
1

Journal of Oil Palm Research 
DOI: https://doi.org/10.21894/jopr.2024.0054

INTRODUCTION

Oil palm has the highest oil yield, and it is harvested 
regularly throughout the year (DoCampo et al., 
2021; Yawson, 2015). Globally, its production 
expands steadily (Dislich et al., 2017; Kawamura 
et al., 2014; Paterson and Lima, 2017) and typically 

reaches its maximum yield at 9-10 years after field 
planting, with an average fresh fruit bunch (FFB) 
yield of 16.6-25.6 t ha–1 in Malaysia (Kushairi et al., 
2019; MPOB, 2022). Although oil palm originated 
from Africa, Indonesia, Malaysia, China, and India 
are now the major producers and importers (Carr, 
2011), thus dominating the global oil palm industry 
(Abubakar and Ishak, 2022; Voora et al., 2019; 
World Bank, 2021). Oil palm greatly contributes 
to Malaysian socioeconomic performance  
(Norizan et al., 2021).

Oil palm production in Malaysia is limited 
because of water stress resulting from water deficits 
(Mutert et al., 1999; Norizan et al., 2021), which is 
identified as the primary constraint to optimum 
yields (Woittiez et al., 2017). Water for oil palm 
production comes primarily from precipitation 
(Miller and Donahue, 1992; Shevade and Loboda, 
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2019), which is often insufficient or not distributed 
uniformly throughout the year, leading to water 
stress and a decline in yield.

Global warming due to climate change (CC) 
causes water shortages (Jagtap, 2007; Teh, 2017). 
Mueller (2009) and Okon et al. (2021) reported 
that CC is a phenomenon that affects different 
regions of the world in various negative ways, 
particularly the tropics (Idowu et al., 2011;  
Williams et al., 2018). The impact of CC through 
water stress inducement places more pressure on 
crop production globally than in any other sector 
(IPCC, 2014). This suggests that more research is 
required on the impact of CC on crop production 
(Koh et al., 2011; Okon et al., 2021). The adverse 
effects of CC on crop production are both direct 
and indirect, as well as short- and long-term 
(Fitton et al., 2019; Obioha, 2008). For instance, CC-
induced water stress causes oil palm seedlings to 
wilt, experience stunted growth, and suffer from 
impaired root development (Okon et al., 2021). 
Over the past decades, efforts to combat CC have 
been costly, placing a strain on countries both 
economically and technically (Abubakar et al., 
2021; IPCC, 2021).

The effects of CC on the oil palm industry are 
evident. Intense solar radiation and temperature 
are twin CC elements that cause oil palm yield 
reductions (Hoffmann et al., 2015) through 
their effects on critical physiological processes 
(photosynthesis, respiration, and transpiration) 
(Cheah et al., 2020; Teh and Cheah, 2023). Henson 
and Harun (2005) linked the impact of CC to 
seasonal fluctuations in the heat energy balance, 
which affects the oil palm FFB yields at many sites in 
Malaysia. Henson and Harun (2005) acknowledged 
that the effects of CC in some parts of Kedah, 
Malaysia, were so severe that rainfall during April, 
May, and June was significantly reduced, with 
average rainfall amounting to only one-third of the 
reference evapotranspiration (ETo). For instance, 
February recorded a mere 0.4 mm ETo. Hoffmann 
et al. (2015) observed a wide range of FFB reduction 
under various water stress scenarios. MPIC (2018) 
emphasised the need for accurate and real-time 
data on oil palm response to water stress and its 
causal factors for biotechnology and breeding 
projects aimed at developing climate-resilient oil 
palm planting materials.

Against this backdrop, this review aims to 
navigate through previous studies to harmonise 
various submissions on oil palm behaviour when 
exposed to water stress under varying climate 
conditions. The goal of this study was to identify 
research gaps and suggest possible ways forward. 
We utilised search engines like Google and Edge, as 
well as academic databases such as ScienceDirect 
and Google Scholar, to conduct a comprehensive 
literature search.

IMPORTANCE OF OIL PALM PRODUCTION

Oil palm is central to the global oil market 
(DoCampo et al., 2021). Although it has the least 
cultivated area for oil crops (Oil World, 2022),  
its oil output greatly surpasses (20 times) those 
of Glycine max L. (soybean), Arachis hypogaea 
L. (groundnut), Brassica napus L. (canola), and 
Helianthus annus L. (sunflower) (Chang et al., 
2014; Low, 2019; Moraidi et al., 2012; Woittiez et 
al., 2017). Corley and Tinker (2016) and Murphy 
(2021) stated that worldwide, palm oil accounts 
for approximately 39% of the total vegetable oil 
consumed (Murphy, 2021) and is being used for 
the production of critical additives, reagents, 
polymers, and organo-minerals (Adileksana et al., 
2020; Bognár et al., 2020; Cheah and Hoi, 1999; Chin 
et al., 2020; Gao et al., 2020; Jamshaid et al., 2022; 
Liew et al., 2021; Masharuddin et al., 2021; Otsuka 
et al., 2006; Uke et al., 2021). 

Oil palm production is crucial for Malaysian 
socioeconomic development (MPOC, 2019; Pacheco 
et al., 2017); thus, guides central decisions and 
policy-making (DOSM, 2020; MPOB, 2022; Singh 
et al., 2021). It also provides gainful employment 
to a large population (Abdul Rahman, 2018; 
AsianAgri, 2023; Parveez et al., 2023), including 
70% of job-seeking foreigners (Hamid et al., 2013; 
Hanafiah et al., 2022; Nkongho et al., 2014; Parveez 
et al., 2022; Pirker et al., 2016; Qaim et al., 2020). 
All these describe oil palm as a multi-utility crop 
worth sustainable production for enhanced global 
industrialisation and national growth.

OIL PALM GROWTH, YIELD AND 
PHYSIOLOGICAL RESPONSE TO WATER 

STRESS

Yield Gap

USDA (2023) data reveals a significant yield  
gap in Malaysian oil palm production. On average, 
the country achieves its expected maximum yield 
in only one out of twelve months (November). 
Bakoumé et al. (2013), Chalvantharan et al. (2023), 
and USDA (2023) confirmed that optimal yields 
in Malaysia are achieved in only 4-5 months yr–1. 
Woittiez et al. (2017) reported that actual oil palm 
yields remain less than 50% of their potential  
(3.3 vs. 8.0 t ha–1 yr–1). Rhebergen et al. (2018) 
suggested this gap could be even wider in 
subsistence production systems. Consequently, 
addressing this substantial yield gap could 
significantly impact global oil production. Woittiez 
et al. (2017) estimated that closing this gap could 
improve world oil production by 17.5 t yr–1. 
In a study of an oil palm plantation in Central 
Kalimantan, Hoffmann et al. (2017) estimated 
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that closing the yield gap through management 
practices alone could increase its FFB production by 
1.2 t ha–1 yr–1. These projected increases underscore 
the significant potential of addressing yield gaps, 
highlighting how such improvements could 
substantially enhance food security. The persistent 
yield gap is closely linked to climate variability 
(Abdul Rahman, 2018; Bakoumé et al., 2013;). 
These climatic challenges limit the expression 
of full yield potential in improved oil palm 
germplasm (Ariffin et al., 2002; Rhebergen et al.,  
2020).

Climate Variability and Its Effects on Oil Palm 

Climate change or climate variability (UCAR, 
2022) is said to occur when changes in climate 
variables are observed in an extended manner 
(IPCC, 2013). This means that sudden weather 
anomalies that occur for one to three years, then 
disappear would not be considered as climate 
variability. Climate variability is typically caused 
by natural and anthropogenic interplay (Idris and 
Yahaya, 2022), consisting of orbital revolution of 
the earth, volcanic eruption, movements of the 
crust (MetOffice, 2023), burning of fossil fuels, 
and increased concentrations of greenhouse gases 
(GHGs) from cultivation and deforestation (Green 
Peace, 2023; Ogle et al., 2014). Therefore, the 
history of oil palm production has been a critical 
anthropogenic source by which GHGs are added 
to the earth system (Butler and Laurance, 2009; 
Fitzherbert et al., 2008). 

Saifan et al. (2021) revealed that 25% of farmers 
in Malaysia are vulnerable to declining yields due 
to climate variability-related problems. Abubakar 
and Ishak (2022) confirmed a link between climate 
variability and consistent yield downward trend 
(7.5%) in various regions in Malaysia. Changes 
brought about by climate variability intensify 
the water deficit, thereby restricting growers to 
drought-tolerant oil palm cultivars that are not 
high-yielding (Masud et al., 2017), thus reducing 
FFB output (Shobande, 2021). Increased ETo losses 
from weather variability events (Wang et al., 2014) 
negatively impact productivity, as well as reducing 
the efficient distribution and utilisation of fertilisers 
and herbicides (Gustafson et al., 2015). Variations in 
climate conditions often shorten the length of the 
oil palm production cycle (Abubakar et al., 2021; 
Morton et al., 2017; Saifan et al., 2021) and increase 
the prevalence of crop diseases and new pests, 
resulting in low productivity (Melillo et al., 2014; 
Saifan et al., 2021). 

