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Abstract
Several extended Burr-type X distributions have been formed in the past decade.
These distributions are widely used in modeling lifetime data as their hazard functions
can fit various shapes, such as bathtub, decreasing, and increasing. However, certain
extended Burr-type X distributions may not adequately fit the unimodal hazard
function. Thus, this paper proposes a new extended distribution with greater
flexibility to solve this deficiency: exponentiated gamma Burr-type X distribution. We
provide the expressions for the probability density and cumulative distribution
functions of the proposed distribution, along with its statistical properties, such as
limit behavior, quantile function, moment function, moment-generating function,
Renyi entropy, and order statistics. To estimate the model parameters, we employ the
maximum likelihood estimation method, and we assess its performance through a
simulation study with different sample sizes and parameter values. Finally, to
demonstrate the application of this new distribution, we apply it to a real dataset
concerning the failure times of aircraft windshields. The results indicate that the new
distribution provides a superior fit compared to its submodels and the extended
Burr-type X distributions. Moreover, it proves to be highly competitive and can serve
as an alternative to certain nonnested models. In summary, the new distribution is
highly flexible, capable of modeling a variety of hazard-function shapes, including
decreasing, increasing, bathtub, and unimodal patterns.
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1 Introduction
In survival analysis, statistical distributions are widely used to describe lifetime data. How-
ever, while there are numerous distributions available for modeling lifetime data, some
datasets, particularly those with unimodal and bathtub-shaped hazard functions, may not
be well represented by existing models. Such shapes are commonly observed in survival
data analysis [25]. As a result, there has been increasing interest in developing more flex-
ible distributions by introducing additional parameters to the baseline distribution. Sub-
sequently, several new distributions have been introduced, such as Kumaraswamy expo-
nentiated Burr XII [4], beta Burr-type-V [11], Weibull Burr XII [3], type-I half-logistic
modified Weibull [12], and Marshall–Olkin generalized Burr XII [2] distributions. With
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the additional parameters added, all these new distributions have greater flexibility com-
pared to their baseline distribution. Thus, they can be used as an alternative distribution
for their submodels.

The Burr-type X distribution, a well-known model in survival analysis, is one of twelve
new distributions introduced by Burr in 1942 using a differential equation approach. Ac-
cording to Surles and Padgett [26], its initial form is a one-parameter distribution and has
been extended to a two-parameter distribution by adding a scale parameter, known as
two-parameter Burr-type X (BX). In recent years, several extended BX distributions have
been proposed, such as beta Burr-type X [19], gamma Burr-type X [16], Weibull Burr-
type X [15], exponentiated generalized Burr-type X [17], beta Kumaraswamy Burr-type
X [18], exponentiated Burr-type X [5], exponentiated Weibull Burr-type X [20] and expo-
nentiated beta Burr-type X [21]. These distributions are created by incorporating addi-
tional parameters into the BX distribution. Hence, with the additional parameters added,
these distributions have greater flexibility than the BX distribution and can accommodate
a broader range of hazard functions.

Khaleel et al. [16] introduced a three-parameter extended BX distribution known as
the gamma Burr-type X (GBX) distribution. It is formed using gamma-G [23] with the BX
distribution as the baseline distribution, where an additional parameter is added to the BX
distribution. The probability density function (pdf) and cumulative distribution function
(cdf ) of GBX are given as

g (x,α,λ, θ) =
2θλ2xe–(λx)2

�(α)

(
1 – e–(λx)2

)θ–1 [
–θ ln

(
1 – e–(λx)2

)]α–1
, x,α,λ, θ > 0

and

G (x,α,λ, θ) = 1 –
γ

[
α, –θ ln

(
1 – e–(λx)2

)]

� (α)
, x,α,λ, θ > 0, (1)

respectively, where � (α) is the gamma function, and γ
[
α, –θ ln

(
1 – e–(λx)2

)]
is the lower

incomplete gamma function. It is noted that this distribution can only model increasing,
decreasing, and bathtub-shaped hazard functions but not the unimodal-shaped hazard
function. Thus, we propose a new distribution, namely exponentiated gamma Burr-type
X (EGBX) distribution. It is a four-parameter distribution where an additional parameter
is added to the GBX distribution using the exponentiated type of distributions [13]. Hence,
with the additional parameter, we expect the new distribution to be more flexible and solve
the inadequacy of GBX distribution.

