UNIVERSITI PUTRA MALAYSIA

ERYTHROCYTE OSMOTIC FRAGILITY IN SHEEP AFFECTED BY *EPERYTHROZOOON OVIS*

MARINA BT. HASSAN

FPV 2002 2
ERYTHROCYTE OSMOTIC FRAGILITY IN SHEEP AFFECTED
BY EPERYTHROZOOM OVIS

MARINA BT. HASSAN

MASTER OF VETERINARY SCIENCE
UNIVERSITI PUTRA MALAYSIA
2002
ERYTHROCYTE OSMOTIC FRAGILITY IN SHEEP AFFECTED BY *EPERYTHROZOON OVIS*

By

MARINA BT. HASSAN

Universiti Putra Malaysia, In Fulfilment of the Requirement for the Degree of Master of Veterinary Science

January 2002
Specially dedicated to.....

Ayah, Ma, Hafiz & Syahidah Hana

For your love, support & trust

Man, Jah & Adriana,  Nanie & Mi,
    Adik A & G

Thanks for everything..........
A cross-sectional study design was conducted to detect the eperythrozoonosis in Malaysia environment. Twenty-five sheep were randomly selected from which sixty-two blood samples were collected.

Ethylene diamine tetracetic acid (EDTA), flouride and plain vacutainer tubes (Becton Dickinson, USA) were used to collect blood from the jugular vein of sheep. The fresh blood from EDTA was used to prepare thin blood smears, stained with Wright's
stain and examined microscopically under x40 and x100 magnification, to detect the presence of haemoparasites. The *E. ovis* scoring was determined as 0, positive 1, 2 and 3 to observe the severity of parasitaemia. The fresh blood was also used to determine haematology parameter tests such as white blood cell (WBC), red blood cell (RBC), packed cell volume (PCV), haemoglobin, mean corpuscular volume (MCV), mean corpuscular haemoglobin concentration (MCHC), icterus index and plasma protein determination. Serum and plasma were also taken for clinical biochemistry parameter tests such as the concentrations of glucose, cholesterol, triglyceride, serum gamma glutamyl transferase (γGT) and blood urea nitrogen (BUN). Plasma from the fluoride tubes was used for the glucose test. All the data obtained from the sheep were analysed using a correlation test and ANOVA test.

The study showed that WBC, RBC, haemoglobin, PCV, MCV, MCHC, icterus index and plasma protein were correlated with the different parasitaemia score. There was no significant difference (p< 0.05) in the haematology parameters of animals with different parasitaemia scores. However, a correlation analysis showed a correlation between the haematology parameters and parasitaemia at different times of infection. The WBC, RBC,
haemoglobin, PCV and plasma protein parameters were negatively correlated with the parasitaemia after eight days of infection. The MCV was positively and MCHC was negatively correlated with parasitaemia after four days of infection.

There was no significant difference in the concentrations of glucose, cholesterol, γGT and BUN parameters of animals with different parasitaemia scores. But, triglyceride was significantly different with different parasitaemia scores. However, a correlation analysis showed correlation between the clinical biochemistry parameters and parasitaemia at different times of infection. Glucose levels were negatively correlated with the parasitaemia after four days of infection. Cholesterol levels were negatively correlated with the parasitaemia after two days of infection. γGT and BUN were positively correlated after four days of infection. Triglyceride were negatively correlated after 10 days of infection. The clinical biochemistry parameters showed that the E. ovis activity on the RBC membrane did not affect the parameters studied.

There was no significant difference in the erythrocyte osmotic fragility (EOF) with different parasitaemia score. The mean EOF graph showed the same trend in all parasitaemia score. The
haematology parameters such as RBC, haemoglobin, PCV, MCV and icterus index were positively correlated whereas the MCHC and plasma protein were negatively correlated with the EOF. Glucose, triglyceride and γGT levels were positively correlated whereas cholesterol and BUN levels were negatively correlated with the EOF.

The histopathology changes in the spleen, liver and kidney were mild to moderate. It showed that extravascular haemolysis occurred in the *E. ovis* infection.

