PATHOGENICITY AND MOLECULAR CHARACTERISATION OF THE VP2 GENE OF INFECTIOUS BURSAL DISEASE VIRUS

MD. MAHFUZUL HOQUE

FPV 2001 14
PATHOGENICITY AND MOLECULAR CHARACTERISATION OF THE VP2 GENE OF INFECTIOUS BURSAL DISEASE VIRUS

By

MD. MAHFUZUL HOQUE

Thesis Submitted in Fulfilment of Requirement for the Degree of Doctor of Philosophy in the Faculty of Veterinary Medicine
Universiti Putra Malaysia
June 2001
DEDICATION

TO MY PARENTS (LATE MD. ABDUS SATTAR AND BEGUM MAHFUZA), UNCLE (MR. JUSTICE M. A. ROUF), WIFE (RAHIMA KHANAM) AND SONS (RIZWANUL HOQUE AND ENAMUL HOQUE)
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

PATHOGENICITY AND MOLECULAR CHARACTERISATION OF THE VP2 GENE OF INFECTIOUS BURSAL DISEASE VIRUS

By

MD. MAHFUZUL HOQUE

June 2001

Chairman: Abdul Rahman Omar, Ph D.
Faculty: Veterinary Medicine

Pathogenicity of four infectious bursal disease virus (IBDV) isolates was studied on specific-pathogen-free (SPF) chickens. Chickens inoculated with isolates 92/04, 94/B551 and 97/61 developed severe clinical manifestations with a high mortality ranging from 70-80%, whereas the 94/273 isolate caused 10% mortality. However, regardless of the isolates, significant differences (p< 0.05) were noted in the bursal scoring lesions and bursa to body weight ratio index in the infected groups in comparison to the control groups. The isolate 94/273 had limited and comparatively less haemorrhagic lesions in the bursal tissues. However, the presence of severe haemorrhagic lesions in the bursal tissues along with the non-bursal tissues (muscles, thymus, spleen and at the junction of proventriculus and gizzard) were found only in the 92/04, 97/61 and 94/B551 isolates.
The VP2 gene (1351 bp) of the isolates (92/04, 94/273 and 94/B551) was amplified and cloned and the sequences were compared with other IBDV strains. All the isolates have the unique amino acid residues at positions P222A, V256I, and L294I as found in other vvlBDV strains. Restriction fragment length polymorphism (RFLP) and sequence analysis of the VP2 hypervariable region also indicated that all the isolates can be classified as vvlBDV based on the presence of SspI and TaqI sites at the nucleotide positions 1011 and 833, respectively. All the isolates except 94/273 also have a StyI site at nucleotide position 888. The absence of StyI site in this isolate is associated with amino acid substitution at 254 from G to S in variant strain. The 94/273 also has an amino acid substitution at 270 from A to E as found in apathogenic IBDV. Thus, this is a first report on the isolation of vvlBDV with some genotypic characteristic of variant and apathogenic IBDV strains. The 94/B551 also has one amino acid substitution at position 300 E to S, which is uncommon among other vvlBDV isolates. Based on the RFLP analysis the Malaysian (92/04, 94/273 and 97/61) and Bangladeshi (94/B551) isolates can be differentiated using the restriction enzymes PstI, Mbol and TaqI. The deduced VP2 amino acids encoded by 92/04 is identical to the vvlBDV strains from Israel, Japan and UK, whereas the other isolates (94/273 and 94/B551) have one to three amino acid substitutions, indicating that the vvlBDV is evolving. However, the phylogenetic analysis suggested that the isolates are very close to each other and all of them may have derived from same origin as the vvlBDV strains isolated from China, Japan and Europe.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan Ijazah Doktor Falsafah

KEPATOGENAN DAN PENCIRIAN MOLEKUL GEN VP2 VIRUS PENYAKIT BURSA BERJANGKIT

Oleh

MD. MAHFUZUL HOQUE

Jun 2001

Pengerusi: Abdul Rahman Omar, Ph D.