This paper is outlined as follows. In Sect. 2, we derive the cdf, pdf, and hazard function of
the EGBX distribution. Sections 3 and 4 explain the derivation of the statistical properties
and the likelihood function, respectively. In addition, the limit behavior of both cdf and pdf
of the EGBX distribution when x approaches infinity and zero are also discussed in Sect. 3.
Section 5 shows the performance of the EGBX distribution via simulation studies. The
application of the EGBX distribution with two real datasets is then illustrated in Sect. 6.
Finally, we conclude the outcomes of the study in Sect. 7.
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2 Exponentiated gamma Burr-type X distribution
In this study, we introduce a new four-parameter distribution called the exponentiated
gamma Burr-type X distribution. This distribution is constructed by applying the expo-
nentiated distribution approach [13] to the GBX distribution as the baseline, with an ad-
ditional parameter included in the GBX distribution. The EGBX distribution cdf can be
obtained by taking the γ exponent on equation (1),

G (x,α,γ ,λ, θ) =

⎡
⎣1 –

γ
[
α, –θ ln

(
1 – e–(λx)2

)]

� (α)

⎤
⎦

γ

, x,α,γ ,λ, θ > 0 (2)

and its pdf is derived by differentiating equation (2),

g (x,α,γ ,λ, θ) =
2γ θλ2xe–(λx)2

� (α)

(
1 – e–(λx)2

)θ–1 [
–θ ln

(
1 – e–(λx)2

)]α–1

×
⎡
⎣1 –

γ
[
α, –θ ln

(
1 – e–(λx)2

)]

� (α)

⎤
⎦

γ –1

, x,α,γ ,λ, θ > 0,

(3)

where � (α) and γ
[
α, –θ ln

(
1 – e–(λx)2

)]
are the gamma function and lower incomplete

gamma function, respectively. The hazard function of the EGBX distribution is written as

h (x,α,γ ,λ, θ) =
2γ θλ2xe–(λx)2

� (α)

(
1 – e–(λx)2

)θ–1 [
–θ ln

(
1 – e–(λx)2

)]α–1

× 1([
1 –

γ
[
α,–θ ln

(
1–e–(λx)2

)]

�(α)

]1–γ

+
γ
[
α,–θ ln

(
1–e–(λx)2

)]

�(α)
– 1

) ,

which is derived by taking the ratio of its pdf to its survival function. The pdf and hazard
function of the EGBX distribution with different parameter values are displayed in Figs. 1
and 2, respectively. Figure 2 shows that the EGBX distribution’s hazard function can be
determined in different shapes, including decreasing, increasing, unimodal, and bathtub.
Additionally, the EGBX distribution is highly flexible and can be simplified to several well-
known distributions by setting certain parameters to 1. These distributions are known as

Figure 1 Probability Density Functions for the EGBX Distribution
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Figure 2 Hazard Functions for the EGBX Distribution

Table 1 Submodels for the EGBX Distribution

Distribution Parameter values

α γ λ θ

Gamma Burr-Type X α 1 λ θ

Burr-Type X 1 1 λ θ

Rayleigh 1 1 λ 1

its submodels, as presented in Table 1. For example, the EGBX distribution approaches
the GBX distribution when γ = 1, and reduces to the BX distribution when α = γ = 1. It is
proved that the EGBX distribution can cover the characteristics of its submodels, and it
has superior flexibility to its submodels.

3 Statistical properties
This section outlines several key statistical properties of the EGBX distribution, includ-
ing its limit behavior, linear form, quantile function, moment function (mf), moment-
generating function (mgf), Renyi entropy, and order statistics.

Referring to equations (2) and (3), when x approaches zero, we have

lim
x→0

(
1 – e–(λx)2

)
= 0

and

lim
x→0

ln
(

1 – e–(λx)2
)

= –∞.

Subsequently, the lower incomplete gamma function in equations (2) and (3), γ
[
α,

–θ ln
(

1 – e–(λx)2
)]

, is reduced to the gamma function, � (α). Hence, as x approaches zero
this gives

lim
x→0

g (x,α,γ ,λ, θ) = lim
x→0

G (x,α,γ ,λ, θ) = 0.