In conclusion, the *E. ovis* detected in Malaysia did not greatly affect the haematology parameters, clinical biochemistry parameters and EOF. However, the effects of *E. ovis* infection were detected in spleen, liver and kidney. In conclusion, the *E. ovis* found in Malaysia was mildly pathogenic.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains Veterinar

KERAPUHAN OSMOSIS ERITROSIT PADA BEBIRI YANG DIJANGKITI EPERYTHROZOON OVIS

Oleh

MARINA BT. HASSAN

Januari 2002

Pengerusi : Profesor Madya Dr. Che Teh Fatimah Nachiar Iskandar

Fakulti : Perubatan Veterinar

Pengajian jenis ‘cross-sectional’ telah dijalankan untuk mengesan penyakit eperythrozoonosis di Malaysia. Dua puluh lima ekor bebiri dipilih secara rawak daripada enam puluh dua contoh darah telah diambil.

Tiub Ethylene diamine tetracetic acid (EDTA), florida dan tiub kosong (Becton Dickinson, USA) telah digunakan untuk mengumpul darah daripada salur darah jugular pada bebiri. Darah segar daripada EDTA digunakan untuk penyediaan
calitan nipis darah, diwarnakan dengan pewarna Wright dan diperiksa dibawah mikroskop menggunakan kuasa x40 dan x100, untuk mengesan kehadiran parasit darah. Skor *E. ovis* dinyatakan sebagai 0, positif 1,2 dan 3 untuk mengkaji ‘severity’ kitaran parasit dalam darah. Darah segar juga digunakan untuk menguji parameter hematologi seperti sel darah putih (WBC), sel darah merah (WBC), hemoglobin, isipadu sel padat (PCV), min isipadu korpusel (MCV), min kepekatan hemoglobin korpusel (MCHC), indek ikterus dan protin plasma. Serum dan plasma diambil juga untuk menguji parameter biokimia klinikal seperti konsentrasi glukosa, kolesterol, triglyserida, serum gamma glutamyl transferase (γGT) dan urea nitrogen darah (BUN). Plasma dalam tiub florida digunakan untuk pengujian glukosa. Semua data diperolehi di analisis dengan menggunakan pengujian korelasi dan ANOVA.

Pengajian ini menunjukkan WBC, RBC, hemoglobin, PCV, MCV, MCHC, indek ikterus dan protein plasma mempunyai korelasi dengan skor parasit yang berbeza. Tiada perubahan signifikan (p< 0.05) pada parameter hematologi bebiri itu dengan skor parasit. Walaubagaimana pun, analisis korelasi menunjukkan ada korelasi antara parameter hematologi dan parasit dalam darah pada masa jangkitan yang berbeza. Parameter WBC, RBC,
hemoglobin, PCV dan protin plasma adalah korelasi negatif dengan parasit selepas lapan hari jangkitan. MCV adalah positif dan MCHC pula korelasi negatif selepas empat hari jangkitan.

Tiada perubahan signifikan dalam konsentrasi glukosa, kolesterol, γGT dan BUN parameter bebiri dengan skor parasit yang berbeza. Tetapi, trigliserida perubahan signifikan dengan skor parasit yang berbeza. Walaubagaimana pun, analisis korelasi menunjukkan ada korelasi antara parameter biokimia klinikal dan parasit pada masa jangkitan yang berbeza. Tahap glukosa adalah korelasi negatif dengan parasit selepas empat hari jangkitan. Tahap kolesterol adalah korelasi negatif dengan parasit selepas dua hari jangkitan. γGT dan BUN kolerasi positif selepas empat hari jangkitan. Trigliserida kolerasi negatif selepas sepuluh hari jangkitan. Parameter biokimia klinikal menunjukkan aktiviti *E. ovis* atas membran RBC tidak ada kesan pada parameter yang dikaji.

Tiada perubahan signifikan pada kerapuhan osmosis eritrosit (EOF) dengan skor parasit yang berbeza. Graf min EOF menunjukkan trend yang sama pada semua skor parasit. Parameter hematologi seperti RBC, hemoglobin, PCV, MCV dan indek ikterus adalah korelasi positif dimana MCHC dan protein
plasma adalah korelasi negatif dengan EOF. Tahap glukosa, trigliserida dan γGT adalah korelasi positif di mana kolesterol dan BUN adalah korelasi negatif dengan EOF.

Perubahan histopathologi pada limpa, hati dan ginjal adalah 'mild' ke 'moderate'. Ini menunjukkan hemolisis 'extravascular' berlaku dalam jangkitan *E. ovis*.

ACKNOWLEDGEMENTS

I would like to express my deepest and sincere gratitude and appreciation to my supervisor, Associate Professor Dr. Che Teh Fatimah Nachiar Iskandar and the members of the supervisory committee, Assoc. Prof. Dr. Rasedee Abdullah, Assoc. Prof. Dr. Mohd. Hair Bejo and Dr. Ungku Chulan Ungku Mohsin for their invaluable guidance, advice, supervision, kindness and support throughout the course of this study.