Climate-related limitations affect perennial 
crops, such as oil palm, as their performance is 
influenced not only by current weather conditions 
but also by the lingering effects of past climate 
events (Carr, 2011). In 2018, oil palm production 

was negatively affected by climate factors, likely 
exacerbated by the cumulative effects of previous 
years’ climate variability (Kushairi et al., 2017). 
However, an adequate understanding of the legacy 
or residual effects of CC either at the spatial or 
temporal scale is still scarce.

Although climate variability in Malaysia is 
less pronounced than in African countries like 
Nigeria (NiMet, 2022), it still significantly leads 
to unexpected yield variations across different 
locations and seasons (Nelson et al., 2006; Sarkar  
et al., 2020; Tang, 2019). Based on Kushairi et al. 
(2019) and MPOB (2018), between 2015-2018, yield 
variance stood at 17% ha–1 basis (from 15.91 t ha–1 in 
2016 to 19.92 t ha–1 in 2017). They further confirmed 
that the observed yield variance was linked to 
changing climate patterns, as the water deficit in 
2017 was far less than in 2016. 

Economically, Zainal et al. (2012) estimated 
that a 1°C increase in temperature due to climate 
variability would result in losses of USD10.63 ha–1 
in Peninsular Malaysia, USD10.89 ha–1  in Sabah, 
and USD9.01 ha–1 in Sarawak. Furthermore, over 
the next 6, 36, and 76 years from 2023, oil palm 
net revenue is projected to decline by an average 
of USD81.52, USD30.44, and USD12.37 ha–1, 
respectively, due to the continued effects of climate 
variability (Zainal et al., 2012). Malaysia faces 
potential economic insecurity if erratic climate 
patterns lead to decreased oil palm yields and 
reduced palm oil prices (Swaray et al., 2021). 

Lim et al. (2022) pointed out that the  
occurrence of abrupt global hydrological 
phenomena such as El Niño, which amplifies the 
water stress problem, is another form of climate 
variability. EI Niño is an abnormality that occurs 
when less rainfall occurs in the western Pacific but 
more is experienced in the eastern part, resulting 
in drought and flooding, respectively (National 
Geographic, 2023). Although its occurrence 
was only five times between 1980 and 2000, it 
resulted in severe consequences of production 
reductions (ACT, 2011). Oil palm production 
was severely affected by EI Niño in 1997-1998  
(Lim et al., 2008) and in 2016 (Parveez et al., 2022). 
Findings from a long-term study (spanning 33 
years) indicated that EI Niño increased potential 
ET by up to 95% (Tui and Arifin, 2013). Kamil and 
Omar (2017) attributed a significant loss of yield to  
El Niño in Malaysia and other tropical countries.

Globally, Hekstra (1986) maintained that 
climate variability, particularly through changes 
in  precipitation and temperature, has led to low 
productivity by 5%-20% and decreased crop 
production quality (Alam et al., 2017).

In summary, insufficient rainfall, partly driven 
by El Niño and climate fluctuations, leads to water 
stress conditions that severely threaten palm oil 
production.
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Temperature Variability and Its Effects on Oil Palm

Pour et al. (2014), The Star (2022), and Wang  
et al. (2014) stated that the escalation of global and  
regional temperatures is a product of long-term 
climate variability. IPCC (2013) and Shahid et al. (2017) 
confirmed that the rising number of hot days and 
sustained temperature increases in various regions 
of Malaysia are clear indicators of climate variability, 
which directly influences oil palm productivity 
(Corley and Tinker, 2016). Tang (2019) reported 
that over three decades, temperature trends varied 
across different zones in Malaysia, with increase 
of 7.55% in Kota Kinabalu, 7.27% in Kuching, and 
10.20% in Malacca, Kuantan, and Subang Jaya. 
NRE (2015) reported that the ten-year temperature 
increase in the Peninsular was 56.40% higher than 
that experienced in Sarawak. Abdul Rahman (2018) 
corroborated that although an increase in temperature 
was recorded in all regions, the Peninsular was 
33.30% warmer than the eastern part of Malaysia  
based on approximately five decades of data. 

Sammathuria and Ling (2009) reported that  
the climate variability experienced in Malaysia 
included unusually high temperatures that occurred 
five times between 1972 and 1998. Al-Amin  
et al. (2015) and Murad et al. (2010) pointed out 
that increased heat, which was observed around  
1983-1987, originated from anomalous temperature 
rise. In Malaysia, day-to-day temperature variation 
is more obvious and anomalous than the average 
year-to-year temperature variation (Murad et al., 
2010). 

However, the relationship between ambient and 
soil temperatures and their simultaneous effects 
on oil palm growth and development has not yet 
been identified. Although Nuruddin and Tokiman 
(2005) sought to establish ambient temperature as 
the best explanatory variable for soil temperature, 
finding a high regression coefficient (R² = 0.96), the  
1 cm depth at which they measured soil temperature 
was not sufficiently reliable to represent the active 
rhizosphere of oil palm roots.

Temperature has diverse effects on various 
biochemical and anatomical processes in oil palm, 
particularly by reducing activation energy, which 
influences metabolic rates and enzymatic activities  
(Kim, 2010; Kirkham, 2005; Mazlan et al., 2021). 
Generally, mature oil palm requires a temperature 
of 24°C-28°C for optimal growth and development 
(Lim et al., 2008), above which the dry matter yield 
is reduced up to 16% due to excessive ET rates  
(Okon et al., 2021). Lim et al. (2021) reported that 
prolonged periods of temperatures below 21°C 
led to a high rate of flower abortion, which in turn 
resulted in a 3.2% reduction in FFB yield. The growth 
of young seedlings was impeded at temperatures 
below 15°C but stimulated at above 20°C (Lim et al., 
2008). In a separate study, Ferwerda and Ehrencron 

(1977) found that exposing oil palm to 22°C and 
8°C day and night temperatures, respectively, for  
120 days resulted in a complete cessation of growth 
in oil palm.  However, when temperatures increased 
to between 12°C and 27°C, frond leaf production 
increased in a quadratic pattern. Okon et al. (2021) 
suggested that temperature sensitivity varies among 
oil palm cultivars, with some cultivars demonstrating 
a better ability to withstand prolonged exposure to 
high temperatures compared to others. However, 
a key question remains: How long will the effects 
of high temperatures continue to impact oil palm 
growth and yield after the initial exposure? In 
addition, little is known about the lower and upper 
critical limits for optimum oil palm performance.

Rainfall Variability and Its Effects on Oil Palm

Gleick (1989) found that the rate of rainfall 
reduction due to climate variability across the 
globe was 100%-200% compared to pre-industrial 
times. In Malaysia, Tangang et al. (2012; 2018) 
reported that changes in the pattern and intensity 
of rainfall have been observed since the early 2000s.  
Observations by Abdul Rahman (2018) revealed 
that Sabah and some parts of the Peninsular 
(e.g., Pahang and Kelantan) received 5% less 
rainfall on average due to climate change. Noor 
et al. (2018) analysed rainfall patterns in Malaysia 
using intensity-duration-frequency (IDF) curves, 
which describe the probability of rainfall intensity 
occurrence over given time periods. These curves, 
generated from hourly rainfall data from 1971 to 
2005, revealed high rainfall intensity with wide 
variability across the Peninsular. However, the 
state of Kedah showed a consistent decreasing 
trend in rainfall intensity, particularly within the 
first ten years. Both observed and simulated hourly 
rainfall records confirmed highly variable trends 
throughout the studied areas.

Carr (2011), Finucane and Keener (2015), and 
UNM (2022) stated that rainfall variability can be 
observed through fluctuations in the groundwater 
hydrology, especially in areas close to the shoreline, 
such as parts of Sabah, Penang, and Sarawak 
(Mayowa et al., 2015). This becomes clearer during 
the southwest monsoon season (Tang, 2019). 