In contrast, as x approaches infinity, we obtain

lim
x→+∞

(
1 – e–(λx)2

)
= 1
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and

lim
x→+∞ ln

(
1 – e–(λx)2

)
= 0.

Also, the lower incomplete gamma function in equations (2) and (3), γ
[
α, –θ ln

(
1 –

e–(λx)2
)]

, become zero. Thus, when x approaches infinity, the limits of the cdf and pdf
of the EGBX distribution are given as

lim
x→+∞ G (x,α,γ ,λ, θ) = 1

and

lim
x→+∞ g (x,α,γ ,λ, θ) = 0,

respectively. Additionally, 1 – e–(λx)2 increases from zero to 1 when x increases. Subse-
quently, –θ ln

(
1 – e–(λx)2

)
reduces from infinity to zero. Hence, the cdf of the EGBX dis-

tribution is a nondecreasing function. In conclusion, both the cdf and pdf of the EGBX
distribution satisfy the characteristics of a probability distribution. By implementing the
binomial expansion and power series, the pdf of the EGBX distribution in equation (3) can
be expressed in a linear form, such as

g (x,α,γ ,λ, θ) = 2γ θα

∞∑
i=1

∞∑
j=1

∞∑
k=1

Vijkx2k+1
(
γ

[
α, –θ ln

(
1 – e–(λx)2

)])j

×
[

ln
(

1 – e–(λx)2
)]α–1

,

(4)

where

Vijk =
(–1)i+j+k+α–1 (i + 1)k λ2(k+1)

k! [� (α)]j+1

(
θ – 1

i

)(
γ – 1

j

)
.

The linear form above is useful for deriving the statistical properties of the EGBX distri-
bution.

The quantile function of the EGBX distribution can be found by inverting its cdf, that is

Q (u) =
1
λ

[
–ln

(
1 – e– v

θ

)] 1
2 , (5)

where u = g(α,γ ,λ, θ ) and v = γ –1
[
α,

(
1 – u

1
γ

)
�(α)

]
, which is the inverse function of

the lower incomplete gamma function. The quantile function in equation (5) is then used
for generating the EGBX random variable by setting U ∼ U(0, 1).

Also, the rth moment of the EGBX distribution is defined as

E
(
Xr) =

∫ ∞

0
xrg (x,α,γ ,λ, θ)dx.
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Using equation (4), we obtain

E
(
Xr) = 2γ θα

∞∑
i=1

∞∑
j=1

∞∑
k=1

Vijk

×
∫ ∞

0

[
x2k+r+1

(
γ

[
α, –θ ln

(
1 – e–(λx)2

)])j [
ln

(
1 – e–(λx)2

)]α–1
]

dx.

The rth moment of the EGBX distribution is helpful in exploring the characteristics of the
distribution. It can be used to obtain the mean, median, coefficient of variation, kurtosis,
and skewness of the EGBX distribution.

As its name suggests, the moment-generating function (mgf) can be used to produce
the rth moment of the distribution. The mgf of the EGBX distribution is given as

MX (t) =
∫ ∞

–∞
etxg (x,α,γ ,λ, θ)dx. (6)

By substituting equation (4) into equation (6), we obtain

E
(
Xr) = 2γ θα

∞∑
i=1

∞∑
j=1

∞∑
k=1

Vijk

∫ ∞

–∞

[
etxx2k+1

(
γ

[
α, –θ ln

(
1 – e–(λx)2

)])j

×
[

ln
(

1 – e–(λx)2
)]α–1

]
dx

and this can be rewritten as

E
(
xr) = 2γ θα

∞∑
i=1

∞∑
j=1

∞∑
k=1

∞∑
l=1

Vijk

∫ ∞

–∞

[
tlx2k+l+1

l!

(
γ

[
α, –θ ln

(
1 – e–(λx)2

)])j

×
[
ln

(
1 – e–(λx)2

)]α–1
]

dx

by using the power series of an exponential function.
Suppose x1, x2, . . . , xn is the random sample of the EGBX distribution. Then, the ith-

order statistic of the EGBX distribution is defined as

fx(i) (x) =
n!