Fakulti: Perubatan Veterinar

Kepatogenan empat strain virus penyakit bursa berjangkit (IBDV) ke atas ayam bebas patogen khusus (SPF) telah dikaji. Ayam yang diinokulat dengan strain 92/04, 94/273 dan 97/61 menunjukkan manifestasi klinikal yang teruk dengan kadar kematian tinggi diantara 70-80%, manakala isolate 94/273 menyebabkan kematian 10%. Walau bagamanapun, tanpa mengambil kira strain, terdapat perbezaan yang ketara (p<0.05) dalam skor lesi bursa dan indek nisbah bursa kepada berat badan bagi kumpulan terjangkit berbanding dengan kumpulan kawalan. Strain 94/273 mempunyai lesi hemoraj yang kurang dan terhad dalam tisu bursa. Walau bagamanapun, kehadiran lesi hemoraj yang teruk pada tisu bursa dan tisu bukan bursa (otot, timus, limpa dan pada persimpangan proventrikulus dan humpedal) dijumpai hanya dalam strain 92/04, 97/61 dan 94/B551. Gen VP2 (1351 bp) bagi strain (92/04, 94/273 dan 94/B551) diamplifikasi dan diklonkan dan jujukan tersebut dibandingkan dengan strain IBDV yang lain. Kesemua strain mempunyai residu asid amino pada kedudukan P222A,
ACKNOWLEDGEMENTS

I would like to extend my heartiest gratitude and appreciation to Dr. Abdul Rahman Omar, chairman of the supervisory committee for providing invaluable advice, untiring assistance, encouragement and motivation that enabled me to accomplish the PhD programme smoothly and efficiently.

My sincere thanks and appreciation are for Professor Dr. Aini Ideris, a member of the supervisory committee for her constructive suggestion, proper guidance and encouragement throughout my study period and her social support during my study period. I would like to extend my sincere gratitude and appreciation to Associate Professor Dr. Mohd. Hair Bejo, who always accepted me with a smiling face and provided valuable suggestion, assistance and brilliant comments to accomplish my PhD project.

I am also grateful to Professor Dato' Dr. Sheikh Omar Abdul Rahman, the Dean of the Faculty and Professor Dr. Mohamed Shariff Mohamed Din, the Deputy Dean for Research and Postgraduate Studies for allowing me to use the facilities in the Faculty and being helpful whenever I ran into difficulties. I shall never forget the kindness of Professor Dr. Mohamed Shariff Mohamed Din who came forward to save my experimental chicks in a stormy night by restoring electricity at the chicken house.

I am also grateful to the staff members of the Biologics Laboratory, Puan Rodiah Husin and Mr. Adam Ahmad for always being so willing to
render assistance throughout the course of the study. Special thanks also goes to Mr. Fauzi Che Yusof and Mr. Ho Ooi Kaun for their assistance to develop the photograph in this study. I would also like to thank and appreciate Mr. Lee Weng Way for helping me to use various software programmes. I would also like to extend my thanks to all staff members of the Faculty of Veterinary Medicine and Graduate School Office for helping me in one way or another, toward the completion of my study.

My heartfelt appreciation also goes to my mother (Begum Mahfuza), brothers (Abu Raihan, Lutfar Rahman and Mustafizur Rahman), sisters (Nazma, Farida and Lipy), uncle (Mr. Justice M.A. Rouf) and other relatives and friends, who always encouraged and supported me during my study period. My special thanks and appreciation are for my wife and sons for their patience, spontaneous support and understanding during the period of my study. My special thanks go to my friends Dr. Kamaruddin, Mr. Ajhar, Mr. Ziqrul, Mr. Ershad, Mr. Jahangir, Dr. Asad, Dr. Urrme and Mr. Mollah for their cooperation during my study period. Special thanks to Dr. Kazi M. Emdadul Huque, Director General of BLRI as well as colleagues and friends of the same institute for their cooperation and moral support.

I would like to acknowledge the funding authority for bearing all the expenses of my study through Agricultural Research Management Project (ARMP), BLRI part of the IDA credit 2815-BD.
I certify that an Examination Committee met on 18th June 2001 to conduct the final examination of Md. Mahfuzul Hoque on his Doctor of Philosophy thesis entitled “Pathogenicity and Molecular Characterisation of the VP2 Gene of Infectious Bursal Disease Virus” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Mohd Azmi Mohd.
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Abdul Rahman Omar, Ph.D
Lecturer
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Aini Ideris, Ph.D
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Mohd. Hair Bejo, Ph.D
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Graham E Wilcox, Ph.D
Professor
Division of Veterinary and Biomedical Sciences
Murdoch University, Murdoch 6150 Western Australia
(Independent Examiner)

MOHD GHAZALI MOHAYIDIN, Ph.D.
Professor/Deputy
Universiti Putra Malaysia
Date: 26 JUN 2001
The thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy.

