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Abstract—User reviews are a valuable source of feedback for software developers, as they contain user requirements, opinions, and 

expectations regarding app usage, including dislikes, feature requests, and reporting bugs. However, extracting and analyzing user 

requirements from user reviews is ineffective due to the large volume, unstructured nature, and varying quality of the reviews. 

Therefore, further research is not just necessary but crucial to effectively explore methods to gather informative and meaningful user 

feedback. This study aims to investigate, analyze, and summarize the methods of requirement classification and prioritization 

techniques derived from user reviews. This review revealed that leveraging opinion mining, sentiment analysis, natural language 

processing, or any stacking technique can significantly enhance the extraction and classification processes. Additionally, an updated 

matrix taxonomy has been developed based on a combination of definitions from various studies to classify user reviews into four main 

categories: information seeking, feature request, problem discovery, and information giving. Furthermore, we identified Naive Bayes, 

SVM, and Neural Networks algorithms as dependable and suitable for requirement classification and prioritization tasks. The study 

also introduced a new 4-tuple pattern for efficient requirement prioritization, which included elicitation technique, requirement 

classification, additional factors, and higher range priority value. This study highlights the need for better tools to handle complex user 

reviews. Investigating the potential of emerging machine learning models and algorithms to improve classification and prioritization 

accuracy is crucial. Additionally, further research should explore automated classification to enhance efficiency.  
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I. INTRODUCTION

In today's swiftly changing technology landscape, software 
evolution and maintenance have emerged as integral 
components of software engineering activities [1] to ensure 
the software remains functional and cost-effective [2]. 
Software evolution involves periodic updates to enhance 
features or eliminate unused functions. Meanwhile, software 
maintenance involves transforming, modifying, and updating 
software to meet customer requirements.  

Furthermore, it is imperative to acknowledge that user 
feedback, mainly through mobile app reviews, is a rich source 
of information [3]–[5], as they contain user requirements, 
opinions, and expectations regarding app usage, including 
dislikes, requests for new features, and bug reports [6], [7]. 
Therefore, it plays a crucial role in shaping the future of 
software evolution and maintenance.  

However, extracting and analyzing user requirements from 
user reviews is challenging due to the large volume, 

unstructured nature, and varying quality of the reviews. 
According to a study conducted by [8], user reviews generate 
large volumes [9] of data with noisy characteristics, as also 
stated by [10]. This data will grow exponentially and rapidly, 
leading to difficulties in classifying and prioritizing the 
software requirements derived from the reviews. 
Furthermore, Fereidouni et al. [11] state that identifying 
critical user feedback from many reviews remains an ongoing 
challenge. Therefore, further research is necessary to 
effectively explore methods to gather informative and 
meaningful user feedback [12]. Moreover, one of the 
problems faced is the unstructured nature of user reviews [13], 
[14]. The lack of structure in these reviews hinders the 
recognition of precise software requirements, as they often 
contain unclear and incomplete requirements. Another 
problem is the noise from the internet slang, shortcut 
grammar, and bad formatting [15]. Additionally, del Sagrado 
et al. [16] also stated the difficulty in selecting appropriate 
requirements for inclusion in the following app release. These 
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factors often raise doubts about the relevance and validity of 
the information extracted from the reviews. Another problem 
and challenge in user reviews is the varying quality of user 
reviews [17], [18], which can make the identification of 
helpful user feedback a very challenging task. The lack of 
uniform terminology can obstruct the development of 
practical software requirements. Therefore, this study 
addresses the research problem of how to classify and 
prioritize software requirements from user reviews. Table I 
below shows our study's comparison aspects that are different 
from the existing literature. 

Hence, this study aims to investigate, analyze, and 
summarize the methods of requirement classification and 
prioritization techniques derived from user reviews. To 
achieve this aim, we have crafted five Research Questions 
(RQs) to delve into the critical analysis of recently conducted 
research on classification and prioritization tasks based on 
eliciting user requirements from user reviews:  

 RQ1: What are the key challenges of incorporating user 
reviews for requirement classification and prioritization 
in software development? 

 RQ2: What techniques are commonly used in research 
studies to enhance the understanding of user needs with 
short text inputs, aiming to improve the technique of 
user requirement classification and prioritization? 