Rain is the major source of water for the 
agricultural production of all crop types (Benešova 
et al., 2012; Fischer et al., 2007; Ibrahim et al., 2020; 
Najihah et al., 2022; Norizan et al., 2021; Sadiq et 
al., 2022a), making it the most limiting factor in oil 
palm production (Goh, 2000; Jazayeri, et al., 2015). 
ACT (2011) added that the effect of rainfall on oil 
palm production has been underscored since 1965 
(Tui and Arifin, 2013), with most results showing a 
linear rainfall-yield relationship (r = 0.89). Similarly, 
DoCampo et al. (2021) corroborated that the 
harvesting peak for oil palm always coincided with 

ARTIC
LE IN

 PRESS

ARTIC
LE IN

 PRESS



5

CLIMATE VARIABILITY AND WATER STRESS EFFECTS ON OIL PALM (Elaeis guineensis Jacq.) PRODUCTIVITY IN MALAYSIA

months of high rainfall. Furthermore, Hermantoro 
et al. (2018) found that in Lampung and Palembang, 
where rainfall supplied 100 mm less water month–1, 
the yield decreased by 9.0% and 3.5% in the first 
and subsequent years, respectively. This is expected 
because all metabolic processes governing oil palm 
growth and development are water-dependent, 
either as major constituents or catalysts (Karananidi 
et al., 2020; Weil and Brady, 2017). In addition, the 
role of rainfall as a principal water source extends 
to nutrient dissolution, availability, and subsequent 
uptake (Norizan et al., 2021), resulting in the 
formation of high-quality and high-quantity FFB 
(Woittiez, 2019). Therefore, even a narrow difference 
in the rainfall among locations can lead to a wide 
difference in yield outcomes (Donough et al., 2011; 
Paterson and Lima, 2017). 

However, Corley and Tinker (2016) noticed that 
the relationship between the total rainfall and FFB 
yield has been inconsistent. This may be due to the 
contribution of other rainfall attributes, namely, 
distribution and intensity (Jadhav, 2019; Oettli et 
al., 2018; Sarkar et al., 2020). According to Najihah 
et al. (2022), Usman et al. (2013), and Woittiez (2019), 
the frequency of rainfall occurrence reasonably 
dictates the oil palm yield by determining the sex 
ratio, number of spikelets, percentage of fruit set, 
and weight per fruit bunch. A similar effect of 
precipitation variability was reported to constrain 
oil palm production in neighbouring countries of 
India and Bangladesh (IRRI, 2007). 

Additionally, the interplay of other factors, 
notably soil hydraulic properties, the presence 
of surface cover, and the crop’s rooting system 
significantly influences the effectiveness of rainfall 
received per unit area. The question is, can we have 
studies dedicated to experimenting the effect of the 
amount, distribution, and intensity of rainfall over a 
complete production cycle of oil palm under various 
weather conditions in Malaysia? 

Climate Events Variability and Its Effect on Oil 
Palm

Climate variability can also be examined 
through the occurrence of extreme conditions 
such as flooding and drought (IPCC, 2013; 2014). 
Al-Amin and Leal Filho (2014) observed that 
historical climate variability in Malaysia has 
led to an increased frequency of floods in some 
areas, while exacerbating water scarcity in many 
others (The Star, 2022). Flood occurrence, which 
has been steadily increasing since 1980, showed a 
sharp increase between 2000 and 2005 and peaked 
around 2010 (Laudicina and Peterson, 2015). 
Nashwan et al. (2019) and Tam et al. (2021) believed 
that climate variability that triggered heavy rainfall 
during the Northeast monsoon was the leading 
cause of the unprecedented flood that the Kelantan 

River Basin experienced towards the end of 2014. 
Data presented by Tam et al. (2021) indicated that 
floods occurred consecutively every year from 
2001 to 2014, except in 2002, along the Kelantan 
River Basin area. However, its magnitude varied 
widely (0.2 m in 2011 – 6.8 m in 2014). Similarly, 
the floods that occurred in 1998 and 2007 suggest 
climate variability (Al-Amin et al., 2011). Murad 
et al. (2010) noted that the reoccurrence of these 
extreme meteorological hazards could potentially 
turn productive oil palm land into marginal or 
permanently unsuitable. Similarly, Lamade et al. 
(1998) and Henson et al. (2008) reported that long-
term flooding deleteriously affects photosynthesis 
and transpiration and leads to premature death of 
young palms, stunted growth, and productivity 
loss (Carr, 2011).

Drought variability over a temporal scale is not 
only peculiar to Malaysia but also to other Asian 
countries where both intensity and frequency 
of droughts are increasing (Manikandan and 
Tamilmani, 2015; Tabari et al., 2013). According 
to Hasan et al. (2021), results from 40 years data 
revealed that approximately 50% of the basin 
areas in Malaysia have been experiencing drought 
at different time scales. Hasan et al. (2021) and 
Huang et al. (2023) showed that the highest 
drought intensities were observed from 1997 to 
1999 and 2016 to 2018, and were more prevalent 
in several areas in Peninsular with a frequency of 
39.25%. Specifically, the 1998 drought was very 
severe and, as such, increased water scarcity. The 
historic variability trend of drought (1985-2019) 
indicated that critical droughts around the Muda 
River occurred for 12 years (1991-2016), with the 
highest frequency occurring from 2003 to 2007 
(Luhaim et al., 2021). Moreover, Sukarman et al. 
(2022) concluded that all 18 of the studied oil palm 
plantations showed evidence of drought spells 
equivalent to a 450 mm water deficit annually 
between 2000 and 2004, which were more frequent 
between January and May. 

Drought is characterised as a short-term 
cessation of rainfall (>5 days) or an annual 
precipitation below 1200 mm yr⁻¹ (Hartley, 1988). 
This phenomenon can lead to soil moisture 
depletion beyond the crop’s tolerance threshold, 
resulting in severe bunch failure, abortion, and 
decreased yield due to water deficit (Chi and Qi, 
2021; Kirkham, 2005; Sukarman et al., 2022; National 
Geographic, 2023).

The oil palm tree possesses unique 
morphological features, including a highly lignified 
cuticle and hypodermis, which can mask overt 
physical symptoms of drought-induced water 
stress (Rees, 1961). However, prolonged drought 
periods of three to six months can significantly 
reduce yield, biomass accumulation, and leaf area 
index (Carr, 2011; Corley and Tinker, 2016; Goh, 
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2000; Grossiord et al., 2020). Moreover, drought-
facilitated water stress has been associated with 
a consequential reduction in the quantity of 
extractable oil in the subsequent year (Muhamad 
Rizal and Tsan, 2008; Neto et al., 2021).

In the context of Southeast Asian oil palm 
cultivation, particularly in Malaysia and Indonesia, 
climate variability-induced droughts lasting one 
to three consecutive months can have significant 
impacts (Abubakar and Ishak, 2022). Such drought 
events can potentially cause yield losses of up to 10 t 
of FFB ha⁻¹ yr⁻¹ (Olivin, 1986).

Mohd Arif (2005) revealed that most edaphic 
production constraints in unsuitable areas of 
Malaysia, such as soil acidity, nutrient imbalances, 
sandiness, and hardness, are linked to drought. 
These conditions exacerbate water limitations by 
reducing groundwater recharge and soil moisture 
reserves (ACMAD, 2022), which are essential for 
continuous water uptake by oil palm. However, 
according to Carr (2010) and Corley and Hong (1982, 
1998), less frequent drought spells caused minimal 
reductions to oil palm yields as well as insignificant 
impacts on leaf budding and initiation rates.

In summary, the recurrence of both dry 
spells (droughts) and floodings reduces oil palm 
production capacity in Africa, Asia, and Latin 
America (Fischer et al., 2007; Lee and Ong, 2006; 
Malay Mail, 2015; Marengo et al., 2009; Paeth et al., 
2009). As such, ACMAD (2022) emphasised that any 
serious scientific community must be motivated to 
act swiftly to mitigate their consequences since they 
most often occur unnoticed (NiMet, 2022). 

Effects of Solar Irradiance on Oil Palm

Oil palm generally requires approximately 5 hr 
day–1 of sunshine hours for optimal photosynthesis 
(Lim et al., 2008). Several studies have reported a 
strong positive linear relationship between sunshine 
hours and FFB yield, with sunshine potentially 
enhancing yield by up to 80% (Cheah and Hoi, 1999; 
Lamade and Setiyo, 2002; Lim et al., 2008). 

Reduced solar irradiance due to self-shading 
(when upper fronds shade lower fronds of the same 
palm) has been reported to reduce photosynthetic 
efficiency by 57%, drastically reducing yield. 
Hoffmann et al. (2014) explained that the lower 
fronds, likely because they were blocked from direct 
sunlight, contributed very little to FFB formation 
(Hartley, 1988; Henson, 2002). 

A yield simulation using an oil palm potential 
growth model named PALMSIM estimated that 
FFB could reduce to 10 t ha–1 when constrained by 
irradiation (Hoffmann et al., 2014). Caliman and 
Southworth (1998) observed reduced yield from 
solar radiation obstruction due to open burning. 
They established that shortened sunshine hours 
decreased FFB by 1.3-4.7 t ha–1 yr–1. Haze conditions 

tend to reduce solar radiation reaching the oil 
palm trees via reflection or absorbance. Aziz et al. 
(2018) revealed that haze decreased solar radiation 
by 22.0%-45.0%, which resulted in declined 
photosynthesis by 12.9%-53.2%.

