operation
count.

Failure Severity index Integrity Monitors how well the system preserves data integrity and

maintains consistent states.
Growth Model (Goel-
Okumuto, Musa)

Fault tolerance, recoverability Statistical models that predict reliability based on observed
failure data.

Software Reliability
index (SRI)

Accuracy, fault tolerance,
maturity, suitability

Quantifies the impact of different types of failures based on
severity levels.

2351

framework. As systems become more dynamic and complex,

future work could explore adaptive metrics that account for

changing operational environments, real-time updates, and

evolving user needs. Lastly, with the increasing adoption of

microservices, cloud computing, and AI-based systems,

future research could investigate how these technologies

influence reliability characteristics and adapt metrics

accordingly.

ACKNOWLEDGMENT

We want to thank Universiti Putra Malaysia for all the

support given.

REFERENCES

[1] L. Subramanium, S. Hassan, H. Zulzalil, and M. H. Osman,

“Identification of Emergent Properties Occurrences Factors in System-

of-Systems,” 2023 IEEE Int. Conf. Comput. ICOCO 2023, pp. 71–76,

2023, doi: 10.1109/icoco59262.2023.10397923.

[2] V. K. Singh, R. A. Khan, and S. W. Abbas Rizvi, “Revisiting Software

Reliability Engineering with Fuzzy Techniques,” pp. 1037–1042,

2016.

[3] A. Mohan and S. K. Jha, “Predicting and accessing reliability of

components in component based software development,” 2019 Int.

Conf. Intell. Comput. Control Syst. ICCS 2019, no. Iciccs, pp. 1110–

1114, 2019, doi: 10.1109/iccs45141.2019.9065290.

[4] C. Haritha Madhav and K. S. Vipin Kumar, “A method for predicting

software reliability using object oriented design metrics,” 2019 Int.

Conf. Intell. Comput. Control Syst. ICCS 2019, no. Iciccs, pp. 679–

682, 2019, doi: 10.1109/iccs45141.2019.9065541.

[5] A. A. Baybulatov and G. Promyslov, “A Metric for the IACS Availability

Risk Assessment,” Proc. - 2022 Int. Russ. Autom. Conf. RusAutoCon 2022,

pp. 750–754, 2022, doi:10.1109/rusautocon54946.2022.9896250.

[6] A. Jatain and Y. Mehta, “Metrics and models for Software Reliability:

A systematic review,” Proc. 2014 Int. Conf. Issues Challenges Intell.

Comput. Tech. ICICT 2014, pp. 210–214, 2014,

doi:10.1109/icicict.2014.6781281.

[7] O. Stover, P. Karve, and S. Mahadevan, “Reliability and risk metrics

to assess operational adequacy and flexibility of power grids,” Reliab.

Eng. Syst. Saf., vol. 231, no. November 2022, p. 109018, 2023,

doi:10.1016/j.ress.2022.109018.

[8] C. Wang and A. Mosleh, “Qualitative-Quantitative Bayesian Belief

Networks for reliability and risk assessment,” 2010 Proceedings -

Annual Reliability and Maintainability Symposium (RAMS), pp. 1–5,

Jan. 2010, doi: 10.1109/rams.2010.5448022.

[9] T. Hovorushchenko, “The software emergent properties and them

reflection in the non-functional requirements and quality models,”

Proc. Int. Conf. Comput. Sci. Inf. Technol. CSIT 2015, no. September,

pp. 146–153, 2015, doi: 10.1109/stc-csit.2015.7325454.

[10] D. G. Lubas, “Department of defense system of systems reliability

challenges,” Proc. - Annu. Reliab. Maintainab. Symp., pp. 1–6, 2017,

doi: 10.1109/ram.2017.7889676.

[11] L. Fan and Z. Ma, “Tendency analysis of software reliability

engineering,” ICRMS’2011 - Saf. First, Reliab. Prim. Proc. 2011 9th

Int. Conf. Reliab. Maintainab. Saf., pp. 771–773, 2011,

doi:10.1109/icrms.2011.5979369.

[12] S. Jayatilleka, “Intersection of systems and reliability engineering

during new product development process,” Proc. - Annu. Reliab.

Maintainab. Symp., vol. 2020-Janua, 2020,

doi:10.1109/rams48030.2020.9153653.

[13] F. M. Safie, R. G. Stutts, and Z. Huang, “Reliability and probabilistic

risk assessment - How they play together,” Proc. - Annu. Reliab.

Maintainab. Symp., vol. 2015-May, pp. 1–5, 2015,

doi:10.1109/rams.2015.7105058.

[14] J. Luo, H. Li, and S. Wang, “A quantitative reliability assessment and

risk quantification method for microgrids considering supply and

demand uncertainties Loss of Energy Expected Loss of Load Expected

Loss of Power Supply Probability,” Appl. Energy, vol. 328, no.

September, p. 120130, 2022, doi: 10.1016/j.apenergy.2022.120130.