 RQ3: What are the predominant classifications of user 
reviews recommended in the preceding study? 

 RQ4: How did the previous scholars classify user 
requirements? 

 RQ5: What is a proper machine learning technique to 
be leveraged to enhance the accuracy of requirement 
classification and improve the requirement 
prioritization process in software development 
projects? 

This study's method followed Kitchenham et al.'s 
guidelines [19]. By providing a comprehensive review, the 
study contributes to the field of software engineering and to 
the research and practice of user review processing in 
software requirements engineering. This study also proposes 
a matrix user review of the taxonomy based on the definition 
and topic. Besides, this study proposes a novel pattern 
involving a 4-tuple structure that consists of an elicitation 
technique, requirement classification, additional factors, and 
priority value for each requirement.  

The structure of this paper is divided into the following 
sections. Section II introduces the materials and method. 
Section III reports the results and discussion. Furthermore, 
Section IV will present conclusions and potential future work. 

II. MATERIALS AND METHODS 

For our review, we followed the guidelines of Kitchenham 
et al. [19]. The selection of Kitchenham et al.'s method for this 
review is primarily due to its alignment with the specific 
needs of software engineering research, as discussed in the 
SEGRESS guidelines [19], while PRISMA was initially 
developed for the medical and healthcare fields. Besides that, 
Kitchenham’s approach offers tailored guidelines that better 
accommodate the diverse nature of software engineering 
studies, including mapping studies. This makes it more 
suitable for ensuring comprehensive and contextually 
relevant systematic literature reviews in this field. 

A. Eligibility Criteria 

Initially, we selected the studies based on their titles. After 
removing duplicate papers, we applied the following 
inclusion criteria (ICs) and exclusion criteria (ECs): 

1) Inclusion criteria: 

 IC1 Articles published between 2015 and 2023. 
 IC2 Articles are written in English. 
 IC3 Articles published in computer science. 
 IC4 Type of articles in the conference or journal format. 
 IC4Articles related to user review-based requirement 

engineering. 
 IC5 Articles available in digital format 

2) Exclusion criteria: 

 EC1 The paper is not peer-reviewed, book, review, or 
in press.  

 EC2 Articles that are not relevant to user review-based 
requirement engineering. 

 EC3 Articles that are duplicates or have substantial 
overlaps with other articles. 

 The EC4 website has no author and cannot be verified. 

B. Information Sources 

This study's data sources are gathered from four online 
digital libraries: ScienceDirect, IEEE Xplore, Scopus, and 
Web of Science. 

C. Search Strategy 

The search strategy was meticulously designed following 
the SEGRESS guidelines [19] to thoroughly review the 
literature on the classification and prioritization of user 
review-based software requirements. The strategy aimed to 
ensure an exhaustive collection of relevant studies, 
minimizing the risk of missing pertinent literature. The 
process was structured according to best practices outlined by 
[19], emphasizing transparency and replicability. 

The search was executed across four major academic 
databases: ScienceDirect, IEEE Xplore, Scopus, and Web of 
Science. These databases were selected for their extensive 
coverage of software engineering and related disciplines, 
ensuring access to a wide range of peer-reviewed articles, 
conference papers, and other relevant publications. 

A comprehensive search string was constructed to identify 
studies on the elicitation, prioritization, and classification of 
software requirements derived from user reviews. The search 
string was carefully crafted using Boolean operators "AND" 
and "OR" to combine key terms and their synonyms, allowing 
for flexibility and inclusiveness in the search process. For 
instance, a representative search string used in the databases 
was: 

TITLE-ABS-KEY(requirement AND (elicitation OR gathering) AND 
(classification OR classify OR grouping) AND (prioritization OR 
ranking OR weighting OR sorting) 

 
This search string reflects the topic's multifaceted nature, 

ensuring that studies covering various requirement elicitation 
and prioritization aspects were captured. The search terms 
were derived from an extensive preliminary literature review 
and iteratively refined to optimize search results. 
Additionally, alternative search terms were considered and 
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included in the search strategy to capture studies that may use 
different terminology. For instance, synonyms for 
"prioritization," such as "ranking" or "weighting," were 
included to ensure comprehensive coverage. This approach 
aligns with the guidance provided by [19] on enhancing the 
breadth and depth of search processes in systematic reviews. 