In the Peninsular, the average sunshine hours 
recorded by Tui and Arifin (2013) was 5.57 hr day–1 
from 1979 to 2011, representing the lower limit of the 
optimum amount reported by Carr (2011). Therefore, 
optimisation of solar radiation reception through 
research could help enhance assimilate production 
(Corley and Tinker, 2016; Lim et al., 2021). Proper 
planting density and planting orientation that 
avoids self-shading and leaf overlap are important 
for maximum radiation interception.

Effects of Relative Humidity and Vapour Pressure 
Deficit on Oil Palm

Oil palm thrives in humid environments 
(DoCampo et al., 2021). This means that relative 
humidity (the amount of water vapour in a 
particular air volume) (Van der Pol et al., 2015) 
is a critical parameter for oil palm productivity 
(Maikasuwa, 2013; Obioha, 2008; Rhebergen et al., 
2019). Van Ierland et al. (2006) stated that relative 
humidity (RH) significantly affects key internal 
mechanisms and the surrounding oil palm system, 
influencing the final yield. Lim et al. (2022) reported 
a relationship between stomatal aperture and 
ambient RH, where lower RH reduces stomatal 
apecture, leading to reduced photosynthetic 
efficiency and a decrease in net biomass weight. Oil 
palm seeds perform poorly during the germination 
stage when RH is lower than 75% and higher than 
90% (Lubis, 1992).

Kirkham (2005) states that vapour pressure 
deficit (VPD) and RH are interrelated in function 
because RH is the ratio of the actual vapour pressure 
to the saturated air vapour pressure (Miller and 
Donahue, 1992; Van der Pol et al., 2015). Jacquemard 
(1998) asserted that a high RH is required to offset 
the effect of high temperatures so that the VPD 
is maintained at the optimum state. Jacquemard 
(1998) inferred that VPD above 1.8 kPa and RH = 
58% triggered stomatal closure at 30°C, causing 
significant yield reduction. 

Based on the regression output, a high VPD 
would reduce stomatal conductance, which in turn, 
reduce photosynthesis (Henson, 1995; Van Ierland 
et al., 2006). Furthermore, Henson (2009) confirmed 
that considerably high VPD reduces total dry 
matter production, and its severity increases if 
VPD is coupled with soil moisture deficit (Lim  
et al., 2008). In a separate study, Henson and Harun 
(2005) and Price and Black (1990) noted that VPD, 
together with temperature, explained 20%-31% 
of the carbon dioxide (CO2) flux. This directly 
influenced the rate at which oil palm generated 

ARTIC
LE IN

 PRESS

ARTIC
LE IN

 PRESS



7

CLIMATE VARIABILITY AND WATER STRESS EFFECTS ON OIL PALM (Elaeis guineensis Jacq.) PRODUCTIVITY IN MALAYSIA

photosynthates for FFB production. Suboptimal 
CO2 levels adversely affect the oil palm internal 
hydraulic system, causing an appreciable (13.2%) 
yield loss (Grossiord et al., 2020). Fieldwork 
evidence affirmed that at a very high VPD, oil 
palm metabolic activities are hampered or ceased 
completely, affecting the reproduction phase (Setyo  
et al., 1996; Tani et al., 2003; Villalobos et al., 1993). 
The negative effect of high VPD on oil palm yield 
and growth attainment was significant at p=0.05, 
and these negative impacts could not be adequately 
reversed by re-watering efforts (ACT, 2011). The 
specific VPD threshold beyond which recovery 
becomes impossible still remains unclear. 

Climate Prediction

Paterson et al. (2017) remarked that the 
climate over the next 70 years will be particularly 
challenging for oil palm production, thus requiring 
a paradigm shift in cultivation methods (Rival, 
2017). Fleiss et al. (2017) and Paterson et al. (2015) 
stated that, like other crops, oil palm is highly 
dependent on climate. Therefore, the projected 
temperature increase of more than two-fold (IPCC, 
2007) could potentially reduce its productivity 
by exacerbating water stress and weakening 
its defense mechanisms (Fleiss et al., 2017). Teh 
and Cheah (2018) reported that CORDEX SEA 
(https://cordex.org) projected the air temperature 
in Malaysia may rise by up to 3.2°C, and the country 
may experience lower rainfalls by 20% by the end of 
the 21st century. Loh et al. (2016) further estimated 
that the projected temperature rise across all the 
climate change scenarios ranged from 2.3°C to  
3.7°C.

Leta et al. (2018) and Siderius et al. (2018) stated 
that the rate of drought occurrence and its intensity 
were projected to increase by 1%-30% within the 
21st century. Based on NAHRIM prediction, from 
2025 until 2030, Terengganu will be vulnerable 
to intermittent drought experiences (Malay Mail, 
2020; Reuters, 2023). The rainfall forecast showed a 
highly variable status across seasons, but dry spells 
will persist longer by 30% in the driest months 
(December-May), while wet spells will increase by 
the same percentage around mid-year (Loh et al., 
2016).

Shanmuganathan et al. (2014) observed that 
the triangular benefits of oil palm production-high 
quantity, quality, and net profit-are likely to decline  
if climate conditions become unfavorable, as 
projected by Al-Wabel et al. (2020) and Teh and Cheah 
(2018). Extreme temperatures, irregular rainfall, and 
prolonged dry spells contribute to harsh weather 
conditions (Tang and Al-Qahtani, 2020). Therefore, 
closing all potential water loss gaps through 
enhanced conservation measures is essential for 
ensuring sustainable oil palm production.

EFFECTS OF WATER STRESS ON OIL PALM

The response of oil palm to water stress involves 
multiple physiological and genetic mechanisms 
(Hanafiah et al., 2022; Jaleel et al., 2009; Shao et al., 
2008), making it challenging to fully understand 
and predict its behavior under such conditions.  
In addition, the time taken for oil palm to reach 
maturity and reproduction stage complicates the 
understanding of the water stress-yield connection 
(Carr, 2010; Corley and Tinker, 2016). 

Lim et al. (2008) and Suharyanti et al. (2020) found 
that water stress triggers various physiological 
responses as adaptive strategies, such as midday 
stomatal closure, shading of older leaves, extension 
of root system, and conversion of stored trunk starch 
to support bunch and inflorescence development 
(Carr, 2011). As a result, this process inhibits growth 
of new leaves and delays shoot development (Rivera 
et al., 2012).

 Under persistent water stress conditions, 
canopy thinning, dropping of developing bunches, 
and eventual tree death can occur (ACT, 2011). 
Jazayeri et al. (2015) observed that young oil palm 
seedlings in nurseries often failed to recover even 
after water was resupplied following periods of 
extreme water stress. This vulnerability is likely 
due to the absence of  well-established root system 
and insufficient starch reserves in the trunk, which 
are characteristics typically found in mature palms 
(Lim et al., 2008). The underdeveloped state of these 
young plants makes them particularly susceptible to 
drought-induced physiological damage, from which 
they struggle to recover even when water becomes 
available again. This signifies that water stress is 
associated with poor yield and less vegetative vigour 
and could lead to permanent wilting and death 
at higher severity. Lim et al. (2008; 2021) posited 
flower abortion is a more immediate and severe 
consequence of water stress in oil palm compared to 
changes in sex differentiation.

Henson and Harun (2005) stated that during 
the 4-5 dry months in the northern part of Kedah, 
oil palm initially maintained high ETo rates in 
response to water stress, driven by high sensible 
and latent heat. However, as the stress persisted, 
ETo decreased, and only returned to normal levels 
when sufficient moisture (5 mm day–1) was restored 
in June. However, under mild water stress, the ETo 
rate showed no significant difference compared 
to that of fully watered crops (Ibrahim et al.,  
2020).

Jazayeri et al. (2015) experimented with the 
tenera hybrid of oil palm tolerance to water stress 
levels. They observed that high and severe water 
stress levels (50.0% and 25.0% of ETo, respectively) 
caused a drastic decline in leaf water potential 
by 66.7%, photosynthetic rate by 28.6%, and 
water use efficiency (WUE) by 26.87%. The rate 
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of photosynthesis in week 4 and 8 was reduced 
by 23.0% and 53.0% for IRHO7010 germplasm, 
respectively. For the IRHO1001 germplasm, the 
rate was reduced by 46.0% and 74.0%, respectively. 
Similar reduction in photosynthesis have been 
linked to chlorophyll and carotenoid degradation 
and reduce ATP synthesis in other crops (Boughalleb 
and Hajlaoui, 2011; Cha-um et al., 2013; Pan et al., 
2020), which in turn stunted shoot growth (Farooq 
et al., 2009). This suggests that different oil palm 
cultivars may respond differently to water stress, 
though more empirical evidence are needed to 
confirm this assertion.