To my family, Hafiz and my daughter, Syahidah, thank you for the understanding, support and trust.

Finally to all my friends, Dr. Siti Norhayati, Dr. Siti Nor, Dr. Zamirah, Dr. Zurina, Dr. Wan Mastura, Dr. Mariah, Dr. Goh Yong Meng, Cik Azilah and Pn. Maizatul, my deepest appreciation for their help and support during the course of the project. To the Clinical Biochemistry laboratory staff, En. Helmi and En. Abdullah, I extend my thanks for their help throughout the course of this study.
I certify that an Examination Committee met on 18\textsuperscript{th} January 2002 to conduct the final examination of Marina binti Hassan on her Master of Veterinary Science thesis entitled “Erythrocyte Osmotic Fragility in Sheep Affected by \textit{Eperythrozoon ovis}” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

**Mohamed Ali Rajion, Ph.D.**  
Professor  
Faculty of Veterinary Medicine,  
Universiti Putra Malaysia  
(Chairman)

**Che Teh Fatimah Nachiar Iskandar, Ph.D.**  
Associate Professor  
Faculty of Veterinary Medicine,  
Universiti Putra Malaysia  
(Member)

**Rasedee Abdullah, Ph.D.**  
Associate Professor  
Faculty of Veterinary Medicine,  
Universiti Putra Malaysia  
(Member)

**Mohd Hair Bejo, Ph.D.**  
Associate Professor  
Faculty of Veterinary Medicine  
Universiti Putra Malaysia  
(Member)

**Ungku Chulan Ungku Mohsin, MVS.**  
Faculty of Veterinary Medicine  
Universiti Putra Malaysia  
(Member)

\[\text{Signature}\]

SHAMSHER MOHAMAD RAMADILI, Ph.D.  
Professor/Deputy Dean  
School of Graduate Studies  
Universiti Putra Malaysia

Date: 06 MAY 2002
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Master of veterinary Science.

AINI IDERIS, Ph.D.
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 13 JUN 2002
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

Marina Hassan

Date: 6.5.2002
TABLE OF CONTENTS

DEDICATION ii
ABSTRACT iii
ABSTRAK vii
ACKNOWLEDGEMENTS xi
APPROVAL SHEETS xii
DECLARATION FORM xiv
LIST OF TABLES xix
LIST OF FIGURES xx
LIST OF PLATES xxiii
LIST OF ABBREVIATION/NOTATION/GLOSSARY OF TERMS xxv

CHAPTER

1 INTRODUCTION 1
1.1 General Introduction 1
1.2 Hypotheses 4
1.3 Objectives 4

2 LITERATURE REVIEW 6
2.1 Introduction 7
2.2.0 Causative Agent 7
2.2.1 Classification 7
2.2.2 Morphology and Ultrastructure 8
2.2.3 Pathogenicity 12
2.2.4 Life Cycle and Scoring 13
2.3.0 Epidemiology 16
2.3.1 Geographical distribution 16
2.3.1.1 Prevalence 17
2.3.1.2 Seasonal Factors 19
2.3.2 Transmission 20
2.3.3 Host 23
2.3.3.1 Natural Host 23
2.3.3.2 Carrier State 23
2.4.0 Pathogenesis 24
2.4.1 E. ovis Infected Host 27
2.4.2 Immune Response 27
2.4.3 Pathology 29
2.4.3.1 Erythrocyte Osmotic Fragility (EOF) 29
2.4.3.2 Haematology 35
2.4.3.3 Clinical Biochemistry 38
2.4.3.4 Histopathology 40
2.5.0 Clinical Signs 42
2.6.0 Treatment and Control 45