The search process guidelines suggest presenting the full 
electronic search strategy for at least one database, as shown 

in Table 5 [19]. This practice was followed to allow for the 
replication of the search process and to enhance the 
transparency of the review. Regarding search limitations, the 
search was restricted to English-language publications due to 
the reviewers' linguistic constraints and the predominance of 
English in academic publications in software engineering. No 
restrictions were placed on publication dates to capture 
foundational and recent studies.

TABLE I 
OUR STUDY VS. EXISTING LITERATURE 

Aspect Our Literature Study Existing Studies 

Challenges in 
Incorporating User 
Reviews 

Identifies specific challenges in 
using user reviews for 
requirement classification and 
prioritization. 

[20]: Discuss challenges in opinion mining from mobile app store reviews 
but not specifically for requirement classification and prioritization. 
[21]: Highlight challenges developers face with app store feedback but 
focus more on overall software engineering practices than just 
requirements. 

Techniques to Enhance 
Understanding of User 
Needs 

Investigates techniques that 
improve understanding of user 
needs through short text inputs. 

[22]: Examine various automated tools and technologies for requirements 
elicitation but do not focus on short text inputs. 
[23]: Provide a comprehensive review of deep learning models for text 
classification, including sentiment analysis but not specifically tied to 
requirements classification. 

Predominant 
Classifications of User 
Reviews 

Seeks to identify major 
classifications used in previous 
research. 

[24]: Classify non-functional requirements but do not specifically address 
user reviews. 
[25]: Use zero-shot learning for requirements classification but focus on 
functional vs. non-functional and security requirements. 

Classification Methods 
in Previous Studies 

Aims to understand the 
classification methods used by 
previous scholars. 

[26]: Review requirement prioritization techniques and their empirical 
evaluations but do not focus on classification methods. 
[27]: Analyze various requirements prioritization techniques but mainly 
discuss prioritization rather than classification methods. 

Machine Learning 
Techniques for 
Enhancing Accuracy 

Investigates suitable machine 
learning techniques to enhance 
the accuracy of requirement 
classification and prioritization. 

[28]: Propose a semi-automated requirements prioritization method using 
RankBoost and weighted PageRank. 
[29]: Review test case prioritization using genetic algorithms, highlighting 
the potential of machine learning but in the context of testing rather than 
requirements classification. 

D. Selection Process 

The researcher carefully read the titles and abstracts of each 
article to check if they were relevant. Then, they read the 
entire article to confirm their validity and find the needed 
information. This process ensured that the results contributed 
to evidence-based research. Most recent studies employed the 
Systematic Reviews and Meta-Analyses (PRISMA) method, 
like those cited in [30]–[32], among others. 

The detailed explanation of how the PRISMA technique 
was used in these studies is as follows: 

1) Identification: In this step, the researcher searched for 
relevant studies in different databases, such as IEEE Xplore, 
Scopus, ScienceDirect, and Web of Science. The researcher 
used specific and synonym keywords to define the search 
strategy. This initial phase of the systematic review resulted 
in 5262 publications related to the study topic from the four 
databases.  

2) Screening: In this step, the researcher removed 
duplicate articles using the duplicate function in Mendeley 
desktop repositories. Initially, 4731 publications were 
excluded, leaving 531 papers for further review based on 
specific inclusion and exclusion criteria. In total, 22 
publications were rejected due to duplication. 

3) Eligibility: In this step, 509 articles were prepared for 
review. During this stage, the researcher used Python to 
implement a high-level for screening keywords and article 
titles and a manual screening to ensure met the inclusion 
criteria and aligned with the current research objectives. 
Consequently, 376 data/papers/articles were excluded as they 
did not qualify due to the out-of-field, title not significantly, 
abstract not related to the study's objective, and no full-text 
access. A total of 133 articles were selected (see Fig. 1). 

4) Inclusion: In this step, the researcher included the 
final set of studies in the systematic review and meta-analysis. 
The researcher extracted data from the studies, synthesized 
the results, and reported the findings. 
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Fig. 1  Flow diagram of search study 

 

III. RESULTS AND DISCUSSION 

This section presents our findings for the research 
questions (RQs) defined in Section I.  