(i – 1)! (n – i)!
f (x) [F (x)]i–1 [1 – F (x)]n–i , (7)

where f (x) and F(x) are the pdf and cdf of the EGBX distribution, respectively. With the
binomial expansion and incorporating the beta function, equation (7) can be rewritten as

fx(i) (x) =
f (x)

B(i, n – i + 1)

n–i∑
j=0

(–1)j

(
n – i

j

)
[F (x)]i+j–1 . (8)

By inserting equations (2) and (3) into (8), we have

fx(i) (x,α,γ ,λ, θ) =
2γ θλ2xe–(λx)2

� (α)B (i, n – i + 1)

(
1 – e–(λx)2

)θ–1 [
–θ ln

(
1 – e–(λx)2

)]α–1
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×
n–i∑
j=0

(–1)j

(
n – i

j

)⎡
⎣1 –

γ
[
α, –θ ln

(
1 – e–(λx)2

)]

� (α)

⎤
⎦

γ (i+j)–1

and this then can be simplified as

×
n–i∑
j=0

∞∑
k=0

∞∑
l=0

∞∑
m=0

λ2(m+1)x2m+1Vijkl

(
γ

[
α, –θ ln

(
1 – e–(λx)2

)])l

[� (α)]l+1 ,

where

Vijklm =
(–1)j+k+l+m

m!
(k + 1)m

(
n – i

j

)(
θ – 1

k

)(
γ

(
i + j

)
– 1

l

)
.

In addition, the ϕ-order Renyi entropy of the EGBX distribution is

Iϕ (x) =
1

1 – ψ
log

(∫ ∞

–∞

[
g (x)

]ϕ dx
)

. (9)

By referring to equations (3) and (9), we use the binomial expansion and obtain

[
g (x)

]ϕ =
(
2γ θλ2x

)ϕ
[
–θ ln

(
1 – e–(λx)2

)]ϕ(α–1)

×
∞∑
i=0

∞∑
j=0

(
ϕ (θ – 1)

i

)(
ϕ (γ – 1)

j

)
(–1)i+j wj

[� (α)]j+1 e–(i+ϕ)(λx)2
,

(10)

where w = γ
[
α, –θ ln

(
1 – e–(λx)2

)]
. Subsequently, we may rewrite equation (10) as

[
g (x)

]ϕ = (2γ )ϕ θαϕ
[

–ln
(

1 – e–(λx)2
)]ϕ(α–1)

×
∞∑
i=0

∞∑
j=0

∞∑
k=0

Bijkwjλ2(ϕ+k)xϕ+2k

[� (α)]j+1 ,
(11)

by expanding the exponential term using its power series, where

Bijk =
(

ϕ (θ – 1)

i

)(
ϕ (γ – 1)

j

)
(–1)i+j+k

k!
(i + ϕ)k .

Finally, the Renyi entropy of the EGBX distribution is derived as

Iϕ (x) =
(2γ )ϕ θαϕ

1 – ψ

× log

⎛
⎜⎝

∞∑
i=0

∞∑
j=0

∞∑
k=0

⎛
⎜⎝

∫ ∞

–∞

Bijkwjλ2(ϕ+k)xϕ+2k
[

–ln
(

1 – e–(λx)2
)]ϕ(α–1)

[� (α)]j+1 dx

⎞
⎟⎠

⎞
⎟⎠ ,

by substituting equation (11) into equation (9).
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4 Parameters estimation
We use the maximum likelihood estimation approach to estimate the unknown param-
eters by maximizing the likelihood or log-likelihood functions. Here, the log-likelihood
function of the EGBX distribution is

l (x,α,γ ,λ, θ) =
n∑

i=0

[
ln (2γ θ) + 2ln (λ) + ln (xi) – (λxi)

2 – ln [� (α)]
]

+ (θ – 1)
n∑

i=0

ln
(

1 – e–(λx)2
)

+ (α – 1)

n∑
i=0

ln
[
–θ ln

(
1 – e–(λx)2

)]

+ (γ – 1)

n∑
i=0

ln

⎡
⎣1 –

γ
[
α, –θ ln

(
1 – e–(λx)2

)]

� (α)

⎤
⎦ .