High concentrations of proline, 
malondialdehyde, abscisic acid, and relative 
electrolyte leakage have been observed, all of which 
play a central role in moderating the stomatal 
responses to mitigate the effects of water deficit 
(Cha-um et al., 2013; Henson et al., 1992; Najihah  
et al., 2022). Proline is the most prominent chemical 
indicator of water stress (Cao et al., 2011), and it is 
a biochemical solute produced through glutamate 
intermediates and oxidation by P5CR (Sun et al., 
2011). 

The flux of CO2 peaked during the morning  
hours but gradually declined as water stress 
intensified by midday, reflecting maximum 
assimilation in the morning and minimum 
assimilation at midday, as observed in oil palm  
(Henson and Harun, 2005) and similarly reported 
for groundnut (Reddy et al., 2003). This was more 
marked in the driest month of February when 
CO2 was as low as 1 g m–2 h–1 (Reddy et al., 2003). 
(Henson and Harun 2005) and Price and Black 
(1990) reported that physiological responses to 
water stress, as measured through nighttime 
gaseous exchange, were difficult to interpret due 
to large hourly variability, and that this variability 
might be attributed to reduced VPD and the absence 
of solar irradiation during nighttime.

Oil palm primarily responds to water stress 
through two initial mechanisms: Stomatal closure 
and cell membrane depolarisation, as reported 
for oil palm (Jazayeri et al., 2015) and similarly 
observed in other crops (Hopper et al., 2014; Jaleel 
et al., 2009; Reddy et al., 2003). Depolarisation 
refers to a change in the electric charge distribution 
across the cell membrane. This process is initiated 
by the activation of anion channels in the stomatal 
guard cells (Brault et al., 2004). As a result, the 
interior of the cell becomes less negatively charged 
relative to the exterior (Nuhkat et al., 2021). This 
change in membrane potential plays a crucial 
role in facilitating communication between cells 
and coordinating various physiological responses 
within the plant (Nuhkat et al., 2021). 

Zhou and Yarra (2022) identified several genetic 
transcription factors, including bZIP, EgbZIPs, and 
specifically 11 EgbZIPs, that are activated when 

oil palm is exposed to water stress. This discovery 
of genetic indicators has significant implications. 
Parveez et al. (2023) suggested that such discovery 
could broaden the scope for developing genetically 
modified oil palm varieties and enhance advanced 
conservation practices. However, despite these 
advancements, a key question remains unanswered: 
Among the various genetic, enzymatic, and hormonal 
responses to water stress, it remains unclear which 
occurs first to trigger stomatal closure. This gap in 
our understanding highlights the complex nature of 
plant responses to water stress and indicates areas 
for future research.

WATER STRESS IN RELATION TO SOIL 
PROPERTIES

The limited availability of water to plant roots, 
which is primarily determined by soil properties, 
is a critical factor that can lead to poor performance 
and, in severe cases, complete crop failure (Lindh 
et al., 2022; Miranda et al., 2021). This phenomenon 
explains the observations made by Safitri et 
al. (2019), Sukarman et al. (2022), and USDA 
(2017) regarding oil palm performance under 
different soil conditions. These studies found 
that oil palms receiving equal amounts of water 
exhibited varying degrees of water stress severity 
depending on soil texture. This variation in water 
stress, influenced by soil properties, ultimately 
contributes to the observed yield gap in oil palm 
cultivation (Hoffmann et al., 2015; Nasution et al., 
2017; Woittiez et al., 2015). The prominent role of 
soil texture in water availability underscores the 
argument made by Norizan et al. (2021) against 
the practice of applying uniform irrigation across 
different soil types. As Kirkham (2005) explains, 
this approach is unjustifiable due to the varying 
hydro-physical attributes of different soil textures. 
These differences significantly influence how water  
is retained and made available to plants.

Idris (2020), Kushairi et al. (2019), and 
Paramananthan (2003) maintained that soil texture 
considerably influences the water productivity and 
yield of oil palm and other arable crops. Gunawan 
et al. (2020) and Kirkham (2005) highlighted that 
soil texture strongly determines water accessibility 
to crops, mostly in relation to drainage, infiltration, 
and hydraulic conductivity. Carr (2011) and Goh 
(2000) identified soil texture variation as a key 
factor influencing productivity differences among 
oil palm cultivated lands in Asia. Soil texture plays 
a crucial role in determining how much water the 
soil can retain and release at different stages of 
moisture content, such as when the soil is fully 
saturated (saturation), at its optimal water-holding 
capacity (field capacity), or when plants can no 
longer extract water (permanent wilting point) 
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(Saxton et al., 1986; Teh and Iba, 2010). These distinct 
moisture levels in soil water retention significantly 
impact oil palm productivity (Mutert et al., 1999; 
Woittiez et al., 2017). 

Oil palm’s susceptibility to water deficit stress is 
closely linked to soil texture, particularly the soil’s 
capacity to retain plant-available water (PAWC) 
(Carr, 2011; Hoffmann et al., 2014). This relationship 
becomes evident when comparing different soil 
types. For instance, Hoffmann et al. (2015) observed 
that sandy loam and clay loam soils possess 
significantly higher PAWC compared to sandy clay 
soils. The variation in PAWC among soil types has 
important implications for oil palm cultivation. 
Soils with intrinsically low PAWC make oil palms 
more vulnerable to water stress, potentially affecting 
crop productivity. This vulnerability is likely due 
to variations in the critical water depletion limit 
specific to each soil type.

In a separate study, Jourdan et al. (2000) 
examined oil palm root expansion and distribution, 
especially within the active root zone. Sandy soils 
retain less water and drain faster than clay soils 
(Kasno and Subardja, 2010; Teh, 2016). While oil 
palms can grow in various soil types due to its 
tolerance for different soil conditions, achieving 
maximum yield requires soils that retain water well 
yet make it easily accessible to the trees (Norizan  
et al., 2021).

Coarse sandy soils and fine clayey soils (vertisols) 
significantly reduce oil palm yields (Paramananthan 
et al., 2000). Heavy clay soils have very low 
infiltration rates, potentially causing waterlogging 
that can lead to sudden mortality in immature 
palms or yield reductions of up to 25% (Abram  
et al., 2014; Lee and Ong, 2006). These findings 
indicate that neither coarse- nor fine-textured soils 
meet the optimal water requirements for oil palms. 
The varying clay and sand content in soils directly 
affects water availability.

Additionally, soil bulk density (BD) is strongly 
linked to water stress (Michael and Dunn, 2000). 
BD increases in deeper soil layers, implying that 
roots may increasingly struggle to penetrate the 
entire soil profile, limiting their ability to access 
water throughout the soil solum (Nasrul et al., 
2002). Wiratmoko et al. (2015) advised that good 
tillage operations can be undertaken to improve 
BD and soil tilth for root development. BD also 
affects root anchorage and soil attachment. Gray  
et al. (2015) observed that poor anchoring due to 
low BD can render soil less suitable for sustainable 
oil palm production due to lodging and uprooting 
tendencies. Othman et al. (2011) reported that lodging 
exposes oil palm roots to excessive dehydration and 
breakage, reducing their water uptake potential 
(Lim et al., 2008). Kirkham (2005) and Venturas 
et al. (2017) maintained that when crop roots are 
injured, the xylem tissue responsible for conducting 

water also becomes affected; hence, water transport 
system becomes impaired. This indicates that 
exposed and broken root systems can increase water 
stress severity. Dolmat et al. (1993) and Tie (2004) 
recommended mechanical compaction (Mutert  
et al., 1999) as a strategy to curtail root lodging and 
uprooting in low BD soils. 

Poor soil cohesion leads to weak root 
attachment, potentially reducing water uptake 
(Paramananthan, 2013). Other soil morphological 
and chemical properties also influence water 
availability through various mechanisms.

Coarseness in the plough layer hinders 
hydraulic permeability, limiting water availability 
to roots (Nasrul et al., 2002). Similarly, studies 
by Afandi et al. (2022) and Woittiez et al. (2017)  
indicated that soil shallowness restricts vertical 
root growth and reduces root density. Root density, 
particularly within the upper 30 cm of soil, is 
crucial as it directly influences the amount of water 
available for plant uptake (Afandi et al., 2022). In 
Malaysia, soil shallowness is a significant issue, 
exacerbating water stress and limiting optimal 
yields (Fairhurst and McLaughlin, 2009). In 
contrast, deep soils promote extensive root systems 
that enable better water exploration by oil palm 
(Dufrêne et al., 1992; Rey et al., 1998).

However, soil salinity also plays a critical role 
in controlling water transmission and uptake, 
as noted by Mutert et al. (1999). Furthermore, 
water stress is aggravated in soils with moderate 
to extreme acidity, which negatively impacts oil 
palm performance (Mutert, 1999; Paramananthan, 
2013). Adam et al. (2011) found that when oil palm 
is exposed to both water stress and soil acidity, 
the plant produces more male inflorescences and 
fewer female flowers, which directly lowers its 
productivity.