AINI IDERIS. Ph.D.
Professor
Dean of Graduate School
Universiti Putra Malaysia

Date: 12 JUL 2001
I hereby declare that the thesis is based on my original work except for quotations and citations, which have duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Putra Malaysia or other institutions.

MD. MAHFUZUL HOQUE

Date: 25 June 2001
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL SHEETS</td>
<td>vii</td>
</tr>
<tr>
<td>DECLARATION FORM</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER

1. **INTRODUCTION**

2. **LITERATURE REVIEW**
 - Infectious Bursal Disease .. 10
 - Infectious Bursal Disease Virus ... 12
 - Physico-chemical Properties .. 13
 - IBDV Replication ... 15
 - Resistance to Chemical and Physical Agent 17
 - Propagation .. 18
 - Transmission .. 20
 - Susceptibility ... 21
 - Pathogenesis ... 22
 - Incubation Period and Clinical Sign .. 27
 - Gross Pathology .. 29
 - Histopathology ... 32
 - Immunosuppression .. 34
 - Diagnosis ... 38
 - Prevention and Control ... 44
 - Genome Structure ... 49
 - Viral Proteins .. 52
 - Antigenic and Virulence Variation ... 55
 - Molecular Mechanisms of RNA Virus Evolution 58
 - Phylogenetic Reconstruction ... 63

3. **PATHOGENICITY OF INFECTIOUS BURSAL DISEASE VIRUS IN SPECIFIC PATHOGEN FREE CHICKEN**
 - Introduction .. 77
 - Materials and Methods ... 80
 - IBDV Isolates ... 80
 - Specific Pathogen Free (SPF) Eggs ... 81
 - Specific Pathogen Free Chickens ... 81
 - Preparation of Bursal Homogenate ... 81
 - Propagation of Viruses on Specific Pathogen Free Chicken 77

xii
Eggs .. 82
Titration of IBDV ... 84
Pathogenicity Studies in SPF Eggs 85
Pathogenicity Studies in SPF Chickens 85
Immunogenicity Studies 86
IBDV Challenged .. 87
Histopathology ... 88
Bursa and Spleen to Body Weight Ratio 90
Statistical Analysis 90
Negative Staining .. 90
Transmission Electron Microscopy 91
Results ... 92
Gross Pathological Changes and Mortality in SPF
Embryonated Chicken Eggs 92
Clinical Signs in SPF Chickens 93
Gross Pathology .. 94
Immunogenicity Studies 98
Bursa/Spleen and Body Weight Ratio 98
Histopathology .. 98
Electron Microscopy by Negative Staining 102
Transmission Electron Microscopy 102
Discussion .. 110

IV AMPLIFICATION AND CLONING OF INFECTIOUS
BURSAL DISEASE VIRUS VP2 GENE 114
Introduction .. 114
Materials and Methods 116
IBDV Isolates .. 116
Purification of Viruses 116
Extraction of RNA ... 117
Determination of RNA Concentration and Purity 118
Reverse Transcription and Polymerase Chain
Reaction (RT-PCR) ... 118
Agarose Gel Electrophoresis 120
Purification of VP2 Gene by GENECLEAN Method 122
Cloning of Full Length VP2 Gene 123
Analysis of Positive Colonies 126
Preservation of Recombinant Plasmid 127
Plasmid Extraction and Analysis 127
Determination of DNA Concentration and Purity 130
Restriction Enzyme Analysis of the Plasmid 132
Results ... 132
Purification of Virus 132
Amplification of VP2 Gene 132
Analysis of Recombinant Plasmid 133
Quantitation of Plasmid DNA 134
Restriction Digestion Analysis 134
V RESTRICTION FRAGMENT LENGTH POLYMORPHISM (RFLP) OF INFECTIOUS BURSAL DISEASE VIRUS