(12)

To maximize equation (12), we obtain all the first-order partial derivatives for parameters
α, γ , λ, and θ as below

∂l
∂α

= –
n�′(α)

� (α)
+

n∑
i=1

ln(–wi) + (γ – 1)

n∑
i=1

γ (α, –wi)�′ (α) – γ ′(α, –wi)� (α)

� (α) [� (α) – γ (α, –wi)]
,

∂l
∂γ

=
n
γ

+
n∑

i=1

ln
[

1 –
γ (α, –wi)

�(α)

]
,

∂l
∂λ

=
2n
λ

+ (θ – 1)

n∑
i=1

2λx2
i

e(λxi)2 – 1
+ (γ – 1)

n∑
i=1

2λθx2
i e–(λxi)2+θ (–wi)

α–1

� (α) – γ (α, –wi)

+ (α – 1)

n∑
i=1

2λθx2
i(

e(λxi)2 – 1
)

ln
(

1 – e–(λxi)2
)

and

∂l
∂θ

=
n
θ

+
n (α – 1)

θ
+

n∑
i=1

ln
(

1 – e–(λxi)2
)

+ (1 – γ )

n∑
i=1

θα–1eθ
(

1 – e–(λxi)2
)[

–ln
(

1 – e–(λxi)2
)]α

� (α) – γ (α, –wi)
,

where wi = θ ln
(

1 – e–(λxi)2
)

, �′ (α) =
∫ ∞

0 tα–1ln (t) e–tdt, and γ ′ (α, –wi ) =
∫ –wi

0 tα–1 ×
ln (t) e–tdt. The numerical approach BFGS is implemented to obtain the maximum likeli-
hood estimates of the EGBX distribution parameters.

5 Simulation
In this section, we assess the performance of the EGBX distribution through simulation
studies with various sample sizes (n = 50, 150, 300, 400, 500) and different sets of pa-
rameter values ((α,γ ,λ, θ ) = {(2, 25, 0.5, 0.3) , (0.75, 0.45, 0.7, 0.65) , (1.5, 0.5, 1.5, 2)}).
Different sample sizes are chosen to investigate the performance of the EGBX distribution
in cases with small to large sample sizes. Meanwhile, the three sets of parameter values
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Table 2 Average, RMSE, and Bias of the EGBX distribution for Different Sets of Parameter Values

α = 2 γ = 25 λ = 0.5 θ = 0.3

Average RMSE Bias Average RMSE Bias Average RMSE Bias Average RMSE Bias

Set 1
n = 50 2.0376 0.4918 0.0376 25.0024 0.0112 0.0024 0.5182 0.1097 0.0182 0.3212 0.1064 0.0212
n = 150 2.0027 0.2280 0.0027 25.0004 0.0046 0.0004 0.5067 0.0563 0.0067 0.3053 0.0503 0.0053
n = 300 1.9997 0.1602 –0.0003 25.0002 0.0031 0.0002 0.5042 0.0368 0.0042 0.3025 0.0366 0.0025
n = 400 2.0006 0.0751 0.0006 25.0001 0.0014 0.0001 0.5014 0.0303 0.0014 0.3019 0.0218 0.0019
n = 500 1.9968 0.0882 –0.0032 25.0000 0.0016 0.0000 0.5024 0.0230 0.0024 0.3008 0.0218 0.0008

α = 0.75 γ = 0.45 λ = 0.7 θ = 0.65

Average RMSE Bias Average RMSE Bias Average RMSE Bias Average RMSE Bias

Set 2
n = 50 0.9895 0.6974 0.2395 0.6741 0.3276 0.2241 0.7800 0.3886 0.0800 0.5243 0.2461 –0.1257
n = 150 0.8582 0.4595 0.1082 0.5486 0.1734 0.0986 0.7463 0.2644 0.0463 0.5796 0.1789 –0.0704
n = 300 0.8082 0.3374 0.0582 0.5033 0.1101 0.0533 0.7311 0.1962 0.0311 0.6081 0.1461 –0.0419
n = 400 0.7822 0.2722 0.0322 0.4840 0.0759 0.0340 0.7259 0.1616 0.0259 0.6176 0.1169 –0.0324
n = 500 0.7907 0.2572 0.0407 0.4807 0.0670 0.0307 0.7145 0.1426 0.0145 0.6219 0.1060 –0.0281