Olivin (1986) categorised soils based on their 
oil palm yield productivity under water deficit 
conditions, assuming all other production factors 
remained constant. Soils yielding 25-27 t ha–1 yr–1 
under 0 mm water deficit and 16-18 t ha–1 yr–1 under 
200 mm water deficit were deemed suitable. In 
contrast, soils yielding 22-16 t ha–1 yr–1 with no water 
deficit and 9-13 t ha–1 yr–1 under a 200 mm water 
deficit were considered the least suitable for oil palm 
cultivation.

MITIGATION EFFORTS IN OIL PALM 
PRODUCTION

Irrigation 

When rainfall fails to meet oil palm ETo 
demands, irrigation is applied to meet the shortfall. 
A fully irrigated oil palm has a crop coefficient (Kc)  
between 0.9 and 1.0, indicating minimal water 
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stress (Carr, 2011; Teh, 2016). Early research by Ochs 
and Daniels (1976) revealed a significant effect of 
irrigation on yield, with results showing threefold 
increase. Further studies by Tui and Arifin (2013) 
reported a 57% higher mean annual yield under 
irrigation conditions than under rainfed conditions 
over approximately 33 years. Henson (2009), 
using OPRODSIM, found a 25% yield increase 
with irrigation, with further improvements when 
comparing the two irrigation schedules. Teh (2017) 
used an oil palm growth model to estimate that 
even a daily supplementation of 1 mm could boost 
yields by 1.5 t ha–1, particularly in water-deficient 
areas where yields commonly increase by 50% (Lee 
and Izwanizam, 2013). Woittiez et al. (2017) found 
a direct link between irrigation water volume and  
FFB yield, and  Nasir et al. (2014) showed that oil 
palm irrigation increased bunch weight, number, 
FFB, and average fruit weight by 10.0%, 44.0%, 
27.0%, and -22.3%, respectively.

Rao et al. (2008) discovered that irrigating 
oil palm progeny hastened fruit production by 
20% and increased yield by 55%. Chalvantharan  
et al. (2023) reported an 18.2% yield increase with 
sprinkler irrigation, although Palat et al. (2008; 
2012) observed no significant yield variation 
across different irrigation methods. Prioux et al. 
(1992) reported that irrigation doubled the mass 
of tertiary roots and increased their spread by 20-
100 cm, and Lee et al. (2005) noted a 5% increase in 
bunch number and oil-bunch ratio over three years.

Despite the high initial costs, the long-term yield 
benefit makes irrigation a viable option (Norizan  
et al., 2021; Sadiq et al., 2022b). However, these costs 
pose a challenge to smallholder farmers (Teh and 
Cheah, 2018). Sadiq et al. (2022a; 2022b) and Tui and 
Arifin (2013) found that irrigation investment is 
profitable in tomato cultivation, and Tui and Arifin 
(2013) similarly reported profitability, although 
economic benefits can vary, as seen in the negative 
ROI findings for smart irrigation by Chalvantharan  
et al. (2023) and the modest yield increases reported 
by Corley and Hong (1982). Variability in returns 
can be attributed to differences in water costs, 
production scale, and other factors (Miller and 
Donahue, 1992). The lack of technical expertise 
among Malaysian growers presents a significant 
barrier to effective irrigation (Chalvantharan et al., 
2023; Khan et al., 2018; Norizan et al., 2021), and 
Mason et al. (2019) recommended tailored irrigation 
strategies based on climate forecasts.

Surface Mulching  

Water conservation efforts have focused 
on optimising the productivity of increasingly 
scarce freshwater due to climate variability for 
higher yield and sustainability (Abdullah and 
Sulaiman, 2013; Donough et al., 2011; Fereres and 

Soriano, 2007). Mulching with oil palm residues, 
such as shredded trunks and fronds, mitigates 
excessive evaporation and runoff, thereby 
enhancing water conservation (Khalid et al., 2000; 
Moraidi et al., 2013; Morgan, 2005). DoCampo 
et al. (2021) noted that such mulching reduces 
water stress impact, which is prevalent in dry 
months. Khalid et al. (2000) found that mulching 
with shredded residues increased soil moisture 
by 28.0%, compared to 25.2% in other treatments.  
Mulching with empty fruit bunches (EFB) led to a 
39.0% increase in yield by improving water storage 
and mitigating heat effects (Rudolf et al., 2021), with 
similar benefits observed using other mulching 
materials under maize (Li et al., 2018). Moreover, 
Donglin et al. (2019) reported 5.7%-19.8% and  
7.1%-20.9% increases in energy and water 
productivity, respectively, owing to mulching.

Economic analysis shows a maximum marginal 
rate of return of 5.75 ha−1 yr−1 from mulching 
(Wairegi and van Asten, 2010) and a 27.0%-53.8% 
increase in net income compared to unmulched 
systems (Donglin et al., 2019; Jianguo et al., 2014). 
For every 1 m³ of water used, mulching achieved a 
5.0% higher value than that of the control (Adetoroa 
et al., 2020). Nwokocha et al. (2017) concluded 
that a mix of 12.00 t ha−1 EFB and 4.00 t ha−1 palm 
bunch ash provided the best net return. Abubakar 
et al. (2021), Khalid et al. (2000) and Moraidi  
et al. (2012) documented significant improvements 
in the hydrophysical properties following EFB  
mulching.

Despite the benefits, the use of oil palm biomass 
as mulch or incorporating it into the soil as an 
economical practice remains debated. Moreover, 
addressing water deficits through irrigation on large 
oil palm farms is both challenging and costly (Miller 
and Donahue, 1992; Abdullah and Sulaiman, 2013; 
Teh, 2016). While mulching with 30 t ha–1 of EFB 
can reduce surface evaporation (Lim et al., 2008), 
Carr (2011) argued that such high application rates 
are impractical. Rudolf et al. (2021) suggested that 
motivating farmers to adopt mulching is difficult 
due to the large quantities required for significant 
benefits. The costs associated with transportation 
and application can increase total expenses by 
as much as 73.3% (Wairegi and van Asten, 2010; 
Rudolf et al., 2021). Sari et al. (2022) highlighted 
farmers’ reluctance toward mulching because of the 
cost-yield trade-off. Furthermore, effective weed 
suppression requires a thick mulch layer, which can 
result in impractically large volumes (Nwokocha  
et al., 2017; Wairegi and van Asten, 2010).

Furthermore, mulching can lead to pest 
infestations, affecting soil temperature and 
potentially inhibiting germination owing to 
allelopathy (Benoit, 2022; Cabona et al., 2021; 
Donglin et al., 2019; Iqbal et al., 2020; Korkança 
and Sahin, 2021; Ni et al., 2016). It also increases 
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the risk of fire hazards and wild animal-human 
conflict (Ni et al., 2016; Rongbin et al., 2020). Thus, 
the choice of mulch material must be tailored to 
the specific climate conditions to mitigate these  
risks.

Silt-Pit and Cover Crops

Mechanical techniques for water harvesting, 
such as silt-pit and bund terraces, significantly 
increase resilience to water stress risks by reducing 
runoff and enhancing soil water reserves (Gabrielle 
et al., 2018; Murtilaksono et al., 2011). For example, 
the silt-pit technique reduced water run-off by 89% 
and increased soil water reserves by up to 183 mm 
(Bohluli et al., 2012; Murtilaksono et al., 2011; Yuswar 
et al., 2020). Moreover, different silt pit sizes affect 
soil water content, with larger dimensions showing 
varying outcomes (Bohluli et al., 2012; Masnang  
et al., 2022; Ping et al., 2012). However, this technique 
has limitations, including its suitability only for 
highlands and areas with contrasting slopes and 
potential soil structure disruption (Bohluli et al., 
2015; DoCampo et al., 2021).

Cover cropping also enhances water stress 
tolerance. Planting of leguminous crops, such as 
Brachiaria and Pueraria javanica, improves water 
infiltration and retention, reduces dry days, and 
enhances water use efficiency (WUE) (Agusta et al., 
2020; Ariyanti et al., 2017; Nouy et al., 1999; Zhang 
et al., 2023). The integration of diverse cover crops 
can help mitigate runoff water loss (Gabrielle  
et al., 2018; Morton et al., 2017; Nabara and Norsida, 
2018).

Nonetheless, challenges include interference 
with mechanisation operations, inter-crop 
competition, and increased risk of pest and disease 
transfer, which may complicate the oil palm-legume 
cropping pattern (Chalmers, 2017; Dowling et al., 
2020; Echarte et al., 2011).