Introduction .. 147
Materials and Methods .. 150
IBDV Isolates ... 150
Amplification and Cloning of the Complete VP2 Gene 150
Amplification of VP2 Hypervariable Region from Cloned Recombinant Plasmid .. 151
Amplification of VP2 Hypervariable Region from Viral RNA ... 152
Restriction Enzymes Digestion of the VP2 Hypervariable Region ... 152
Results ... 153
RFLP of the VP2 Hypervariable Region 153
Discussion .. 160

VI SEQUENCE AND PHYLOGENETIC ANALYSIS OF INFECTIOUS BURSAL DISEASE VIRUS (IBDV)

Introduction .. 163
Materials and Methods .. 165
IBDV Isolates ... 165
Purification of Viruses and Extraction RNA 166
Amplification of VP2 Gene .. 166
Construction of VP2 Recombinant Plasmid 166
Sequencing and Polyacrylamide Gel Electrophoresis 166
 Primer Designing .. 168
 Estimating Melting Temperature 169
 Primer Quantitation .. 169
 Sample Preparation for Sequencing 169
 Polyacrylamide Gel Electrophoresis 170
 Sequence Assembly and Analysis 173
 Construction of Phylogenetic Tree 174
 Analysis of VP2 Antigenicity 175
Results ... 176
 Sequence Analysis of Nucleotides and Amino acid of VP2 Gene .. 176
 Percent Homology .. 179
 Analysis of the Deduced Amino Acids 180
 Phylogenetic Analysis ... 182
 Antigenic Index .. 183
Discussion .. 215
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Gross and Pathological Changes and Mortality Caused by Different IBDV Isolates in SPF Embryos</td>
<td>96</td>
</tr>
<tr>
<td>3.2</td>
<td>The Occurrence of Haemorrhages in the Bursa of Fabricius, Skeletal Muscles and at the Junction of Proventriculus and Gizzard of the Dead and Sacrificed Chickens at Days 3 and 4 Post-inoculation of Different Isolates</td>
<td>97</td>
</tr>
<tr>
<td>3.3</td>
<td>Bursa: Body Weight and Spleen: Body Weight Ratios Following Inoculation with 10^{4.8} EID_{50} of Infectious Bursal Disease Virus at Different Days (Mean ±SD)</td>
<td>100</td>
</tr>
<tr>
<td>3.4</td>
<td>IBD Antibody Titres Following Infection with IBDV Isolates</td>
<td>101</td>
</tr>
<tr>
<td>3.5</td>
<td>IBDV Antibody Following Challenge with 92/04 and 97/61 in SPF Chickens Infected with 94/273</td>
<td>101</td>
</tr>
<tr>
<td>4.1</td>
<td>RT-PCR Reaction for the Amplification of Full Length VP2 Gene of IBDV Isolates</td>
<td>121</td>
</tr>
<tr>
<td>4.2</td>
<td>Primers Used for Amplification of Full Length VP2 Gene (~1.35 kb)</td>
<td>122</td>
</tr>
<tr>
<td>4.3</td>
<td>Quantitation of Plasmid DNA of IBDV Isolates</td>
<td>136</td>
</tr>
<tr>
<td>5.1</td>
<td>Restriction Enzyme Analysis of the 474 bp (Accl to SpeI) Fragment of Hypervariable Region of VP2 Gene of IBDV</td>
<td>155</td>
</tr>
<tr>
<td>5.2</td>
<td>Digestion Patterns of VP2 Hypervariable Region of IBDV Isolates</td>
<td>156</td>
</tr>
<tr>
<td>6.1</td>
<td>Primers Used for Sequencing the VP2 Gene of IBDV Isolates 92/04, 94/273 and 94/B551</td>
<td>173</td>
</tr>
<tr>
<td>6.2</td>