A. Challenges in incorporating user reviews (RQ1) 
The analysis revealed several challenges and limitations 

when dealing with user reviews, such as informal forms, 
unstructured formats, noise, short text, morphological 
complexities, and dialects, as shown in Table II. It is 
important to note that the sixth element, dialects, is only 
present in user reviews that are not in English.  

TABLE II 
 CHALLENGES IN USER REVIEW 

# Challenges in 

user review 

Non-English 

Review 

(Authors) 

English 

Review 

(Authors) 

1 Informal form [33], [34]  [35], [36] 
2 Unstructured 

format 
[37], [38]  [39], [40]  

3 Noisy word [41]–[43]  [44], [45]  
4 Short text [46]–[49]  [50], [51]  
5 Morphological 

complexity 
[52]–[54]  [55], [56]  

6 Dialect [57]–[61]   

1) Informal form: Analysis of user feedback often faces 
challenges when feedback is received in an informal form. 
This makes it difficult to obtain meaningful information. 

Traditional Natural Language Processing (NLP) models have 
difficulty dealing with the informal nature of the language 
users use, which requires a deep understanding of the true 
meaning behind their words. According to [33], informal 
expressions such as slang and abbreviations complicate the 
analysis process. Understanding and addressing these issues 
in user feedback analysis demands the development of a 
sophisticated natural language processing model. 

2) Unstructured format: This irregularity complicates the 
analysis process, especially when identifying valuable 
information [62]. According to [63], unstructured text is 
generally more complicated to process and analyze. To 
address this problem, we need innovative techniques to 
understand and extract meaningful information from 
unstructured feedback. This will help make the analysis and 
interpretation of feedback data more efficient. 

3) Noise: According to [64], short texts usually have 
fewer characters but more noise, affecting classification 
accuracy. To address this issue, integrating external 
knowledge with the model helps to understand short texts 
better and learn additional information [65]. Another 
approach involves reducing noise by removing unnecessary 
characters like hashtags, URLs, numbers, punctuation marks, 
and other symbols [66]. This method improves data clarity, 
similar to Yang et al. [67], removing noise before applying 
collocation and part-of-speech (POS) techniques to filter out 
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meaningless phrases. Both approaches highlight the 
importance of noise reduction in data preprocessing. 

4) Short text: Users often write short [68] and incomplete 
reviews, making analysis difficult. Short texts frequently do 
not follow proper syntax and typically contain colloquial 
terms (e.g., LOL, pwd, etc.), phonetic spellings, and other 
new words [69]. As a result, traditional NLP methods cannot 
be easily applied because of the short text length, leading to 
the problem of sparse features [70]. Short texts can often be 
ambiguous [71], [72] because they frequently contain words 
or phrases with multiple meanings. Some words have several 
distinct meanings, and some different words can mean the 
same thing. This ambiguity makes it difficult to determine the 
intended meaning of a short text [73]. Therefore, special 
techniques such as classification and association rule mining 
are needed for analyzing short texts [74]. 

5) Morphological: Morphology is the study of the 
internal structure of words, including how words are formed 
and their relationship to other words in the same language. 
The form of a word can changes depending on the context, 
which makes it difficult for NLP systems to process. This 
involves analyzing root words, prefixes, and suffixes [75]. 
The complexity of a language's morphology can cause 
problems for part-of-speech tagging because root words can 
transform into thousands of different forms, leading to data 
scattering issues, as noted in the context of the Arabic 
language [53]. Additionally, a language's morphological 
complexities and various dialects make semantic analysis 
particularly challenging [52]. 

6) Dialects: Users often use dialects and slang rather than 
formal language in their social media communications [61]. 
This can be challenging for NLP systems when analyzing user 
feedback. For example, [76] implemented a processing unit 
specifically for Arabic posts. This unit was designed to 
improve the data quality by removing redundant content, 
repeated posts, and irrelevant information like timestamps and 
'likes'. This approach to data preprocessing is essential to 
ensure the accuracy of the following analyses. 