Application of Synthetic Polymer 

Synthetic soil conditioners, notably referred 
to as super absorbent polymers (SAPs), are an 
alternative for water deficit management (Lentz 
and Sojka, 2009; Zhang et al., 2021). SAPs are 
networks of flexible porous polymers (Zhang  
et al., 2021) that are tridimensionally cross-linked 
(Kiatkamjornwong, 2007). They can retain a large 
quantity of water (Lucero et al., 2010; Zhang  
et al., 2019; Zhao et al., 2021), and make water 
more accessible to roots (Azman, 2013; Rafiei  
et al., 2013). SAPs application effectively minimises 
water stress in many field crops (Han et al., 
2010; Ibrahim et al., 2020; Zohuriaan-Mehr et al., 
2010). Yang et al. (2022) found after a decade of 
research that conditioning the soil with 45 kg ha–1  
SAP significantly enhanced soil macroaggregates 

(>0.25 mm) by 16.5%-36.33%, WUE by 16.0%, and 
rate of photosynthesis by up to 18.5% (Yang et al., 
2020). The application of SAPs reduced runoff by 
up to 103.0%, and improved the soil moisture by 
29.0% (Yuanbo et al., 2017). Additionally, meta-
analysis by Zheng et al. (2023) indicated a 15.0% 
yield increment from SAPs treatment. 

However, Idris and Yahaya (2022) and Nasereldin 
et al. (2023) noted the unavailability of SAPs in local 
markets and asserted their high purchasing cost 
as the core constraints limiting their accessibility. 
Furthermore, SAPs require a specialised storage 
environment that is relatively dark, dry, and cool 
to maintain their shelf life (Mechtcherine et al., 
2021; Snoeck and De Belie, 2019). Unfortunately, 
most farmers do not have such required storage  
facilities. 

To date, there has been no published research 
on the effectiveness of SAPs on water stress 
reduction in oil palm in Malaysia or other Asian 
countries. This is a  knowledge gap that needs to 
be addressed.

CONCLUSION

Over time, Malaysia’s climate has become 
increasingly variable, marked by a rise in temperature 
(7.5%), reduced rainfall (-5.0%), and more 
frequent extreme weather events. This variability 
has exacerbated water deficits, constraining 
sustainable oil palm production. Future climate 
projections suggest higher temperatures, decreased 
rainfall, and consequently, more severe water  
stress. 

While the use of oil palm biomass and cover 
crops has been tested and shown to mitigate water 
deficits, further research is needed to understand 
the short-, medium-, and long-term effects of these 
practices. Similarly, treatment methods such as 
biochar, mulching, and use of silt pits require deeper 
investigation. Additionally, the potential of synthetic 
polymers as a solution for managing water stress in 
oil palm plantations remains to be explored.

Table 1 provides a summary of water stress effects 
for various plantation crops, and Figure 1 shows the 
water stress levels experienced by oil palms across 
the 12 months. 
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TABLE 1. SUMMARY OF YIELD, GROWTH AND PHYSIOLOGICAL EFFECTS OF WATER STRESS FOR DIFFERENT CROP 
CATEGORIES

S/N Mode/Level of water stress 
inducement Crop Resultant effect Source

01 100 mm less deficit Oil palm 10%-15% FFB yield reduction Caliman and 
Southworth (1998)

02 Intermittent water stress from rainfall 
cessation and inadequacy 

Oil Palm The number and yield of FFB downsized by 
>91.00% and 88.46%, respectively

Gawankar et al. (2003)

03 Natural water deficit stress from 
rainfall cessation was monitored 

Oil palm Declination of leaf water content, WUE and 
photosynthetic rate and increased chlorophyll 

content were observed. 

Noor (2006)

04 Experimental sites were under yearly 
water deficit of 150, 250 and 400 mm

Oil palm Higher water stress got the least number of 
bunches (- 82%), least bunch weight (- 79%), 

and least FFB (- 88%)

Dwarko et al. (2008)

05 Water balance and fraction 
transpirable soil water approaches 

were adopted to predispose the test 
crop to equivalent water stress.

Oil palm Yield is more sensitively affected by water 
stress at 2 ½ years prior to bunch maturity. 

Legros et al. (2009)

06 Consistent non-watering for 24 days 
after full establishment (30 days) in 

the glasshouse

Oil palm All gas exchange variables declined drastically, 
and at 24 days of severe water stress, 

photosynthesis stopped while 200% leaf water 
potential became 2 times higher.

Suresh et al. (2010)

07 Natural water stress equivalent to an 
annual shortfall of 450 mm due to an 

unimodal rainfall pattern

Oil palm Stages most badly affected were fruit filling, 
sex differentiation and state central arrow. 

Renny et al. (2011)

08 Superimposition of stress by 
supplying 0.5 of full FC water volume

Oil palm The root/shoot ratio improved by 23.0%. 
Number of leaves decreased by 11.4%

Sun et al. (2011)

09 Water deficit was induced by 
maintaining moisture at -0.042, -0.5, 

-1.0, and -2.0 MPa tensions.

Oil palm Assimilation of CO2 completely ceased, and 
bulb diameter decreased by 48% at -2 MPa; 
stomatal conductance was not affected by 

genotype-water potential interaction.

Méndez et al. (2012)

10 Water stress imposed for 12 and 16 
days equivalated to 13% and 6% SWC, 

respectively. 

Oil palm  Chlorophyll was disrupted by 59.0% and 
95.9%, while photosynthetic rate diminished 

by 71.7% and 91.1% respectively. 

 Cha-um et al. (2013)

11 4 and 8 weeks without watering after 
water deficit at – 1.50 MPa pressure 

was attained

Oil Palm Photosynthesis declined by 23% and 53% for 
the respective duration, and WUE steadily 

went down.

Jazayeri et al. (2015)

12 Crop exposed to moderate water 
deficit of -0.5 MPa

Oil palm Significant reduction in the stomatal 
conductance, rates of photosynthesis 

and transpiration, as well as vegetative 
development were recorded. 

Rivera-Méndes et al. 
(2016)

13 Only half and a quarter of FC water 
content were given as deficits for 60 

days after 30 establishment days.

Oil palm Except root-to-shoot ratio, all growth variables 
reduced drastically, but proline status 

increased greatly. 

Duangpang et al. (2018)

14 Water stress was induced under bio-
silica-treated soils 

Oil palm Water-stressed crop with no bio-silica showed 
higher proline status by up to 90%, and Nitrate 

reductase activity (NRA) decreased by 93%. 

Amanah et al. (2019)

15 Studied the impact of dry season 
water stress abiotic factor

Oil palm 32.5% decrease in photosynthesis, a significant 
drop in gas exchange, but WUE and leaf sugar 
content improved by up to 27% and 1%, 14%, 

respectively. 

Bayona-Rodriguez and 
Romero (2019)

16 No-irrigation + fertiliser and no-
irrigation without fertiliser were 

studied against full irrigation.

Oil palm The final harvested FFB was 17% lower due to 
the water deficit 

Rhebergen et al. (2019)

17 Studied the damaging effect of water 
stress on leaf attributes only in areas of 
moderate to severe water stress due to 

sub-optimal rainfall

Oil palm Multicollinearity results indicated that the 
number of green broken leaves (NGBL), 

number of folded leaves (NFL) and number 
of trees with central leaf cabbage toppled 

(NLCT) were more strongly correlated 
with water stress than unopened leaves 

(NUL) and number of base leaves dry out 
(NBLD) parameters which showed moderate 

correlation status.

Yehouessi et al. (2019)
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TABLE 1. SUMMARY OF YIELD, GROWTH AND PHYSIOLOGICAL EFFECTS OF WATER STRESS FOR DIFFERENT CROP 
CATEGORIES (continued)

S/N Mode/Level of water stress 
inducement Crop Resultant effect Source

18 100 mm less water at sex 
determination and floral abortion 

phases 

Oil palm  Yield loss occurred at both phases by 6% and 
7%, respectively 

Suharyanti et al. (2020)

19 Molecular study based on 2-week 
induced-water stress on seedling 

Oil palm Identified more than 1293 genes associated 
with water stress response across biosynthetic 
and metabolic, transportation and homeostatic 

processes

Wang et al. (2020)

20 Irrigated and non-irrigated parental 
stocks 

Oil palm Water deficit badly affected male and female
inflorescence ratio and lowered bunch number 

significantly. The water deficit negatively 
impacted FFB and oil yield by 20%.

Abdul Wahid (2021)

21 Monitored water stress induced by 
extreme El-Niño Southern Oscillation 

(ENSO)-facilitated drought

Oil palm Reduction of the Total Fruit produced by 31% Mauro et al. (2021)

22 Dry season water stress Oil palm Inflorescence and fruit formation stage was 
staggered 

Mendoza-Hernández et 
al. (2021)

23 Water stress induced to young 
seedlings at “bifd” saplings 

developmental stage. By water 
deprivation for 14 consecutive days. 

At the end of this period, the substrate 
water potential, as measured, 

equivalent to −13.61 ± 1.79 MPa

Oil palm Distortion of starch, sucrose, glyoxylate and 
dicarboxylate

metabolism pathways
occurred. Also, alanine, aspartate, glutamate, 

arginine and proline synthesis were positively 
affected

Neto et al. (2021)

24 Studies the agronomic impact of the 
2015 El Nino-facilitated water stress 
at 4-12 months and 24-30 after the 

occurrence

Oil palm  Reduction in harvestable FFB stood at 
23%-30%, but the older palms recorded the 

maximum values. The decline of the oil 
extraction ratio was found to be explained by 

the water stress effect.