<td>Nucleotides and Amino Acid Residues Changes of Various IBDV Strains VP2 Hypervariable Region (Nucleotide Positions 746 to 1081) and VP2 Gene (Nucleotide Positions 132 to 1483)</td>
<td>200</td>
</tr>
<tr>
<td>6.3</td>
<td>Comparison of Amino Acid Substitutions at Different Positions for the Isolates 92/04, 94/273 and 94/B551 with Other Published IBDV Strains</td>
<td>205</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Genome Organisation of Avibirnavirus (Infectious Bursal Disease Virus)</td>
<td>51</td>
</tr>
<tr>
<td>2a</td>
<td>Phylogenetic Trees Based on the Nucleotide Sequence of IBDV Isolates Using the Neighbour-joining Method</td>
<td>74</td>
</tr>
<tr>
<td>2b</td>
<td>Phylogenetic Tree Based on Amino Acid of Hypervariable Region of IBDV Isolates Using the UPGMA Method</td>
<td>75</td>
</tr>
<tr>
<td>2c</td>
<td>Phylogenetic Relationship Between Australian and Oversea Isolates of IBDV Using the Neighbour-joining Method</td>
<td>76</td>
</tr>
<tr>
<td>3a</td>
<td>Normal (Control) Embryo from SPF Chicken Egg</td>
<td>103</td>
</tr>
<tr>
<td>3b</td>
<td>Haemorrhagic Embryo with Hepatic Lesions from IBDV Isolate 94/273 Infected SPF Chicken Egg (Day 5 Post Inoculation)</td>
<td>103</td>
</tr>
<tr>
<td>4a</td>
<td>Normal (Control) Bursa of Fabricius from SPF Chicken</td>
<td>104</td>
</tr>
<tr>
<td>4b</td>
<td>Haemorrhagic Bursa of Fabricius from IBDV Isolate 92/04 Infected SPF Chicken (Day 4 Post Inoculation)</td>
<td>104</td>
</tr>
<tr>
<td>5</td>
<td>Proventriculus and Gizzard from IBDV Isolate 92/04 Infected SPF Chicken (Day 4 Post Inoculation) Showing Haemorrhages at the Junction</td>
<td>105</td>
</tr>
<tr>
<td>6a</td>
<td>Histological Section of Normal (Control) Bursa of Fabricius from SPF Chicken at Day 4 (Score 1) (Magnification x 100)</td>
<td>106</td>
</tr>
<tr>
<td>6b</td>
<td>Histological Section of Bursa of Fabricius from IBDV Isolate 92/04 Infected SPF Chicken (Day 4 Post Inoculation) Showing Necrosis of the Lymphoid Follicles and Infiltration of Inflammatory Cells in the Interstitial Connective Tissue (Score 5) (Magnification x 40)</td>
<td>106</td>
</tr>
<tr>
<td>7a</td>
<td>Histological Section of Normal (Control) Bursa of Fabricius from SPF Chicken at Day 8 Post Inoculation (Score 1) (Magnification x 100)</td>
<td>107</td>
</tr>
<tr>
<td>7b</td>
<td>Histological Section of Bursa of Fabricius from IBDV Isolate 92/04 Infected SPF Chicken (Day 8 Post Inoculation) Showing Necrosis and Vacuolation of the Lymphoid Follicles and Infiltration of Inflammatory Cells and Fibroabiosis in the Interstitial Connective Tissue (Score 5) (Magnification x 100)</td>
<td>107</td>
</tr>
<tr>
<td>8a</td>
<td>TEM of Bursa of Fabricius from IBDV Isolate 92/04 Infected SPF Chicken (Day 3 Post Inoculation) Showing a Cluster of IBDV Particles (arrow) in the Cytoplasm of Lymphoid Cell (Magnification x 10,000)</td>
<td>108</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATION

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAF</td>
<td>Allantoamnionic fluid</td>
</tr>
<tr>
<td>AC</td>
<td>Antigen capture</td>
</tr>
<tr>
<td>AGDP</td>
<td>Agar gel diffusion precipitin</td>
</tr>
<tr>
<td>B</td>
<td>Bursa</td>
</tr>
<tr>
<td>B/B</td>
<td>Bursa/body weight</td>
</tr>
<tr>
<td>BGM</td>
<td>Baby grivet monkey kidney</td>
</tr>
<tr>
<td>BHK</td>
<td>Baby Hamster kidney</td>
</tr>
<tr>
<td>BLRI</td>
<td>Bangladesh Livestock Research Institute</td>
</tr>
<tr>
<td>bp</td>
<td>Basepair</td>
</tr>
<tr>
<td>C</td>
<td>Cytosine</td>
</tr>
<tr>
<td>Ca</td>
<td>Calcium</td>
</tr>
<tr>
<td>CAM</td>
<td>Chorioallantoic membrane</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary deoxyribonucleic acid</td>
</tr>
<tr>
<td>CEB</td>
<td>Chick embryo bursa</td>
</tr>
<tr>
<td>CEF</td>
<td>Chicken embryo fibroblast</td>
</tr>
<tr>
<td>CEK</td>
<td>Chicken embryo kidney</td>
</tr>
<tr>
<td>cm</td>
<td>Centimetres</td>
</tr>
<tr>
<td>CMGF</td>
<td>Chicken myelomonocytic growth factor</td>
</tr>
<tr>
<td>CsCl</td>
<td>Caesium chloride</td>
</tr>
<tr>
<td>CEP</td>
<td>Cytopathic effect</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>d-</td>
<td>Deoxy</td>
</tr>
<tr>
<td>DAS-ELISA</td>
<td>Double antibody sandwich</td>
</tr>
<tr>
<td>DI</td>
<td>Defective interfering</td>
</tr>
<tr>
<td>dd</td>
<td>Dideoxy</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>ds</td>
<td>Double stranded</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylene diamine tetra acetic acid</td>
</tr>
<tr>
<td>EID<sub>50</sub></td>
<td>Embryo infective dose fifty</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>Fig</td>
<td>Figure</td>
</tr>
<tr>
<td>FMDV</td>
<td>Foot and mouth disease virus</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloric acid</td>
</tr>
<tr>
<td>HIV</td>
<td>Human immunodeficiency virus</td>
</tr>
<tr>
<td>hv</td>
<td>Hypervariable</td>
</tr>
<tr>
<td>IBD</td>
<td>Infectious bursal disease</td>
</tr>
<tr>
<td>IBDV</td>
<td>Infectious bursal disease virus</td>
</tr>
<tr>
<td>IFN</td>
<td>Interferon</td>
</tr>
<tr>
<td>kb</td>
<td>Kilobase</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilodalton</td>
</tr>
<tr>
<td>KS</td>
<td>Karplus-Schulz</td>
</tr>
</tbody>
</table>
kV kilovolt
LB Luria-Bertani
LS Least Square
M Molar
Mab Monoclonal antibody
MD Maryland
ME Minimum evolution
Mg Magnesium
MK Monkey kidney
ML Maximum likelihood
MP Maximum Parsimony
ml Millilitre
SPF Specific pathogen free
MVP Malaysian Vaccine Pharmaceutical
mM Millimolar
μm Micrometre
μg Microgramme
NaCl Sodium chloride
NCR Non coding region
ng Nanogramme
NJ Neighbour-joining
nm Nanometre
NO2 Nitrogen dioxide
OK Ovine kidney
ORF Open reading frame
OsO4 Osmium tetra-oxide
P2 Passage two
P3 Passage three
PBS Phosphate buffered saline
PBL Peripheral blood lymphocytes
PCR Polymerase chain reaction
PHA Phytohemagglutinin
PHYLIP Phylogenetic interference package
p.i Post inoculation
QGDPT Quantitative gel diffusion precipitin test
RE Restriction endonuclease
RFLP Restriction fragment length polymorphism
RK Rabbit kidney
RT Reverse-transcriptase
RNA Ribonucleic acid
RdRp RNA dependent -RNA polymerase
rpm Revolution per minute
S Spleen
S/B Spleen/Bursa
SD Standard deviation
SDS Sodium dodecyl sulphate
SN Serum neutralisation test