[15] J. Ai, W. Su, and F. Wang, “Software Reliability Evaluation Method

Based on a Software Network,” Proc. - 29th IEEE Int. Symp. Softw.

Reliab. Eng. Work. ISSREW 2018, pp. 136–137, 2018,

doi:10.1109/issrew.2018.00-15.

[16] A. Boranbayev, S. Boranbayev, and A. Nurusheva, “Development of

a software system to ensure the reliability and fault tolerance in

information systems based on expert estimates,” 2018,

doi:10.1007/978-3-030-01057-7_68.

[17] R. Mijumbi, K. Okumoto, A. Asthana, and J. Meekel, “Recent

Advances in Software Reliability Assurance,” Proc. - 29th IEEE Int.

Symp. Softw. Reliab. Eng. Work. ISSREW 2018, pp. 77–82, 2018,

doi:10.1109/issrew.2018.00-27.

[18] Y. Liu, M. Lu, and B. Xu, “Software reliability case development

method based on software reliability characteristic model and

measures of defect control,” Proc. IEEE Int. Conf. Softw. Eng. Serv.

Sci. ICSESS, vol. 0, pp. 1–6, 2016, doi:10.1109/icsess.2016.7883004.

[19] Y. Zhao, J. Gong, Y. Hu, Z. Liu, and L. Cai, “Analysis of quality

evaluation based on ISO/IEC SQuaRE series standards and its

considerations,” Proc. - 16th IEEE/ACIS Int. Conf. Comput. Inf. Sci.

ICIS 2017, pp. 245–250, 2017, doi: 10.1109/icis.2017.7960001.

[20] M. A. Al Imran, S. P. Lee, and M. A. M. Ahsan, “Measuring impact

factors to achieve conflict-free set of quality attributes,” 2017 IEEE

8th Control Syst. Grad. Res. Colloquium, ICSGRC 2017 - Proc., no.

August, pp. 174–178, 2017, doi: 10.1109/icsgrc.2017.8070590.

[21] H. Al-Kilidar, K. Cox, and B. Kitchenham, “The use and usefulness of

the ISO/IEC 9126 quality standard,” 2005 Int. Symp. Empir. Softw.

Eng. ISESE 2005, pp. 126–132, 2005,

doi:10.1109/isese.2005.1541821.

[22] J. Eckhardt, A. Vogelsang, and D. M. Fernández, “Are ‘Non-

functional’ Requirements really Non-functional? An Investigation of

Non-functional Requirements in Practice,” Lect. Notes Informatics

(LNI), Proc. - Ser. Gesellschaft fur Inform., vol. P-267, pp. 105–106,

2016.

[23] S. Zhu, M. Lu, and B. Xu, “Software Reliability Case Development

Method Based on the 4+1 Principles,” Proc. - 12th Int. Conf. Reliab.

Maint. Safety, ICRMS 2018, pp. 197–202, 2018,

doi:10.1109/icrms.2018.00045.

[24] F. P. Juniawan et al., “E-Voting Software Quality Analysis with

McCall’s Method,” 2020 8th Int. Conf. Cyber IT Serv. Manag. CITSM

2020, pp. 7–11, 2020, doi: 10.1109/citsm50537.2020.9268854.

[25] J. Zhang, “Field Product Reliability Risk Assessment,” Proc. - Annu.

Reliab. Maintainab. Symp., vol. 2022-Janua, pp. 1–6, 2022,

doi:10.1109/rams51457.2022.9894003.

[26] N. Singh and K. Tyagi, “Important factors for estimating reliability of

SOA,” Conf. Proceeding - 2015 Int. Conf. Adv. Comput. Eng. Appl.

ICACEA 2015, pp. 381–386, 2015, doi:10.1109/icacea.2015.7164734.

[27] A. Quyoum, M.-U.-D. Dar, and S. M. K. Quadri, “Improving Software

Reliability using Software Engineering Approach- A Review,” Int. J.

Comput. Appl., vol. 10, no. 5, pp. 41–47, 2010, doi: 10.5120/1474-

1990.

[28] B. Kitchenham, “Procedures for Performing Systematic Reviews,”

Empir. Softw. Eng., vol. 33, no. 2004, pp. 1–26, 2004.

[29] M. Lepmets, E. Ras, and A. Renault, “A quality measurement

framework for IT services,” Proc. - 2011 Annu. SRII Glob. Conf. SRII

2011, pp. 767–774, 2011, doi: 10.1109/srii.2011.84.

[30] S. Yin, Q. Shi, Y. Wang, and C. Chen, “Summary of software

reliability Research,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1043, no.

5, 2021, doi: 10.1088/1757-899X/1043/5/052039.

[31] X. Pan and M. Zhang, “Quality and Reliability Improvement Based on

the Quality Function Deployment Method,” Proc. - 12th Int. Conf.

Reliab. Maint. Safety, ICRMS 2018, pp. 38–42, 2018,

doi:10.1109/icrms.2018.00018.