α = 1.5 γ = 0.5 λ = 1.5 θ = 2.0

Average RMSE Bias Average RMSE Bias Average RMSE Bias Average RMSE Bias

Set 3
n = 50 1.8066 0.6155 0.3066 0.6940 0.4770 0.1940 1.4176 0.2846 –0.0824 1.9500 0.5095 –0.0500
n = 150 1.6479 0.3979 0.1479 0.5910 0.2637 0.0910 1.4527 0.2005 –0.0473 1.9384 0.3510 –0.0616
n = 300 1.5923 0.3008 0.0923 0.5518 0.1689 0.0518 1.4701 0.1522 –0.0299 1.9593 0.2925 –0.0407
n = 400 1.5787 0.2850 0.0787 0.5391 0.1507 0.0391 1.4721 0.1870 –0.0279 1.9789 0.2860 –0.0211
n = 500 1.5729 0.2533 0.0729 0.5380 0.1386 0.0380 1.4736 0.1270 –0.0264 1.9632 0.2425 –0.0368

cover increasing, bathtub, and unimodal hazard functions, respectively. We use the quan-
tile function of the EGBX distribution in equation (5) to generate the random variable and
then we fit the data using the EGBX distribution. For each case considered in this study,
the simulation is conducted 2000 times, with the average value (Ave), root mean square
error (RMSE), and bias of all estimations recorded and shown in Table 2.

Referring to Table 2, for all three sets of parameter values we consider, we observe that all
the average values are close to their true values, while the differences between the average
value and true value become smaller as the sample size increases. On the other hand, the
bias is closer to zero, while the RMSE decreases when the sample size increases from 50
to 500. Thus, all the parameter estimators are asymptotically unbiased. This shows that
the maximum likelihood estimation approach performed well for all the selected sample
sizes. Therefore, we can conclude that maximum likelihood is suitable for estimating the
EGBX distribution’s parameters and performs better for a larger sample size.

6 Numerical examples
To illustrate the application of the EGBX distribution, a real dataset: the failure time of 84
aircraft windshields [27] is used in this section. We investigate its performance along with
its submodels, some extended Burr-type X distributions, and several nonnested models.
The submodels and extended Burr-type X distributions are Weibull Burr-type X (WBX),
beta Burr-type X (BBX), exponentiated generalized Burr-type X (EGEBX), GBX, and BX
distributions. Meanwhile, the nonnested models have exponentiated Burr-type XII Pois-
son (EBXIIP) [10], exponentiated Weibull Burr-type XII (EWBXII) [1], beta Burr-type
XII (BBXII) [22], and generalized Marshall–Olkin extended Burr-XII (GMOBXII) [14]
distributions. These nonnested models are chosen because they are an extension of the
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Table 3 Chi-Square Goodness of Fit Test of All Competing Models for Failure Time of 84 Aircraft
Windshields

Model Test statistics p-value

EGBX 4.7260 0.4502
WBX 3.1590 0.6755
BBX 3.8452 0.5719
EGEBX 5.5518 0.3523
GBX 3.8420 0.6981
BX 3.4803 0.8373

Nonnested Model
GMOBXII 3.1485 0.6771
EBXIIP 2.9773 0.5616
EWBXII 5.5987 0.2312
BBXII 7.2030 0.1255

Burr-type XII distribution, another distribution introduced by Burr [9]. Additionally, these
nonnested models have four or five parameters, similarly to the EGBX distribution. We
use the maximum likelihood approach to estimate the parameters of all competing mod-
els. Next, we fit the competing models to the Kaplan–Meier survival function to guess the
initial value of each parameter.

The performance of all competing models is assessed through the chi-square goodness
of fit test, Akaike (AIC) [6], Bayesian (BIC) [24], correlated Akaike (CAIC), and Hannan–
Quinn (HQIC) information criteria, as presented in Tables 3 and 4. The chi-square good-
ness of fit test examines whether the data follows a specific distribution. Meanwhile, the
information criteria assess the model fit, where a smaller value of these criteria implies a
superior fit. Lastly, the corresponding survival functions are also plotted in Fig. 3.