B. Techniques to Enhance Understanding of User Needs 

(RQ2) 
User reviews represent an important, valuable source [77] 

of end-user feedback, aiding developers in identifying, 
categorizing, and prioritizing their software development 
requirements. Yet, user reviews typically form a short, 
informal text with a noisy tone, presenting challenges in 
extracting and analyzing pertinent information. 
Consequently, previous researchers have suggested and 
implemented diverse techniques to improve the 
comprehension of user needs from such concise texts. These 
techniques include: 

1) Opinion mining: This technique aims to extract 
relevant central information such as opinions, sentiments, 
emotions, or attitudes from comments and map them to 
software requirements. For example, [78] employed opinion 
mining to identify relevant parts of comments and associate 
them with both functional and non-functional requirements. 
Similarly, [79] emphasizes applying opinion-mining 
techniques to extract valuable insights from user reviews, 
which can inform software evolution and future research 
directions. 

2) Sentiment analysis: This technique calculates the 
polarity and subjectivity of user reviews and identifies 
whether the corpus expresses positive, negative, or neutral 
sentiments. For instance, [66] used sentiment analysis to 
assign quantitative values to user reviews based on their 
polarity and subjectivity scores. 

3) Natural Language Processing (NLP) is the most 
widely utilized technique in every study, and it involves 
processing and understanding natural language texts using 
various methods. Syntactic parsing, semantic analysis, word 
embeddings, or transformer models are the techniques that are 
being used in NLP. For example, Panichella et al. [80] used 
the Stanford Typed Dependencies parser to represent the 
grammatical relations between words in sentences and extract 
features for classification. Hua et al. [81] used knowledge-
intensive approaches based on lexical-semantic analysis to 
improve the accuracy of short-text understanding.

TABLE III 
NOVEL MATRIX TAXONOMY FOR USER REVIEW 

# Taxonomy Definition Topic 

1 Information 
seeking 

Efforts to acquire knowledge or assistance from other developers [80], users, or 
the software provider [82]. 

Question 

2 Feature 
requests 

Expressions of ideas, suggestions, or needs for enhancements, whether they pertain 
to the product, services, or their functionalities [80] or specifically to the software 
or product functionality [82], are essentially requests for improvement [38]. 

Feature request, content 
request, promise, 
improvement request, idea, 
suggestion, and shortcoming 

3 Problem 
discovery 

Statements that define issues and unexpected behaviors [80], or those expressing 
dissatisfaction or describing anomalies with the software or product [82], indicate 
potential improvement areas. 

Bug report, issues, 
dissatisfaction, emotion 

4 Information 
giving 

Communications that update other developers on planned updates [80] or those 
that express satisfaction or inform other users or sellers about product functionality 
[82] play a crucial role in the collaborative development process. 

Feature information, 
Satisfaction, emotion 

C. Predominant Classifications of User Reviews (RQ3) 
User reviews provide valuable feedback from end-users, 

helping developers enhance their software products. Previous 
studies have suggested classifying user reviews in various 

ways, including bug reports, functional and non-functional 
[62], [83]–[86], aspects, usability, user experience [76], and 
ratings [87]. This study created a new matrix taxonomy by 
combining definitions from different studies and topics. Its 
purpose is to categorize user reviews into four main types: 
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information seeking, feature request, problem discovery, and 
information giving, as detailed in Table III. 

D. Classification Methods in Previous Studies (RQ4) 

User reviews represent a precious source of end-user 
feedback, aiding developers in enhancing their software 
products. However, user reviews are not homogeneous. 
Depending on the review and why it was written, they can 
differ in their types and aspects. Therefore, previous studies 
have proposed different ways to classify user reviews, such 
as: 

1) Manual classification: some researchers have 
manually labeled user reviews based on predefined 
categories, such as bug reports, non-functional requirements, 
usability, user experience, or ratings. Most researchers ([62], 
[80], [88]) used manual classification for their studies. 

2) Pre-labeled datasets: Meanwhile, some researchers 
have used existing datasets labeled by other sources, such as 
app developers or third-party platforms, to train and evaluate 
their classification models. For instance, [35] and [89] used 
pre-labeled datasets for their studies. 

3) Specific aspects: Prior researchers have focused on 
specific aspects or attention mechanisms of user reviews, such 
as user ideas or text mining techniques, and used them as the 
basis for their classification methods. For instance, Wouters 

et al. [90] used user ideas in their study for classification, 
while Asadabadi et al. [91] used text-mining techniques to 
extract features for their classification. 