[32] J. Klohoker, “A risk informed approach to reliability requirements

tailoring,” Proc. - Annu. Reliab. Maintainab. Symp., vol. 2019-Janua,

pp. 1–4, 2019, doi: 10.1109/rams.2019.8768994.

[33] M. Radu, “Reliability and fault tolerance analysis of FPGA platforms,”

2014 IEEE Long Isl. Syst. Appl. Technol. Conf. LISAT 2014, pp. 1–4,

2014, doi: 10.1109/lisat.2014.6845211.

[34] P. Garraghan et al., “Emergent Failures: Rethinking Cloud Reliability

at Scale,” IEEE Cloud Comput., vol. 5, no. 5, pp. 12–21, 2018,

doi:10.1109/mcc.2018.053711662.

[35] J. Wang, “Model of Open Source Software Reliability with Fault

Introduction Obeying the Generalized Pareto Distribution,” Arab. J.

Sci. Eng., vol. 46, no. 4, pp. 3981–4000, 2021, doi: 10.1007/s13369-

021-05382-4.

[36] P. S. Sabnis, S. Joshi, and J. Naveenkumar, “A Study on Machine

Learning Techniques based Software Reliability Assessment,” 4th Int.

Conf. Inven. Res. Comput. Appl. ICIRCA 2022 - Proc., no. Icirca, pp.

687–692, 2022, doi: 10.1109/icirca54612.2022.9985530.

2352

[37] E. Bagheri and F. Ensan, “Reliability estimation for component-based

software product lines,” Can. J. Electr. Comput. Eng., vol. 37, no. 2,

pp. 94–112, 2014, doi: 10.1109/cjece.2014.2323958.

[38] Y. Li, W. Wang, and X. Leng, “A Mission Reliability Method

(MRM) for Risk Management in the Development of Materiel

System,” p. 5, 2010.

[39] E. Cota, “Adjusting reliability predictions for risk,” 2017 Annual

Reliability and Maintainability Symposium (RAMS), pp. 1–5, 2017,

doi: 10.1109/ram.2017.7889717.

[40] Q. Li, L. Luo, and J. Wang, “Accelerated reliability testing approach

for high-reliablity software based on the reinforced operational

profile,” 2013 IEEE Int. Symp. Softw. Reliab. Eng. Work. ISSREW

2013, pp. 337–342, 2013, doi: 10.1109/issrew.2013.6688917.

[41] B. Cukic and J. Dong, “Availability Monitor for a Software Based

System,” Proc. IEEE Int. Symp. High Assur. Syst. Eng., pp. 321–328,

2007, doi: 10.1109/hase.2007.49.

[42] L. C. Hao, L. J. Wu, R. Yan, X. Y. Han, and L. L. Tang, “Research on

Software Reliability Index Allocation Method Based on Network

Architecture,” Proc. 2019 Int. Conf. Qual. Reliab. Risk, Maintenance,

Saf. Eng. QR2MSE 2019, no. Qr2mse, pp. 551–556, 2019,

doi:10.1109/qr2mse46217.2019.9021200.

[43] S. M. Yacoub and H. H. Ammar, “A methodology for architecture-

level reliability risk analysis,” IEEE Trans. Softw. Eng., vol. 28, no. 6,

pp. 529–547, 2002, doi: 10.1109/tse.2002.1010058.

[44] L. Chang, X. Song, and L. Zhang, “Uncertainty-oriented reliability and

risk-based output control for complex systems with compatibility

considerations,” Inf. Sci. (Ny)., vol. 606, pp. 512–530, 2022,

doi:10.1016/j.ins.2022.05.068.

[45] C. Ji, D. Wu, D. Cheng, and Z. Shen, “Software-hardware

interdependent reliability assessment technique for software-intensive

complex systems,” ICRMS 2014 - Proc. 2014 10th Int. Conf. Reliab.

Maintainab. Saf. More Reliab. Prod. More Secur. Life, pp. 493–500,

2014, doi: 10.1109/icrms.2014.7107246.

[46] K. Okumoto, A. Asthana, and R. Mijumbi, “BRACE: Cloud-based

software reliability assurance,” Proc. - 2017 IEEE 28th Int. Symp.

Softw. Reliab. Eng. Work. ISSREW 2017, pp. 57–60, 2017,

doi:10.1109/issrew.2017.48.

[47] V. Gaur, O. P. Yadav, G. Soni, and A. P. S. Rathore, “A Review of

Metrics, Algorithms and Methodologies for Network Reliability,”

IEEE Int. Conf. Ind. Eng. Eng. Manag., pp. 1129–1133, 2019,

doi:10.1109/ieem44572.2019.8978688.

[48] J. Ludwig, S. Xu, and F. Webber, “Compiling static software metrics

for reliability and maintainability from GitHub repositories,” 2017

IEEE Int. Conf. Syst. Man, Cybern. SMC 2017, vol. 2017-Janua, pp.

5–9, 2017, doi: 10.1109/smc.2017.8122569.

2353