3 HAEMATOLOGY PARAMETERS AND PARASITAEMIA
3.1 Introduction 47
3.2 Materials and Methods 50
3.2.1 Animals 50
3.2.2 Blood Collection 50
3.2.3 Haemoparasite Examination And Scoring 51
3.2.4 Haematological Parameters Examination 52
3.2.5 Histopathology 54
3.2.5.1 Tissue process 54
3.2.5.2 Staining 55
3.2.5.3 Lesion Scoring System (LSS) 55
3.3 Statistical Analysis 56
3.4 Results 57
3.4.1 *E. ovis* parasitaemia Score and Cycle 57
3.4.2 White Blood Cell (WBC) 59
3.4.3 Red Blood Cell (RBC) 59
3.4.4 Haemoglobin concentrations 60
3.4.5 Packed Cell Volume (PCV) 60
3.4.6 Mean Corpuscular Volume (MCV) 61
3.4.7 Mean Corpuscular Haemoglobin Concentrations (MCHC) 61
3.4.8 Icterus Index 62
3.4.9 Plasma Protein 62
3.4.10Histopathology 63
3.4.10.1 Spleen 64
3.4.10.2 Liver 64
3.4.10.3 Kidney 66
3.5 Discussion 68
3.5.1 *E. ovis* cycle 68
3.5.2 White Blood Cell (WBC) 70
3.5.3 RBC, haemoglobin, PCV and Icterus Index 72
3.5.4 MCV and MCHC 75
3.5.5 Plasma Protein 76
3.5.6 Histopathology 77

xvi
5.5.1 EOF and parasitaemia 151
5.5.2 EOF and haematology 152
5.5.3 EOF and clinical biochemistry 154
5.6 Conclusion 156

6 General Discussion 163

REFERENCES 167
APPENDICES 177
BIODATA OF THE AUTHOR 221
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Morphology and ultrastructure of <em>Eperythrozoon</em> species in various animal species</td>
</tr>
<tr>
<td>2.2</td>
<td>The incubation period of <em>E. ovis</em> in sheep infection reported in several studies</td>
</tr>
<tr>
<td>2.3</td>
<td>The <em>Eperythrozoon</em> species vectors</td>
</tr>
<tr>
<td>2.4</td>
<td>The Erythrocyte osmotic fragility (EOF) in different animal species</td>
</tr>
<tr>
<td>2.5</td>
<td>The clinical signs of the <em>Eperythrozoon</em> species infection</td>
</tr>
<tr>
<td>3.1</td>
<td><em>E. ovis</em> parasitaemia score</td>
</tr>
<tr>
<td>3.2</td>
<td>The lesion scoring system (LSS)</td>
</tr>
<tr>
<td>3.3</td>
<td><em>E. ovis</em> score in 62 blood samples</td>
</tr>
<tr>
<td>3.4</td>
<td>Lesion score of the organs observed from slaughtered sheep (n=8)</td>
</tr>
<tr>
<td>5.1</td>
<td>NaCl concentration at which the 50% haemolysis occurred at different <em>E. ovis</em> parasitaemia score</td>
</tr>
<tr>
<td>5.2</td>
<td>Correlation between EOF and haematology parameters</td>
</tr>
<tr>
<td>5.3</td>
<td>Correlation between EOF and clinical biochemistry parameters</td>
</tr>
</tbody>
</table>
**LIST OF FIGURES**

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Prevalence of <em>E. ovis</em> infection (Azman, 1995)</td>
<td>18</td>
</tr>
<tr>
<td>2.2 Postulated pathogenesis of <em>E. ovis</em> infection</td>
<td>25</td>
</tr>
<tr>
<td>3.1 <em>E. ovis</em> cycle in individual animals</td>
<td>82</td>
</tr>
<tr>
<td>3.2 The fluctuation of the <em>E. ovis</em> cycle in one of the animal used</td>
<td>83</td>
</tr>
<tr>
<td>3.3 Mean white blood cell (WBC) numbers in sheep with different parasitaemia scores</td>
<td>84</td>
</tr>
<tr>
<td>3.4 Mean red blood cell (RBC) numbers in sheep with different parasitaemia scores</td>
<td>85</td>
</tr>
<tr>
<td>3.5 Mean haemoglobin concentrations in sheep with different parasitaemia scores</td>
<td>86</td>
</tr>
<tr>
<td>3.6 Mean packed cell volume (PCV) in sheep with different parasitaemia scores</td>
<td>87</td>
</tr>
<tr>
<td>3.7 Mean mean corpuscular volume (MCV) in sheep with different parasitaemia scores</td>
<td>88</td>
</tr>
<tr>
<td>3.8 Mean mean corpuscular haemoglobin concentration (MCHC) in sheep with different parasitaemia scores</td>
<td>89</td>
</tr>
<tr>
<td>3.9 Mean icterus index in sheep with different parasitaemia scores</td>
<td>90</td>
</tr>
<tr>
<td>3.10 Mean plasma protein in sheep with different parasitaemia scores</td>
<td>91</td>
</tr>
<tr>
<td>3.11 Animals (n=10) showing positive and negative correlation in white blood cell (WBC) counts after a delay period</td>
<td>92</td>
</tr>
<tr>
<td>3.12 Animals (n=10) showing positive and negative correlation in red blood cell (RBC) counts after a delay period</td>
<td>93</td>
</tr>
</tbody>
</table>
3.13 Animals (n=10) showing positive and negative correlation in haemoglobin concentrations after a delay period