4) Novel approaches: Prior researchers have studied and 
proposed novel approaches to user review classification, such 
as assigning a unique identifier to each requirement, using a 
hierarchical structure to organize requirements, or using 
clustering techniques to group similar requirements (Garcia-
Lopez et al. [86]. For example, Cai et al. [12] proposed a 
unique identifier approach.  explored a hierarchical structure 
approach and studies on a clustering technique approach. 

5) Similarity values: Some researchers have used 
similarity values as extracted features to classify user reviews 
based on their relevance or importance to the software 
development process. Raharjana et al. [66] explored and 
utilized similarity values to classify user reviews based on 
their polarity and subjectivity. 

Moreover, using the stacking classier ensemble strategy 
can also improve classification accuracy by up to 89 percent 
Sai et al. [92]. For the same reason [93], the experiment 
showed that combining BERT with CNN, BERT with RNN, 
and BERT with BiLSTM resulted in good performance, 
especially regarding accuracy. Combining different methods 
within one model can enhance classification accuracy (see 
Table IV). 

TABLE IV 
OVERVIEW OF METHOD(S) USED BY VARIOUS AUTHORS 

Author(s) 

Classification Methods 

LR CNN LSTM Word2Vec FastText BERT ANN RNN SVM 
Naïve 

Bayes 
RF BDT 

Elhassan et al. [52]    �  �  �  �               
Sharma et al. [94]    �            �         
Sai et al. [92]  �                �  �  �   
Al-Buraihy et al. [41]                  �       
Agathangelou & 
Katakis [95] 

   �          �  �         

Yucel et al. [96]                        � 
Mandhasiya et al. [97]      �      �             
Qureshi et al. [98]  �                       
Alturayeif et al. [99]  �          �             

Note: LR: Logistic Regression, RF: Random Forest, BDT: boosted decision trees. 
 

E. Machine Learning Techniques for Enhancing Accuracy 

(RQ5) 
Machine learning techniques use data and algorithms to 

find patterns and make predictions or decisions based on the 
analysis. These methods can be applied for various purposes, 
such as classification and prioritization. Machine learning 
can: 

1) Automatically analyze user reviews [100] and extract 
the central information: user needs, preferences, sentiments, 
ratings, bug reports, or feature requests.  

2) Categorize the user reviews into several types of 
requirements classification: functional or non-functional, 
usability or user experience, enhancement, or new features.  

3) Assign priority values or ranks to user reviews: it is 
based on their importance, urgency, feasibility, or customer 
satisfaction. 

4) Evaluate the different classification and prioritization 

models: performance and accuracy. 

Some of the standard machine learning techniques that 
have been proposed and used for requirement classification 
and prioritization are: 

1) Naive Bayes: This technique is based on applying 
Bayes’ theorem, which calculates the probability of a class 
given a set of features. Naive Bayes assumes that the features 
are independent of the class. It is simple, fast, and effective 
for text classification tasks. For example, Maalej and Nabil 
[6] used Naive Bayes to classify user reviews into bug reports, 
non-functional requirements, usability, user experience, and 
ratings. 

2) Support Vector Machine (SVM): This technique is 
based on finding a hyperplane that separates the data points 
into different classes with the maximum margin. SVM can 
handle linear and non-linear classification problems using 
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different kernel functions. SVM is robust [101], [102], 
accurate [103], and efficient for text classification tasks. For 
example, Binkhonain and Zhao [83] used SVM to classify 
user reviews based on non-functional requirements and 
usability.  

3) Neural Networks: This technique simulates the 
structure and function of biological neurons in a network. 
Neural networks can learn complex and non-linear 
relationships between inputs and outputs using multiple layers 
of neurons with different activation functions. They are 
robust, flexible, and scalable for text classification tasks 
[104]–[106]. For example, Bhatia and Sharma [107] used 
neural networks to select the top k features for model training 
and evaluation. 

F. Discussion 
Requirement prioritization assigns importance or urgent 

values to user requirements and ranks them according to their 
relative significance for software development. For instance, 
Hujainah et al. [108] used a Binary Search Tree (BST) to rank 
requirements, while Aziz et al. [109] utilized the Kano model 
to identify which requirements satisfy the customers the most. 
Similarly, [110] utilized the Kano model to gather 
requirements and prioritize service improvements. Bhatia & 
Sharma [107] proposed using ANOVA f-value to rank a 
feature, and Asadabadi et al. [91] suggested weighting 
importance according to the time of review posting. 