As shown in Table 3, all the p-values are greater than 0.05. Hence, we can conclude that
all the competing distributions can be used to model the first dataset. At the same time,
from Table 4, we can see that the EGBX distribution is the best-fitted distribution among
its submodels and the extended Burr-type X distributions because it has the smallest val-
ues for all criteria except for BIC. However, the difference between its BIC value and the
smallest BIC value is small, indicating no significant difference in their performance. Fur-
thermore, the EGBX distribution is a strong contender among nonnested models, demon-
strating the second smallest values for AIC, BIC, CAIC, and HQIC. Therefore, we can
conclude that EGBX provides a good fit for the dataset and is a formidable alternative to
nonnested models.

7 Conclusion
This study introduced a new four-parameter distribution known as the exponentiated
gamma Burr-type X distribution that is an extension of the gamma Burr-type X distribu-
tion to solve the deficiency of the GBX distribution. It has high flexibility and can accom-
modate hazard functions in numerous shapes, including decreasing, increasing, bathtub,
and unimodal, which is not covered by the GBX distribution. We explore its cdf and pdf
together with various statistical properties, including limit behavior, linear form, quantile
function, mf, mgf, order statistics, and Renyi entropy. The quantile function is then used
to simulate the EGBX random variable. We utilize the maximum likelihood estimation
approach to estimate the parameters of the EGBX distribution. Next, we perform a simu-
lation study using various parameter values and sample sizes to evaluate the performance
of the EGBX distribution. The results indicate that the maximum likelihood estimation
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Table 4 MLEs, log-likelihood, AIC, BIC, CAIC, and HQIC of All Competing Models for Failure Time of 84
Aircraft Windshields

Model MLEs Negative log-likelihood AIC BIC CAIC HQIC

EGBX α̂ = 0.1657 127.130 262.259 272.030 262.759 266.189
γ̂ = 3.5116
λ̂ = 1.0737
θ̂ = 0.0301

WBX α̂ = 113.3565 129.343 266.687 276.410 267.193 270.596
β̂ = 0.1087
λ̂ = 0.0499
θ̂ = 11.1418

BBX α̂ = 11.7643 130.067 268.134 277.857 268.641 272.043
β̂ = 0.4201
λ̂ = 0.5738
θ̂ = 0.0824

EGEBX α̂ = 11.3297 127.234 262.467 272.190 262.973 266.376
β̂ = 0.3559
λ̂ = 0.1931
θ̂ = 2.7592

GBX γ̂ = 0.4184 130.060 266.120 273.412 266.420 269.051
λ̂ = 0.5750
θ̂ = 0.9456

BX λ̂ = 0.3801 130.470 264.939 269.801 265.087 266.894
θ̂ = 1.1988

GMOBXII α̂ = 146.5491 127.854 263.709 273.432 264.215 267.617
β̂ = 1.9643
λ̂ = 1.6207
θ̂ = 4.3481

EBXIIP α̂ = 9.1600 129.718 269.437 281.591 270.206 274.322
β̂ = 2.7440
γ̂ = 0.5574
λ̂ = 9.7147
θ̂ = 4.3524

EWBXII α̂ = 6.7793 124.348 258.695 270.849 259.464 263.581
β̂ = 3.1281
γ̂ = 0.7518
λ̂ = 0.0255
θ̂ = 0.1497

BBXII α̂ = 6.6405 126.784 263.568 275.723 264.338 268.454
β̂ = 3.4900
γ̂ = 4.0034
λ̂ = 0.3570
θ̂ = 4.9392

method is effective for estimating the parameters of the EGBX distribution. Finally, we
applied the EGBX distribution to a real dataset to demonstrate its performance. The re-
sult revealed that the suggested distribution provides a better fit than its submodels and
some extended Burr-type X distributions. Additionally, it is a strong competitor to other
competing models in this study, particularly the four nonnested models. The proposed
distribution can model various types of survival data across multiple fields, including engi-
neering and medicine. However, this study does not explore scenarios involving censored
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Figure 3 Estimated Survival Function for All Competing Models for Failure Time of 84 Aircraft Windshields

observations and covariates, which are crucial in survival analysis [7, 8]. Hence, future
research should consider the existence of censoring and covariates.
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