3.14 Animals (n=10) showing positive and negative correlation in packed cell volume (PCV) after a delay period

3.15 Animals (n=10) showing positive and negative correlation in mean corpuscular volume (MCV) after a delay period

3.16 Animals (n=10) showing positive and negative correlation in mean corpuscular haemoglobin concentration (MCHC) after a delay period

3.17 Animals (n=10) showing positive and negative correlation in plasma protein after a delay period

4.1 Mean plasma glucose concentrations in sheep with different parasitaemia scores

4.2 Mean plasma cholesterol concentrations in sheep with different parasitaemia scores

4.3 Mean plasma triglyceride in sheep with different parasitaemia scores

4.4 Mean serum gamma glutamyl transferase concentrations in sheep with different parasitaemia scores

4.5 Mean blood urea nitrogen (BUN) in sheep with different parasitaemia scores

4.6 Animals (n=10) showing positive and negative correlation in glucose after a delay period

4.7 Animals (n=10) showing positive and negative correlation in cholesterol after a delay period

4.8 Animals (n=10) showing positive and negative correlation in triglyceride after a delay period

4.9 Animals (n=10) showing positive and negative correlation in gamma glutamyl transferase (γGT) after a delay period
4.10 Animals (n=10) showing positive and negative correlation in blood urea nitrogen (BUN) after a delay period............142

5.1 Mean of erythrocyte osmotic fragility (EOF) curves in different group of parasitaemia..............................158

5.2 Erythrocyte osmotic fragility (EOF) curves and its mean for animals with score 0 (n=6).................................159

5.3 Erythrocyte osmotic fragility (EOF) curves and its mean for animals with score 1 (n=40)...............................160

5.4 Erythrocyte osmotic fragility (EOF) curves and its mean for animals with score 2 (n=13)...............................161

5.5 Erythrocyte osmotic fragility (EOF) curves and its mean for animals with score 3 (n=3)...............................162
**LIST OF PLATES**

<table>
<thead>
<tr>
<th>Plate</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>E. ovis in coccoid form (arrow). Wright stain, x100........99</td>
</tr>
<tr>
<td>3.2</td>
<td>E. ovis in cluster form (arrow). Wright stain, x100........100</td>
</tr>
<tr>
<td>3.3</td>
<td>E. ovis in ring form (arrow). Wright stain, x100...........101</td>
</tr>
<tr>
<td>3.4</td>
<td>Haemosiderin (iron-containing pigment), golden-brown colour pigment (arrow) in the red pulp of spleen. Haematoxyline and eosin (H &amp; E) stain, x40..............102</td>
</tr>
<tr>
<td>3.5</td>
<td>Haemosiderin (iron-containing pigment), golden-brown colour pigment (arrow) in the red pulp of spleen. Haematoxyline and eosin (H &amp; E) stain, x100.............103</td>
</tr>
<tr>
<td>3.6</td>
<td>Necrotic area (arrow) in the red pulp of spleen. H &amp; E stain, x16.................................104</td>
</tr>
<tr>
<td>3.7</td>
<td>Necrotic area (arrow) in the red pulp of the spleen. H &amp; E stain, x 40................................105</td>
</tr>
<tr>
<td>3.8</td>
<td>Vacoules (arrow) of various size in the cytoplasm of the liver cells, especially at the centrilobular area (A). H &amp; E stain, x16.................................106</td>
</tr>
<tr>
<td>3.9</td>
<td>Fatty changes in liver of sheep affected by E. ovis. Fat droplets in liver cells were round shaped, had clear edges and bigger in size compared to other vacoules (arrow). H &amp; E stain, x40..............................107</td>
</tr>
<tr>
<td>3.10</td>
<td>Granular degeneration in the liver affected by E. ovis (arrow). The nucleus is normal in appearance (N) but displaced from its central position. H &amp; E stain, x100....108</td>
</tr>
<tr>
<td>3.11</td>
<td>Protein droplets (hyaline degeneration) (arrow) in the liver especially at the centrilobular area (A). H &amp; E stain, x40.................................109</td>
</tr>
</tbody>
</table>