 
Fig. 2  Essential elements required for effective requirement prioritization 

 

 
Fig. 3  Example tuple implemented in research 

TABLE V 
ESSENTIAL ELEMENTS REQUIRED FOR REQUIREMENT PRIORITIZATION 

# Tuple Description 

1 Elicitation technique Requirements elicitation involves obtaining information from stakeholders to understand their needs 
and expectations. Standard techniques include stakeholder analysis (identifying impacted parties) and 
brainstorming (generating ideas). Other methods include interviews, surveys, and user reviews. Each 
technique has advantages and disadvantages, depending on the project context. 

2 Requirement classification involves grouping user requirements into different categories based on their characteristics, such as 
functional, non-functional, usability, user experience, bugs, enhancement, or new features. Developers 
can analyze and manage requirements better using this approach. 

3 Additional factor Factors like ratings, sentiment, and attention mechanisms can influence requirement prioritization. 
These helps measure importance and assign priority values to user requirements. 

4 Higher range priority value A higher range priority values represent the urgency of user requirements. Various methods, such as 
Best Worst Scaling, Kendall’s W, or Okapi BM25, can be used. These values help rank requirements 
and select the most valuable ones for the next release. 

Through the literature search, the researcher found a few 
common elements that need to be considered to develop 

effective requirement prioritization or any research regarding 
prioritization. These multifaceted elements have been 
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collectively defined as a tuple within the context of this study. 
The tuples are (1) elicitation technique, (2) requirement 
classification, (3) additional factor, and (4) higher range 
priority value. These four tuples are derived from synthesis 
readings (see Table VI) and revealed a novel tuple pattern in 
prioritization to perform effective requirement prioritization. 

Table V explains each tuple and needs to be considered as an 
essential element, as presented in Fig. 2 and Fig. 3. This 
requirement prioritization can help developers select the most 
valuable and feasible requirements for the next release and 
allocate resources and time accordingly.

TABLE VI 
EXTRACTION AND MATCH TUPLE PATTERN 

Year Extract and match tuple pattern Author 

2021 [+{}]+[energy;entertainment;health;safety;other;]+[]+[] [107] 
[+{}]+[high;medium;low;]+[importance;cost;]+[WSM method] [108] 
[social network;+{number of likes;number of shares;emotions expressed;}]+[]+[number of likes;]+[] [111] 

2022 [focus group;+{stakeholder;budget;time;}]+[N/A]+[]+[Kendall's Correlation Coefficient;] [112] 
[focus group;+{stakeholder;cost;time;risk;project;}]+[urgency;non-urgency;]+[]+[IFS;Weighted Page Rank Algorithm;] [113] 
[mobile apps store;+{user review;}]+[critical;not critical;]+[likability;]+[predict the number of votes a negative review;] [11] 
[online review;+{gender;age;location;}]+[feature clusters]+[sentiment;attention;]+[weighted method;] [12] 
[social network;+{value;time;risk;cost;penalty;benefit;}]+[functional requirement;non-functional 
requirement;]+[]+[requirement priority matrix;] 

[85] 

 [use case;+{}]+[requirement sentence;]+[]+[AHP method] [114] 
 [user story;+{stakeholder;quality;budget;time;}]+[funtional requirement;non-functional requirement;]+[]+[Triangular Fuzzy 

Numbers;Alpha Cut approach;Weighted Average (WA);] 
[84] 

2023 [+{}]+[poor;mixed;good;]+[time of reviews;review usefulness;]+[] [91] 

IV. CONCLUSION 
Requirement prioritization is essential in software 

development. It enables developers to effectively identify and 
rank user requirements based on their significance, facilitating 
informed decision-making regarding resource allocation and 
project planning. The study highlights four critical 
elements—elicitation technique, requirement classification, 
additional factors, and higher range priority value—that 
collectively enhance the prioritization process. 

The study also underscores the critical importance of 
extracting software requirements from user reviews, 
highlighting the challenges posed by such feedback's informal 
and unstructured nature. Proposing a new taxonomy for 
categorizing user reviews and advocating for advanced 
machine learning techniques paves the way for future research 
to enhance the adaptability and efficiency of requirements 
engineering processes. 
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