xxi
SPSS Statistical package for social science
SS Single stranded
STC Standard Challenge strain
TAE Tris-acetate-EDTA
TBE Tris-borate-EDTA
TCVN Tissue culture virus neutralisation
TE Tris-EDTA
TEM Transmission electron microscopy
TEMED N,N,N',N',-tetramethylenediamine
Tm Melting Temperature
Tris 2-amino-2-(hydroxymethyl)-1, 3 propandiol
U Uracyl
UPGMA Unweighted pair group with arithmetic mean
UPM Universiti Putra Malaysia
VRI Veterinary Research Institute
vw Very virulent
VSA Vesicular stomatitis virus
(w/v) Weight/volume
X-gal 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside
> Greater than
~ Approximately

<table>
<thead>
<tr>
<th>Single/Three Letter Amino Acid Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alanine</td>
</tr>
<tr>
<td>Arginine</td>
</tr>
<tr>
<td>Asparagine</td>
</tr>
<tr>
<td>Aspartic Acid/Aspartate</td>
</tr>
<tr>
<td>Cysteine</td>
</tr>
<tr>
<td>Glutamine</td>
</tr>
<tr>
<td>Glutamic Acid/Glutamate</td>
</tr>
<tr>
<td>Glycine</td>
</tr>
<tr>
<td>Histidine</td>
</tr>
<tr>
<td>Isoleucine</td>
</tr>
<tr>
<td>Leucine</td>
</tr>
<tr>
<td>Lysine</td>
</tr>
<tr>
<td>Methionine</td>
</tr>
<tr>
<td>Phenylalanine</td>
</tr>
<tr>
<td>Proline</td>
</tr>
<tr>
<td>Serine</td>
</tr>
<tr>
<td>Threonine</td>
</tr>
<tr>
<td>Tryptophan</td>
</tr>
<tr>
<td>Tyrosine</td>
</tr>
<tr>
<td>Valine</td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION

Infectious bursal disease virus (IBDV) is the aetiological agent of infectious bursal disease (IBD) or Gumboro disease that causes significant losses to the poultry industries either by causing high mortality in an acute disease or as a consequence of immunosuppression in young chickens (3-6 weeks old) (Lukert and Saif, 1991; Van Den Verg, 2000). Infection by IBDV causes destruction of lymphoid organs, especially B-lymphocytes in the bursa of Fabricius (Hirai et al., 1974; Saif, 1991). Two distinct serotypes of IBDV, designated serotype 1 and 2 have been identified (Jackwood and Saif, 1987). The serotype 1 strains are pathogenic to chickens and vary in their virulence, whereas serotype 2 strains, isolated from turkeys, are apathogenic for both turkeys and chickens (Ismail et al., 1988; Jackwood et al., 1982 and McFerran et al., 1980). Serotype 1 can be divided on the basis of virulence and antigenic variation into classical virulent strain, very virulent (vv) strain and antigenic variant strain (Brown et al., 1994; Lasher and Shane, 1994; Snyder, 1990 and Zierenberg et al., 2000).

Infectious bursal disease is considered to be among the most costly infectious diseases affecting commercial poultry producers (Kibenge et al., 1988c; Lasher and Shane, 1994 and Shane et al., 1994). Economic losses
from IBD arise from direct mortality, a reduction in the performance of clinically ill birds, cost of control measures and increased carcass downgrades and condemnation due to gangrenous dermatitis, colisepticemia and air-sacculitis (Lasher and Shane, 1994; Lukert and Saif, 1997). Virus-induced immunosuppression adds to these costs, in the form of vaccination failures and increased incidence or severity of bacterial, viral, and parasitic diseases (Anderson et al., 1977; Lasher and Shane, 1994).

IBDVs are non-enveloped, icosahedral particles with a genome consisting of two segments (A and B) of double-stranded (ds) RNA that are packed inside a single-shelled capsid of about 60 nm in diameter. Nucleotide sequence analysis shows that segment A (~3.3 kb) has a long open reading frame (ORF) of 3036 bp in length and a short ORF of 435 bp (VP5), which overlaps with the 5' end of the long ORF (Kibenge et al., 1990). The long ORF encodes the VP2-VP4-VP3 polyprotein (110-kDa) which is cleaved by auto-proteolysis into individual viral proteins (VP2 and VP3) (Azad et al., 1985; Hudson et al., 1986). The shorter ORF has been shown to encode a small cystine-rich 17-kDa protein (Mundt et al., 1995). Of the three viral proteins, VP2 and VP3 are the major viral structural proteins, whereas VP4 is a minor protein involved in the processing of the precursor polyprotein (Dobos et al., 1979; Jagadish et al., 1988). The VP2 protein is exposed on the surface of the virion and contains strain-specific epitopes. In vitro expression of VP2 and its utilisation as an antigen revealed that VP2 is the