Sidhu et al. (2021)

25 Observational study due to normal 
climate dryness in low-rainfall 

receiving areas

Oil palm Naturally tolerant cultivars had 44% and 38% 
greater FFB than susceptible ones in the first 

and second trials, respectively. Exactly 56 
Single nucleotide polymorphisms (SNPs) were 
observed in the genetic information of water 

stress-tolerant lines. MRL1, At1g35710, RNP1, 
and BDA1 genes were found to be closely 

associated with the SNPs detected. 

Yono et al. (2021)

26 14 consecutive days of water 
deprivation 

Oil palm Water stress-associated miRNAs and genes 
specific to oil palm, namely egu-miR28ds and 
egu-miR29ds and MYBs, HOXs and NF-Ys, 

were identified.

Salgado et al. (2022)

27 Irrigation was withheld for 20 
consecutive days for different young 

progenies.

Oil palm Biomass of all progenies tested decreased by 
34%; proline content increased by up to 300%; 
stomatal conductance reduced significantly, 
and nine moisture stress-responsive miRNA 

were identified. 

Ithnin et al. (2022)

28 1.0, 1.5 and 2.0 L per polybag per day 
were supplied as deficits 

Oil palm Plant height went down in 1.0 and 1.5 L by 
23.0% and 20.0% and the former reduced shoot 

dry weight by 12.0% 

Kautsar et al. (2022)

29 Used Fraction of Transpirable Soil 
Water approach to consider PWP = 
FTSW 0 and 15 FC = FTSW 0.15 as 

deficit 

Oil palm Seedling weight was reduced by 9.7% and 
8.3% at PWP and 15% FC, respectively. 

Generally, growth by height was reduced by 
one-third.

Pangaribuan and 
Akoeb (2022)

30 Oil palm was predisposed to water 
deficit on Histosols, Entisols and 

Spodosols.

Oil palm Water stress was more severe in Entisols and 
Spodosols up to 22% than in Histosols (max. 

19%)

Sukarman et al. (2022)

31 Chemically induced water stress at 0% 
to 30% (m/v) of polyethylene glycol 

(PEG 8000)

Date 
palm

Progressive growth reduction was obviously 
observed, and increased manufacturing of 
proline (inducer of stomatal closure) was 

noticed.

Al-Khayri and Al-
Bahrany (2004)

ARTIC
LE IN

 PRESS

ARTIC
LE IN

 PRESS



14

JOURNAL OF OIL PALM RESEARCH

TABLE 1. SUMMARY OF YIELD, GROWTH AND PHYSIOLOGICAL EFFECTS OF WATER STRESS FOR DIFFERENT CROP 
CATEGORIES (continued)

S/N Mode/Level of water stress 
inducement Crop Resultant effect Source

32 Irrigation was only given after 50, 100, 
150 and 200 mm soil water had been 

depleted by evaporation.

Date 
palm 

Fruit diameter and fruit weight significantly 
lowered but were more chronic at 200 mm 

depletion. 

Alihouri and Torahi 
(2013)

33 0 water supply was considered a 
deficit due to scanty rainfall

Date 
palm

Fruit size went down by 53%-76%, pulp 
content of date fruit reduced drastically by 
57%-75% across three development stages 

examined, while cell wall lignification reduced 
insignificantly by 1.9% only in stage 1. 

Gribaa et al. (2012)

34 Under the growth chamber 
environment, water was supplied fully 
at one-day intervals for two weeks to 
get the date palm acclimatised. The 
water supply was then stopped to 

induce water stress. 

Date 
palm

Water-stressed germplasms showed 
increased accumulation of fucose and glucose 
compounds, signifying an adaptive switch to 

carbohydrate metabolism. 

Safronov et al. (2017)

35 Involved application of 60% and 80% 
ETc

Date 
palm

Seedling establishment percentage was not 
affected by the 80% ETc but was significantly 
affected by 60%. However, the 60% competed 

well for the trunk perimeter index.

Moheb (2019)

36 Only half of ETc applied using 
reclaimed wastewater and well-water

Date 
palm 

A reduction of 86 kg of fruit output per palm 
was recorded. Total sugar and non-reducing 

sugar content enrichment occurred.

Mattar et al. (2021)

37 Triggered water stress by 
administering 10%, 20%, 30%, 40% 
and 50% of actual water demand 

Date 
palm

Fruit yield compressed by 4.5%-12.3% Isaid et al. (2021)

38 Bubbler irrigation system was used to 
supply 0.25 and 0.5 of full ETc targeting 

flowering, hababouk, and Rutub and 
Tamr (third fruit development phase 
when moisture is lost and sucrose is 

converted to sugar) stages.

Date 
palm 

Decreased final yield by 28.39% compared to 
full ETc

Al-Mansor et al. (2021)

39 50% and 25% less than full ETc was 
delivered using drip and sub-surface 

irrigation systems

Date 
palm

10.8% and 6.65% reduction for 50% and 
25% deficit were obtained for chlorophyll. 

However, while a declination of 1.7% for the 
50% deficit was observed for photosynthesis, 

the 25% deficit numerically got higher by 
0.15% relative to the full ETc.

Mohammed et al. (2021)

40 Tested only one deficit level (25% FC) Date 
palm

Photosynthetic rate, relative moisture content 
of leaf, chlorophyll enrichment, stomatal 
conductance and transpiration became 

statistically lowered. Over half of the EST 
(water stress-responsive mRNAs) detected 

were associated with photosynthesis, 
metabolism and gaseous exchange. 

Alhajhoj et al. (2022)

41 This involved water stress interval viz: 
3, 5 and 7-day intervals at 100%, 50% 

and 25% FC.

Cocoa A perfect linear trend was observed between 
the deficit levels and physiological and 

morphological attributes measured. 75% 
water deficit at 7-day intervals had the poorest 
performance e.g. for plant height, it was 26.7% 

below the average. 

Ayegboyin and 
Akinrinde (2016)

42 Enforcement of strong (10%-15% of 
Vol. WC) and moderate (16%-22%) 

water stress level

Cocoa 29%-62% seedling mortality occurred, retarded 
growth, proline content increased by 937%

Niether et al. (2020)

43 Zero irrigation under harmattan 
season (dry season accompanied by 

harsh, dry, cloudy air)

Cocoa The leaf area index decreased by 33% Sala et al. (2021)

44 Subjected to artificial water stress until 
the leaf water potentials were at −3.0 

and −3.5 MPa

Cocoa Photosynthesis dropped by 98% and energy 
metabolism was completely distorted. 

Zambrano et al. (2021)

45 80%, 60% and 40% fraction of full 
water required administered 

Cocoa A highly significant reduction in pollen grain 
production was recorded

García-Cruzatty et al. 
(2023)
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CLIMATE VARIABILITY AND WATER STRESS EFFECTS ON OIL PALM (Elaeis guineensis Jacq.) PRODUCTIVITY IN MALAYSIA

TABLE 1. SUMMARY OF YIELD, GROWTH AND PHYSIOLOGICAL EFFECTS OF WATER STRESS FOR DIFFERENT CROP 
CATEGORIES (continued)

S/N Mode/Level of water stress 
inducement Crop Resultant effect Source

46 Observation of anomalous dry spell 
effect

Rubber Yield reduced by 50% Thomas et al. (2011)

47 Water stress from seasonal drought Rubber Partial stomatal conductance, impaired 
transpiration and loss of vigor were observed. 

Kunjet et al. (2013)

48 26, 33 and 40 days of drought 
stress after two months of proper 

establishment

Rubber Stuntedness: Nig 801 and RRIM628 cultivars 
increased in height only by 1.0% and 6.0%

Korieocha et al. (2015) 

49 7 days withholding of water during 
the summer period 

Rubber Maximum quantum yield, leaf wax content 
and photosynthetic rate indices became 

negatively affected. 

Thomas et al. (2015) 

50 Water deficit consisted of: FTSW > 0.75 
(control); 0.1 < FTSW < 0.20 (severe), 

and FTSW > 0.75 after rewatering 
(recovery) 

Rubber Many biochemical and enzymatic complexes, 
including superoxide dismutase, peroxidase, 

and hydrogen peroxide content, were 
adversely affected.

Cahyo et al. (2022)

Note: 	FC - field capacity; WC - water content; ETC - crop evapotranspiration; FSTW - fraction of transpirable soil water; PWP - permanent 
wilting point.

Source: Chalvantharan et al. (2023).

Figure 1. Water deficit based on 251 m3 month–1 ha–1 OP requirement from average monthly rainfall in Malaysia in 2021.
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